J. S. Temel, J. F. Gainor, and R. J. Sullivan, Keeping Expectations in Check With Immune Checkpoint Inhibitors, J. Clin. Oncol, vol.36, pp.1654-1657, 2018.

S. Spranger and T. F. Gajewski, Impact of oncogenic pathways on evasion of antitumour immune responses, Nat. Rev. Cancer, vol.18, pp.139-147, 2018.

M. Iafolla, H. Selby, and K. Warner, Rational design and identification of immuno-oncology drug combinations, Eur. J. Cancer, vol.95, pp.38-51, 2018.

I. Mellman, G. Coukos, and G. Dranoff, Cancer immunotherapy comes of age, Nature, vol.480, pp.480-489, 2011.

R. M. Chabanon, M. Pedrero, and C. Lefebvre, Mutational Landscape and Sensitivity to Immune Checkpoint Blockers, Clin. Cancer Res, vol.22, pp.4309-4321, 2016.

M. Roselli, V. Cereda, D. Bari, and M. G. , Effects of conventional therapeutic interventions on the number and function of regulatory T cells, Oncoimmunology, vol.2, p.27025, 2013.

W. J. Lesterhuis, C. Punt, and S. V. Hato, Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice, J Clin Invest, vol.121, pp.3100-3108, 2011.

A. Jurj, C. Braicu, and L. Pop, The new era of nanotechnology, an alternative to change cancer treatment, Development and Therapy, vol.11, pp.2871-2890, 2017.

R. Fanciullino, J. Ciccolini, and G. Milano, Challenges, expectations and limits for nanoparticles-based therapeutics in cancer: A focus on nano-albumin-bound drugs, Critical Reviews in Oncology/Hematology, vol.88, pp.504-513, 2013.

A. Rodallec, R. Fanciullino, and B. Lacarelle, Seek and destroy: improving PK/PD profiles of anticancer agents with nanoparticles, Expert Rev Clin Pharmacol, vol.11, pp.599-610, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02143589

S. Tseng, M. Chou, and C. , Cetuximab-conjugated iron oxide nanoparticles for cancer imaging and therapy, Int J Nanomedicine, vol.10, pp.3663-3685, 2015.

Y. Liu, P. Zhang, and F. Li, Metal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells, Theranostics, vol.8, pp.1824-1849, 2018.

A. Shah and M. A. Dobrovolskaia, Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations, Nanomedicine, vol.14, pp.977-990, 2018.

S. Kurtin, Myeloid Toxicity of Cancer Treatment, J Adv Pract Oncol, vol.3, pp.209-224, 2012.

D. B. Sacdalan, J. A. Lucero, and D. L. Sacdalan, Prognostic utility of baseline neutrophil-to-lymphocyte ratio in patients receiving immune checkpoint inhibitors: a review and meta-analysis, Onco Targets Ther, vol.11, pp.955-965, 2018.

C. Putzu, D. L. Cortinovis, and F. Colonese, Blood cell count indexes as predictors of outcomes in advanced non-small-cell lung cancer patients treated with Nivolumab, Cancer Immunol. Immunother, vol.67, pp.1349-1353, 2018.

L. Liu, Q. Chen, and L. Tang, The Prognostic Value of Treatment-Related Lymphopenia in Nasopharyngeal Carcinoma Patients, Cancer Res Treat, vol.50, pp.19-29, 2018.

A. T. Wild, X. Ye, and S. G. Ellsworth, The Association Between Chemoradiation-related Lymphopenia and Clinical Outcomes in Patients With Locally Advanced Pancreatic Adenocarcinoma, Am. J. Clin. Oncol, vol.38, pp.259-265, 2015.

M. Yarchoan, A. Diehl, and B. A. Johnson, Relationship between lymphopenia and objective response rate with programmed death-1 (PD-1) inhibitor therapy: A single-center retrospective analysis, JCO, vol.35, pp.14512-14512, 2017.

R. Sun, S. Champiat, and L. Dercle, Baseline lymphopenia should not be used as exclusion criteria in early clinical trials investigating immune checkpoint blockers (PD-1/PD-L1 inhibitors), Eur. J. Cancer, vol.84, pp.202-211, 2017.

L. Zitvogel, L. Apetoh, and F. Ghiringhelli, Immunological aspects of cancer chemotherapy, Nat. Rev. Immunol, vol.8, pp.59-73, 2008.

N. Desai, V. Trieu, and Z. Yao, Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel, Clin Cancer Res, vol.12, pp.1317-1324, 2006.

S. M. Rafiyath, M. Rasul, and B. Lee, Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: a meta-analysis, Exp Hematol Oncol, vol.1, pp.1-9, 2012.

O. 'brien, S. Schiller, G. Lister, and J. , High-Dose Vincristine Sulfate Liposome Injection for Advanced, Relapsed, and Refractory Adult Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia, J Clin Oncol, vol.31, pp.676-683, 2013.

