*] @la M/ /p M+2/ [ Ti iBQM J2+?2 MBbK
uQm?2B FBKQIQ-LBFQH mb > Mb2M

hQ +Bi2 i?Bb p2 " bBQM,

UQm?2B FBKQiQ- LBFQH mb > Mb2MX *J @1la M/ /p M+2/ / Ti iBQM
*QKT MBQM, S'Q+22/BM;b Q7 i?2 :2M2iB+ M/ 1pQHmiBQM v *QKTmi |
kyR3- EVQiQ-C T MX ? H@yRNS8NO9dN

> G A/, 2 H@YRNSNO9dN
?2i1iTbh,ff? HXBM B X7 f? H@yRN8N9dN
am#KBii2/ QM R3 .2+ kyR3

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X



CMA-ES and Advanced Adaptation Mechanisms

akimoto@cs.tsukuba.ac.jp
nikolaus.hansen@inria.fr

Permission to make digital or hard copies of part or all of this work for personal or classroom use i
granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
third-party components of this work must be honored. For all other uses, contact the Owner/Autho

GECCO '18 Companiqruly 15B19, 2018, Kyoto, Japan
© 2018 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-5764-7/18/07.
https://doi.org/10.1145/3205651.3207854




We are happy to answer questions at any time.



Topics

1. What makes the problem difpcult to solve?

2. How does the CMA-ES work?

Normal Distribution, Rank-Based Recombination
Step-Size Adaptation
Covariance Matrix Adaptation

3. What can/should the users do for the CMA-ES to work
effectively on their problem?

Choice of problem formulation and encoding (not covered)
Choice of initial solution and initial step-size
Restarts, Increasing Population Size

Restricted Covariance Matrix
3



Topics

1. What makes the problem difpcult to solve?

2. How does the CMA-ES work?

Normal Distribution, Rank-Based Recombination
Step-Size Adaptation
Covariance Matrix Adaptation

3. What can/should the users do for the CMA-ES to work
effectively on their problem?

Choice of problem formulation and encoding (not covered)
Choice of initial solution and initial step-size
Restarts, Increasing Population Size

Restricted Covariance Matrix
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Problem Statement Black Box Optimization and Its Difpculties

Problem Statement

Continuous Domain Search/Optimization

Task: an (Ptnessfunction, loss
function) In continuous domain

f: X! R" R, X #" f(X)
scenario (direct search scenario)

X f(x)

' gradients are not available or not useful
' problem domain specibc knowledge is used only within the black
box, e.g. within an appropriate encoding

Search : number of function evaluations



Problem Statement Black Box Optimization and Its Difpculties

Problem Statement

Continuous Domain Search/Optimization

Goal

' fast convergence to the global optimum

_ _ ~...o0r to a robust solution x
' solution x with f(x) with

there are two conlf3icting objectives

Typical Examples

' shape optimization (e.g. using CFD) curve btting, airfoils

' model calibration biological, physical

' parameter calibration controller, plants, images
Problems

' exhaustive search is infeasible
' naive random search takes too long
' deterministic search is not successful / takes too long

. stochastic search, Evolutionary Algorithms
6



Problem Statement Black Box Optimization and Its Difpculties

What Makes a Function Difbcult to Solve?

Why stochastic search?

non-linear, non-quadratic, non-convex
on linear and quadratic functions much better

search policies are available

ruggedness
non-smooth, discontinuous, multimodal, and/or

noisy function

dimensionality (size of search space)

(considerably) larger than three
il 1946566
non-separabllity YOGOO
| d§|:.)en§len0|es between the objective variables 5@ B«
ill-conditioning R RR

non-smooth level sets

Newton direction



Problem Statement Black Box Optimization and Its Difpculties

Ruggedness

non-smooth, discontinuous, multimodal, and/or noisy

100

Fithess

0
14 '3 12 N 0 1 2 3 4

cut from a 5-D example, (easily) solvable with evolution strategies



Problem Statement Non-Separable Problems

Separable Problems
DePnition (Separable Problem)

