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Recent advances in molecular biology and fluorescence microscopy imaging have made possible the inference of the 
dynamics of molecules in living cells. Such inference allows us to understand and determine the organization and function of 
the cell. The trajectories of particles (e.g., biomolecules) in living cells, computed with the help of object tracking methods, 
can be modeled with diffusion processes. Three types of diffusion are considered:(i) free diffusion, (ii) subdiffusion, and (iii) 
superdiffusion. The mean-square displacement (MSD) is generally used to discriminate the three types of particle dynamics. 
We propose here a nonparametric three-decision test as an alternative to the MSD method. The rejection of the null 
hypothesis, i.e., free diffusion, is accompanied by claims of the direction of the alternative (subdiffusion or superdiffusion). 
We study the asymptotic behavior of the test statistic under the null hypothesis and under parametric alternatives which are 
currently considered in the biophysics literature. In addition, we adapt the multiple-testing procedure of Benjamini and 
Hochberg to fit with the three-decision-test setting, in order to apply the test procedure to a collection of independent 
trajectories. The performance of our procedure is much better than the MSD method as confirmed by Monte Carlo 
experiments. The method is demonstrated on real data sets corresponding to protein dynamics observed in fluorescence 
microscopy.

I. INTRODUCTION

The dynamics of proteins determines the organization and
function of the cell (see [1], Chap. 9). It is now established that
intracellular trafficking is oriented and that the local dynamics
of proteins obeys biophysical laws. Over the past few years, a
number of stochastic mathematical models have been proposed
in order to describe intracellular trafficking, where molecules
are transported to their destinations via free diffusion (or Brow-
nian motion), subdiffusion (diffusion in a closed domain or in
an open but crowded area), and superdiffusion representing
active transport along the cytoskeleton networks (e.g., micro-
tubules, actin filaments, and intermediate filaments), assisted
by molecular motors. Accordingly, the study of diffusion and
stochastic dynamics has known a growing interest in biomath-
ematics, biophysics, and cell biology, especially with the
popularization of fluorescence dynamical microscopy accom-
panied by statistical object tracking methods [2]. Biological
imaging has undergone a revolution in the development of
new microscopy techniques that allow visualization of tissues,
cells, proteins, and macromolecular structures at all levels of
resolution, physiological states, chemical composition, and
dynamics. Due to recent advances in optics, digital sensors, and
labeling probes (e.g., colored fluorescent protein), one can now
visualize subcellular components and organelles at the scale of
several hundreds of nanometers to a few dozens of nanometers.
All the technological advances in microscopy have created
new issues and challenges in the statistical analysis of particle
trajectories.

Actually, inference on the modes of mobility of molecules
is central in cell biology since it reflects interactions with the
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internal structures of the cell. In this paper we will focus on the
exocytosis mechanism and the transport of small vesicles from
the interior of the cell towards the extracellular medium. As an
other example, Lagache et al. [3] model the dynamics of a virus
invading a cell to infer its mean arrival time to the cell nucleus
where it replicates. In the model of Lagache et al. [3], the dy-
namic of the virus alternates between superdiffusion and Brow-
nian motion. In this paper we are interested in the classification
of individual intracellular particle trajectories into three modes
of mobility: subdiffusion, free diffusion and superdiffusion
(see Fig. 1). Usually, in the biophysics literature, the definition
of these dynamics is related to the criterion of the mean-square
displacement (MSD) (see, for example, [4]). Given a particle
trajectory (Xt )t>0, the MSD is defined as the function