R. Fanciullino, S. Mollard, and S. Giacometti, Vitro and In Vivo Evaluation of Lipofufol, a New Triple Stealth Liposomal Formulation of Modulated 5-Fu: Impact on Efficacy and Toxicity, vol.30, pp.1281-1290, 2013.

W. J. Gradishar, S. Tjulandin, and N. Davidson, Phase III Trial of Nanoparticle Albumin-Bound Paclitaxel Compared With Polyethylated Castor Oil-Based Paclitaxel in Women With Breast Cancer, JCO, vol.23, pp.7794-7803, 2005.

S. Ait-oudhia, R. M. Straubinger, and D. E. Mager, Meta-analysis of nanoparticulate paclitaxel delivery system pharmacokinetics and model prediction of associated neutropenia, Pharm. Res, vol.29, pp.2833-2844, 2012.

B. S. Adiwijaya, J. Kim, and I. Lang, Population Pharmacokinetics of Liposomal Irinotecan in Patients With Cancer, Clin. Pharmacol. Ther, vol.102, pp.997-1005, 2017.

L. Derosa, M. D. Hellmann, and M. Spaziano, Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer, Ann. Oncol, vol.29, pp.1437-1444, 2018.

M. Yi, S. Yu, and S. Qin, Gut microbiome modulates efficacy of immune checkpoint inhibitors, J Hematol Oncol, vol.11, p.47, 2018.

T. N. Schumacher and R. D. Schreiber, Neoantigens in cancer immunotherapy, Science, vol.348, pp.69-74, 2015.

O. Kepp, L. Galluzzi, and I. Martins, Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy, Cancer Metastasis Rev, vol.30, pp.61-69, 2011.

O. Donnell, J. S. Long, G. V. Scolyer, and R. A. , Resistance to PD1/PDL1 checkpoint inhibition, Cancer Treat. Rev, vol.52, pp.71-81, 2017.

D. R. Green, T. Ferguson, and L. Zitvogel, Immunogenic and tolerogenic cell death, Nat. Rev. Immunol, vol.9, pp.353-363, 2009.

R. Fanciullino, S. Giacometti, and C. Mercier, In vitro and in vivo reversal of resistance to 5fluorouracil in colorectal cancer cells with a novel stealth double-liposomal formulation, Br. J. Cancer, vol.97, pp.919-926, 2007.

C. Bornmann, R. Graeser, and N. Esser, A new liposomal formulation of Gemcitabine is active in an orthotopic mouse model of pancreatic cancer accessible to bioluminescence imaging, Cancer Chemother. Pharmacol, vol.61, pp.395-405, 2008.

M. Kim and S. Williams, Daunorubicin and Cytarabine Liposome in Newly Diagnosed Therapy-Related Acute Myeloid Leukemia (AML) or AML With Myelodysplasia-Related Changes, Ann Pharmacother, vol.52, pp.792-800, 2018.

L. Jeanbart, M. Ballester, and A. De-titta, Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes, Cancer Immunol Res, vol.2, pp.436-447, 2014.

G. Chen and L. A. Emens, Chemoimmunotherapy: reengineering tumor immunity, Cancer Immunol. Immunother, vol.62, pp.203-216, 2013.

L. A. Emens and G. Middleton, The interplay of immunotherapy and chemotherapy: harnessing potential synergies, Cancer Immunol Res, vol.3, pp.436-443, 2015.

Y. Katsuya, H. Horinouchi, and T. Asao, Expression of programmed death 1 (PD-1) and its ligand (PD-L1) in thymic epithelial tumors: Impact on treatment efficacy and alteration in expression after chemotherapy, Lung Cancer, vol.99, pp.4-10, 2016.

A. M. Ercolini, B. H. Ladle, and E. A. Manning, Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response, J. Exp. Med, vol.201, pp.1591-1602, 2005.

R. Kaneno, G. V. Shurin, and I. L. Tourkova, Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations, J Transl Med, vol.7, p.58, 2009.

G. V. Shurin, I. L. Tourkova, and R. Kaneno, Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12-dependent mechanism, J. Immunol, vol.183, pp.137-144, 2009.

J. A. Mckenzie, R. M. Mbofung, and S. Malu, The Effect of Topoisomerase I Inhibitors on the Efficacy of T-Cell-Based Cancer Immunotherapy, J. Natl. Cancer Inst, vol.110, pp.777-786, 2018.

A. Rodallec, S. Benzekry, and B. Lacarelle, Pharmacokinetics variability: Why nanoparticles are not just magic-bullets in oncology, Critical Reviews in Oncology / Hematology, vol.129, pp.1-12, 2018.