A function f Is separable if
!

arg min f(Xy,...,Xy) = argminf(xy,...),...,argminf(...,X,)
X1,.-1, Xn) X1 Xn

I It follows that f can be optimized in a sequence of n independent
1-D optimization processes

Example: Additively 3,
decomposable functions ’
#n T

f(Xe, ..., %) = fi(x)

i=1 1]

Rastrigin function

N

(°8)

O O
R\ AN PN PN AP A 17
'3 12 1 0 1 2 3




Problem Statement Non-Separable Problems

Non-Separable Problems

Building a non-separable problem from a separable one (12

Rotating the coordinate system
f:x!" f(x) separable
fox!™ f( x)

rotation matrix

7

7\

RS Y/ /> W
11 0 1

13 12

w“

Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies:

The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann

2Salomon (1996). OReevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A

survey of some theoretical and practical aspects of genetic algorithms.O BioSystems, 39(3):263:278
10




Problem Statement [lI-Conditioned Problems

lll-Conditioned Problems

Curvature of level sets

Consider the convex-quadrati¢ function |

f) = 3(x! X))TH(x! xX')= 37 ;hii(x! x)%+ 3" wihij 06! X)) %)
H Is Hessian matrix of f and symmetric positive debnite

Newton direction ! H®#x)T

lll-conditioning means (high curvature).
Condition number equals nine here. Condition numbers up to 10'°
are not unusual in real world problems.

If H" | (small condition number of H) brst order information (e.g. the
gradient) Is sufpcient. Otherwise (estimation
of H® 1)

11



Non-smooth level sets (sharp ridges)

Similar difbculty but worse than ill-conditioning

1-norm scaled 1-norm 1/2-norm



Problem Statement [lI-Conditioned Problems

What Makes a Function Difbcult to Solve?

..and what can be done

The Problem

Possible Approaches

Dimensionality

lll-conditioning

Ruggedness

exploiting the problem structure
separability, locality/neighborhood, encoding

second order approach
changes the neighborhood metric

policy, large sampling width (step-size)
as large as possible while preserving a

reasonable convergence speed

method, stochastic, non-elitistic

recombination operator | |
serves as repair mechanism

restarts

13



Topics

1. What makes the problem difpcult to solve?

2. How does the CMA-ES work?

Normal Distribution, Rank-Based Recombination
Step-Size Adaptation
Covariance Matrix Adaptation

3. What can/should the users do for the CMA-ES to work
effectively on their problem?

Choice of problem formulation and encoding (not covered)
Choice of initial solution and initial step-size
Restarts, Increasing Population Size

Restricted Covariance Matrix
14



Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to mini
Initialize distribution parameters ! , set

While not terminate

Sample distribution P (x|! ) !
Evaluate x¢,...,Xx onf
Update parameters ! # F-(!,Xy,..

15

00

zef :R"l R
oulation size ! "

X1,....,x " R

N

X, T(X), .. T ()




Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : R"! R
| |
While not terminate
Sample distribution P(x|! ) ! X1,...,x1 " R"
Evaluate x¢,...,Xx onf
Update parameters ! # F«(!,Xq,..., % ,f(X1),...,T(X))

16




Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : R"! R
Initialize distribution parameters ! , set population size! " N

Sample distribution P(x|! ) ! X1,...,x " R"
Evaluate x¢,...,Xx onf
Update parameters! # F(!,Xq,...,%,f(X1),...,f(X1))
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Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to min
Initialize distribution parameters ! , set

While not terminate

Evaluate Xq,...,X onf

Update parameters ! # F-(!,Xy,..

18

mizef :R"! R

oopulation size! " N

X, T(X), .. T ()




Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : R"! R

Initialize distribution parameters ! , set population size! " N
While not terminate

Sample distribution P(x|! ) ! X1,...,x " R"
|

Update parameters ! # F«(!,Xq,..., X ,f(X1),...,T(X1))

19




Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : R"! R

Initialize distribution parameters ! , set population size! " N
While not terminate

Sample distribution P(x|! ) ! X1,...,x " R"
Evaluate x¢,...,Xx onf
| | | |

20




Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : R"! R

Initialize distribution parameters ! , set population size! " N
While not terminate

Sample distribution P(x|! ) ! X1,...,x " R"
Evaluate x¢,...,Xx onf
Update parameters! # F(!,Xq,...,%,f(X1),...,f(X1))

Everything depends on the debnition of P and F-
deterministic algorithms are covered as well

21




Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : R"! R

Initialize distribution parameters ! , set population size! " N
While not terminate

Sample distribution P(x|! ) ! X1,...,x " R"
Evaluate x¢,...,Xx onf
Update parameters! # F(!,Xq,...,%,f(X1),...,f(X1))

Everything depends on the debnition of P and F-
deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution P is implicitly debned
via , In particular, selection, recombination
and mutation

Natural template for (incremental) Estimation of Distribution Alaorithms
22




The CMA-ES

Input: m ! R";!1' I Ry;" ! Ny o,usually” " 5, default 4 + #3logn$

&
Setcm =1:¢1 %Z/n2 Cy % Uw/n ?%;cc %4/n;c %1/ n; di % 1; wi=g

decreasing in i and I”w. =1,wp>0" wy+1, |Jw = g 2 % 3/ "

1 =1

Initialize C = 1,andp, = 0,p, = O

While not terminate

Xi = m+!y., wherey; Ni(IO,C) fori=1,...," sampling
m( m+cm!y,, Wherey, = | .“_ Wik i) Y update mean
po (@) a)p 1) (1) c$)2 fwC’ %yw path for
pc ( (1) Cc)%Jfo}'go,zn] p*? oel) (1) CC)Z w Y, pathforC

L (! +exp DA =) 1 update of !

A EAN(OD
C( C+ocu _; Wieiy Viy!) C) + c(pcpe) C) update C

termination, restarts, useful output, search boundaries and encoding,
corrections for: positive dePniteness guaranty, p. variance loss, ¢, and d, for large !

23



Evolution Strategies (ES) A Search Template

Evolution Strategies

New search points are sampled normally distributed

as perturbations of m, wherex.m" R".1 " R, C" R™"
where

ne mean vector m" R" represents the favorite solution
ne so-called step-size ! " R4 controls the step length

he covariance matrix C" R"™ " determines the of
ne distribution ellipsoid

t
t
t
t

here, all new points are sampled with the same parameters

The guestion remains how to update m, C, and ! .

24



Why Normal Distributions?

widely observed in nature, for example as phenotypic traits

only stable distribution with Pnite variance
stable means that the sum of normal variates is again

normail:
N(x,A)+ N(y,B)! N(x+vy, A+ B)

helpful in of algorithms
related to the central limit theorem

most convenient way to generate search points

the isotropic distribution does , rotational
Invariant

maximum entropy distribution with Pnite variance
the least possible assumptions on f in the distribution shape

25



Evolution Strategies (ES) The Normal Distribution

Normal Distribution

probability density

0.

©
w
T

-
N
T

o
|
T

Standard Normal Distribution

4

probability density of the 1-D standard
normal distribution

//ZA\
probability density of " A~ O\
a 2-D normal . ) )
distribution § j
NV

26



Evolution Strategies (ES) The Normal Distribution

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution N (m, C) is uniguely determined by its mean
value m! R" and its symmetric positive dePniten" n covariance matrix C.