A. N. Ilinskaya and M. A. Dobrovolskaia, Understanding the immunogenicity and antigenicity of nanomaterials: Past, present and future, Toxicol. Appl. Pharmacol, vol.299, pp.70-77, 2016.

M. Sauerborn, V. Brinks, and W. Jiskoot, Immunological mechanism underlying the immune response to recombinant human protein therapeutics, Trends Pharmacol. Sci, vol.31, pp.53-59, 2010.

B. S. Zolnik, A. González-fernández, and N. Sadrieh, Nanoparticles and the immune system, Endocrinology, vol.151, pp.458-465, 2010.

B. Banerji, J. J. Kenny, and I. Scher, Antibodies against liposomes in normal and immune-defective mice, The Journal of Immunology, vol.128, pp.1603-1607, 1982.

B. W. Neun, Y. Barenholz, and J. Szebeni, Understanding the Role of Anti-PEG Antibodies in the Complement Activation by Doxil in Vitro, Molecules, vol.23, p.1700, 2018.

T. Shimizu, T. Ishida, and H. Kiwada, Transport of PEGylated liposomes from the splenic marginal zone to the follicle in the induction phase of the accelerated blood clearance phenomenon, Immunobiology, vol.218, pp.725-732, 2013.

M. Shahbazi, N. Shrestha, and E. Mäkilä, A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors, Nano Res, vol.8, pp.1505-1521, 2015.

M. Ahmed, D. W. Pan, and M. E. Davis, Lack of in vivo antibody dependent cellular cytotoxicity with antibody containing gold nanoparticles, Bioconjug. Chem, vol.26, pp.812-816, 2015.

S. Zhu, M. Niu, and H. O'mary, Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles, Mol. Pharm, vol.10, pp.3525-3530, 2013.

K. Perica, A. De-león-medero, and M. Durai, Nanoscale artificial antigen presenting cells for T cell immunotherapy, Nanomedicine, vol.10, pp.119-129, 2014.

T. L. Whiteside, Apoptosis of immune cells in the tumor microenvironment and peripheral circulation of patients with cancer: implications for immunotherapy, Vaccine, vol.20, issue.4, pp.46-51, 2002.

S. Demaria, M. D. Volm, and R. L. Shapiro, Development of tumor-infiltrating lymphocytes in breast cancer after neoadjuvant paclitaxel chemotherapy, Clin. Cancer Res, vol.7, pp.3025-3030, 2001.

J. M. Pitt, M. Vétizou, and R. Daillère, Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and-Extrinsic Factors, Immunity, vol.44, pp.1255-1269, 2016.

R. K. Jain, Barriers to drug delivery in solid tumors, Sci. Am, vol.271, pp.58-65, 1994.

J. Conde, C. Bao, and Y. Tan, Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumour-associated macrophages and cancer cells, Adv Funct Mater, vol.25, pp.4183-4194, 2015.

N. K. Jain, M. S. Tare, and V. Mishra, The development, characterization and in vivo anti-ovarian cancer activity of poly(propylene imine) (PPI)-antibody conjugates containing encapsulated paclitaxel, Nanomedicine, vol.11, pp.207-218, 2015.

X. Duan, C. Chan, and N. Guo, Photodynamic Therapy Mediated by Nontoxic Core-Shell Nanoparticles Synergizes with Immune Checkpoint Blockade To Elicit Antitumor Immunity and Antimetastatic Effect on Breast Cancer, J. Am. Chem. Soc, vol.138, pp.16686-16695, 2016.

F. Zhang, S. B. Stephan, and C. I. Ene, Nanoparticles That Reshape the Tumor Milieu Create a Therapeutic Window for Effective T-cell Therapy in Solid Malignancies, Cancer Res, vol.78, 2018.

L. Tang, Y. Zheng, and M. B. Melo, Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery, Nature Biotechnology [Internet], vol.36, pp.707-716, 2018.

S. Chattopadhyay, S. K. Dash, and D. Mandal, Metal based nanoparticles as cancer antigen delivery vehicles for macrophage based antitumor vaccine, Vaccine, vol.34, pp.957-967, 2016.

M. A. Amini, A. Z. Abbasi, and P. Cai, Combining Tumor Microenvironment Modulating Nanoparticles with Doxorubicin to Enhance Chemotherapeutic Efficacy and Boost Antitumor Immunity, J. Natl. Cancer Inst, 2018.

H. Meng, W. Leong, and K. W. Leong, Walking the line: The fate of nanomaterials at biological barriers, Biomaterials, vol.174, pp.41-53, 2018.

I. Kareva, A Combination of Immune Checkpoint Inhibition with Metronomic Chemotherapy as a Way of Targeting Therapy-Resistant Cancer Cells, Int J Mol Sci, vol.18, p.2134, 2017.

D. B. Warheit, Hazard and risk assessment strategies for nanoparticle exposures: how far have we come in the past 10 years?, vol.7, p.376, 2018.