The value m

2! D Normal Distribution

determines the displacement (translation)
value with the largest density (modal value)

the distribution is symmetric about the distribution
mean

The C

determines the shape

. any covariance matrix can be unigquely identiPed with
the iso-density ellipsoid {x! R"|(x# m)'C' '(x# m) = n}

27



Evolution Strategies (ES) The Normal Distribution

...any can be uniquely identibed with the iso-density ellipsoid
{x! R"|(x" m)'C' }(x" m)=n}
Lines of Equal Density

N m 12 | m+!N(OI N m,D? ! m+ DN (0,1) N (m, C)! m+ C2N (0,1)
!

components are components are components are

iIndependent standard iIndependent, scaled correlated

normally distributed

where [ Is the identity matrix (isotropic case) gnd D Is.a diagonal matrix (reasonable
for separable problems) and A# N (0,1) $ N 0,AA" holds for all A.

28



Multivariate Normal Distribution and Eigenvalues
For any positive debnite symmetricC,
C = d?b;b! + 444 d by b,
di : square root of the eigenvalue of C

b : eigenvector of C, corresponding to di

The multivariate normal distribution N (m, C)

N (m,C)! m + N(0,d?)b, + 4a# N (0,d? )by

d, ab,

29 d; abq



The (W, !)-ES

Non-elitist selection and intermediate (weighted) recombination
Given the I-th solution point X = m + | |\I (%C =m+ !y

Let X;.; the solution point, such thatf(xl.) I dah f(x ).
The new mean reads
o8 o4
m" Wi Xjp = m+ | Wi Vi1
=1 |I 1 ||# $
= Yw
where
s s &' M — | 1 —_ '
wi # aad wy > 0, =W =1 e = Hw $ 7
are selected (non-elitistic)
and IS applied.

30



Evolution Strategies (ES) Invariance

Invariance Under Monotonically Increasing Functions
Rank-based algorithms

Update of all parameters uses only the ranks

f(Xl;! ) ' f(Xz;! ) A f(X! ‘| )
g(f(xwr)) b oo(f(x2r)) b b g(f(x ) "9
g is strictly monotonically increasing
3 g preserves ranks

3Whitley 1989. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best,
ICGA

31




Evolution Strategies (ES) Invariance

Basic Invariance in Search Space

translation invariance

F(x) !

IS true for most optimization algorithms

f(x" a)

|dentical behavior on f and f,

f:
P

X #$f(x), x(F0) = x,
X #$f(x" @), xFY = xy+ a

No difference can be observed w.r.t. the argument of f

32




Evolution Strategies (ES) Summary

Summary

On 20D Sphere Function: f(x) = = [ ,[x]?
ES without adaptation canOt approach the optimurr:

33



Step-Size Control

Evolution Strategies

Recalling

New search points are sampled normally distributed

Gt MmN foriz il L

as perturbations of m, wherex.m" R".1 " R, C" R™"
where

the mean vector m" R" represents the favorite solution
and m# 1L, WX

the so-called step-size! " R, controls the step length
the covariance matrix C" R"™ " determines the of
the distribution ellipsoid

The remaining question is how to update ! and C.

34



Methods for Step-Size Control

ab often applied with O+O-selection

Increase step-size if more than 20% of the new solutions are successful,
decrease otherwise

¢ applied with O,0-selection

mutation is applied to the step-size and the better, according to the
objective function value, Is selected

simpliped OglobalO self-adaptation

d (Cumulative Step-size Adaptation, CSA)®

self-adaptation derandomized and non-localized

aRechenberg 1973, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen
Evolution, Frommann-Holzboog

bSchumer and Steiglitz 1968. Adaptive step size random search. IEEE TAC
CSchwefel 1981, Numerical Optimization of Computer Models, Wiley

dHansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies, Evol. Comput.
9(2)

eOstermeier et al 1994, Step-size adaptation based on non-local use of selection information, PPSN IV
35



Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation
m+ 1y

Xi

Measure the length of the evolution path

the pathway of the mean vector m in the generation sequence

N VS

decrease ! Increase !

loosely speaking steps are

perpendicular under random selection (in expectation)
perpendicular in the desired situation (to be most efpcient)

36



Path Length Control (CSA)

The Equations

Initialize m! R", ! I R4, evolution pathp = 0,
setc " 4/n,d " 1.

m # m+!ly, whereyy= 1, WY update mean
%___
# 1% ¢ + 1 1% ¢ )?
p (1$¢c)p y $($cy$ .)& ydby  Yw
' accounts for 1! ¢ accc«nts for wi
I # 1 & exp Z—' = pO y $1 update step-size
g O F 44D &

>1'%3$ p $is greater than its expectation

37



Step-Size Control Path Length Control (CSA)

(5/ 5, 10)-CSA-ES, default parameters

, , , with optimal step-size
10° p C R — with step-size control
| | | | — respective step-size

| N

107 P N N ] ()2 R

=1

Im" x'!

RN NI, o208
' E E E E E E E E | for n = 30

0 500 1000 1500 2000 2500 3000 3500 4000
function evaluations
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Two-Point Step-Size Adaptation (TPA)

Sample a pair of symmetric points along the previous mean shift

IN (0, 1)!

— m(9) 4+ 1 (9
Mt N9 m@ D

(M@ mle Dy Ixl = XTC! 1x

X1/ 2
c(9)

Compare the ranking of x; and x, among " current populations

rank(xz) " rank(xy)

! 1 llll# 1 $

> 0 if the previous step still produces a promising solution

S(g+ 1) — ( 1" CS)S(g) + CS

Update the step-size

% &. ,;' ------------ S

S(g+ 1) ¢ .

| (g+ 1) — | (9) exp R .\
» n d! "' A}

- -
- e
~

~ -
~~~~~
-------

[Hansen, 2008] Hansen, N. (2008). CMA-ES with two-point step-size adaptation. [research report] rr-6527, 20M8. Inria-00276854v5.
[Hansen et al., 2014] Hansen, N., Atamna, A., and Auger, A. (2014). How to assess step-size adatation mechanisms in randomised search.
In Parallel Problem Solving from NatureBPPSN XIllI, pages 60D69. S%rénger.



Step-Size Control Alternatives to CSA

On Sphere with Low Effective Dimension

f(x)

On a functioln with low effective dimension
M 11
N # M variables do not affect the function value

1¢°

16}

1%

10+

10
10 1}
10 2}
10 3}
10 4
10 °}
10 6}
10
10 8}
10 °}
1d 10 e

fO) =" 21IxTF,

CSA

X! R

N=10,M=10 |.
— N=100,M=100 |
— N=100,M=10

¢ 17

function evaluations

T

f(x)

1¢°

1CG%}
10°E
10t}
13}
10 1t
10 2}
10 3¢
10 4t
10 5t
10 6}
10 “t
10 8t
10 ot
10 10 o

TPA

N=10,M=10 ||
— N=100,M=100 |
— N=100,M=10

¢ 10

function evaluations

10

10



Step-Size Control Alternatives to CSA

Alternatives: Success-Based Step-Size Control

comparing the btness distributions of current and previous iterations

Generalizations of 1/ 5th-success-rule for non-elitist and
multi-recombinant ES

[Ait Elhara et al., 2013]

[Loshchilov, 2014]

controls a success probability
An advantage over CSA and TPA: Cheap Computation

It depends only on! .

cf. CSA and TPA require a computation of C' ¥Y2x and C' 1x,
respectively.

[Ait Elhara et al., 2013] Ait Elhara, O., Auger, A., and Hansen, N. (2013). A median success rule for non- elitist evolution strategies: Study of

feasibility. In Proc. of the GECCO, pages 415D422.
[Loshchilov, 2014] Loshchilov, I. (2014). A computationally efPcient limited memory cma-es for large scale optimization. In Proc. of the

GECCO, pages 397b404. 41



Step-Size Control Summary

Step-Size Control: Summary

Why Step-Size Control?
to achieve linear convergence at near-optimal rate

Cumulative Step-Size Adaptation
efbcient and robust for! | N
iInefPcient on functions with (many) ineffective axes

Alternative Step-Size Adaptation Mechanisms
Two-Point Step-Size Adaptation
Median Success Rule, Population Success Rule

the effective adaptation of the overall population diversity seems yet to
pose open questions, In particular with recombination or without entire
control over the realized distribution.?

®Hansen et al. How to Assess Step-Size Adaptation Mechanisms in Randomised
Search. PPSN 2014

42




Step-Size Control Summary

Step-Size Control: Summary

On 20D TwoAxes Function: f(x) = ¥ 2[Rx]2+ & N, ,. ;[RX]?, R: orthogonal

convergence speed of CSA-ES becomes lower as the function becomes ill conditioned
(a®> becomes greater)
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Covariance Matrix Adaptation (CMA)

Evolution Strategies

Recalling

New search points are sampled normally distributed

as perturbations of m, wherex.m" R".1 " R, C" RM™"
where

ne mean vector m" R" represents the favorite solution
ne so-called step-size! " R4 controls the step length

he covariance matrix C" R"™ " determines the of
ne distribution ellipsoid

t
t
t
t
The remaining question is how to update C.
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation

Rank-One Update |

m! m+ !y, Yw= T Wi, ¥ Ni(0,C)

Initial distribution, C = |



Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation

Rank-One Update |

m! o m+lyw, Yw=  Z;WiYa, ¥ Ni(0,C)

Initial distribution, C = |



Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation

Rank-One Update |

m! o m+lyw, Yw=  Z;WiYa, ¥ Ni(0,C)

Yw, Movement of the population mean m (disregarding ! )



Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation

Rank-One Update |

m! m+!yy, YYo= WiV, ¥" NiOC)

mixture of distribution C and step vy,
C! 0.8# C+ 0.2# yuy©



Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation

Rank-One Update |

m! m+ !y, Yw= T Wi, ¥ Ni(0,C)

new distribution (disregarding ! )



Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation

Rank-One Update |

m! o m+lyw, Yw=  Z;WiYa, ¥ Ni(0,C)

new distribution (disregarding ! )

50



Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation

Rank-One Update |

m! o m+lyw, Yw=  Z;WiYa, ¥ Ni(0,C)

movement of the population mean m

51



Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation

Rank-One Update |

m! m+!yy, YYo= WiV, ¥" NiOC)

mixture of distribution C and step vy,
C! 0.8# C+ 0.2# yuy©
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation

Rank-One Update |

m! m+!yy, YYo= WiV, ¥" NiOC)

new distribution,
C! 08# C+ 0.2# yuy,
the ruling principle: the adaptation
, Yw, {0 appear again
another viewpoint: the adaptation

approximation of the expected pPtness
53



Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation

Rank-One Update

Initialize m! R", and C = I, set! = 1, learning rate ceoy " 2/ N?
While not terminate

Xi = m+ !y, yi # N;(0,C),
| K
m $ m+!lyy where Yy, = Wi Yi:
=1
1
C $ (1%Ceo,)C+ Coovllw y\%f% where py, = & T & 1
rank-one =

The rank-one update has been found independently in several domains® 7 ¢ 9

6Kjellstrem&Taxecn 1981. Stochastic Optimization in System Design, IEEE TCS

Hansen&Ostermeier 1996. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix
adaptation, ICEC

8Ljung 1999. System ldentibcation: Theory for the User

9Haario et al 2001. An adaptive Metropolis algorithm, JSTOR
54



Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

C! (1" ceov)CH+ Ccovawa\Tv
covariance matrix adaptation

learns all between variables
off-diagonal entries in the covariance matrix ref3ect the dependencies
conducts a (PCA) of steps vy,

sequentially in time and space
eigenvectors of the covariance matrix C are the principle
components / the principle axes of the mutation ellipsoid

learns a new \/

components are mdependent (only)
in the new represerntation. .

learns a (Mahalanobis)
variable metric method
approximates the on quadratic functions
transformation into the sphere function
for u = 1: conducts a on the distribution N

entirely independent of the given coordinate system
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