MSD(t) = E(‖Xt+t0 − Xt0‖2), (1)

where ‖ · ‖ is the Euclidean norm and E is the expectation
of the probability space. If the MSD is linear [MSD(t) ∝ t],
the trajectory is a free diffusion. In the biophysics literature
[4,5], this kind of diffusion is associated with the Brownian
motion (or Wiener process in mathematics). Kou [6] defines
the physical Brownian motion via the Langevin equation with
white noise, which is different from the biophysical Brownian
motion. In this case we have MSD(t) ∝ t for large t only.
Bressloff [1] argues that both definitions of the Brownian
motion can be used to model intracellular dynamics in the case
where the particle evolves freely inside the cytosol or along
the plasma membrane. We decided to pick the biophysical
definition corresponding to the Wiener process in mathematics
as Lysy et al. [7] did. If the MSD is sublinear, the trajectory is
a subdiffusion (see [1], Chap. 7). Subdiffusion, which includes
confined diffusion and anomalous subdiffusion, is appropriate
to represent several biological scenarios. Confined or restricted
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FIG. 1. Representative trajectories from (a) simulated data and
(b) a Rab11a protein sequence in a single cell (courtesy of UMR No.
144, CNRS, Institut Curie, PICT IBiSA). For the simulated data in
(a), trajectory (1) is Brownian, trajectory (2) is from Brownian motion
with drift, trajectory (3) is from fractional Brownian motion (with the
parameter h > 1/2), trajectory (4) is from an Ornstein-Uhlenbeck
process, and trajectory (5) is from fractional Brownian motion
(h < 1/2). The parameters of the processes are given in Table IV.

diffusion [8,9] is characteristic of trapped particles: The par-
ticle encounters a binding site and then it pauses for a while
before dissociating and moving away. Anomalous subdiffusion
includes particles which encounter dynamic or fixed obstacles
[10,11] or particles slowed by the contrary current due to
the viscoelastic properties of the cytoplasm. We note that
anomalous subdiffusion is associated with a MSD function
of the form MSD(t) ∼ tβ , with β ∈ (0,1) [9]. In this paper
we will not distinguish confined and anomalous subdiffusion
and consider that both are subdiffusion. Meroz and Sokolov
[12] present a wide range of models for subdiffusion includ-
ing fractional Brownian motion and the Ornstein-Uhlenbeck
process. The Ornstein-Uhlenbeck process is widely used for
modeling subdiffusion as it is the solution of the overdamped
Langevin equation [8,13]. Note that dedicated methods have
been developed to distinguish fractional Brownian motion

and continuous-time random walks [14]. In cell biology and
biophysics, superdiffusion models the motion of molecular
motors and their cargo: The motion is faster and in a specific di-
rection. The main type of active intracellular transport involves
molecular motors which carry particles (called, in this context,
cargo) along microtubular filament tracks. Superdiffusion is
associated with the case where the MSD function grows faster
than the linear function (see [1], Chap. 7). Anomalous superdif-
fusion, the analog of anomalous subdiffusion, is associated
with a MSD function of the form MSD(t) ∼ tβ , with β > 1 [9].

A. The problem

We observe the successive positions of a single particle
Xt0 ,Xt1 , . . . ,Xtn in the real plan at equispaced times, that is,
ti+1 − ti = �. Our aim is to decide if the trajectory is a free
diffusion, a subdiffusion or a superdiffusion. A popular statistic
used to determine the motion model is the pathwise MSD. It
is estimated at lag j by

̂MSD(j�) = 1

n − j + 1

n−j∑
k=0

∥∥Xtk+j
− Xtk

∥∥2
. (2)

Remark 1. The estimator of the MSD (2) is defined as a time
average computed along a single trajectory. When we observe
a population of trajectories which all undergo the same motion,
one can estimate the theoretical MSD (1) with the ensemble-
averaged estimator based on the observed displacements of
all the trajectories [15]. We emphasize that both estimators,
the time average and the ensemble average, aim to estimate
the theoretical MSD (1). However, the time average (2) fails to
converge to the theoretical MSD (1) if the underlying stochastic
process is nonergodic [16–18]. In this paper, as our objective
is to classify individually each trajectory, we must compare
our method to a MSD method based on the time-averaged
estimator (2).

The simplest rule to classify a trajectory with the MSD is
based on the least-squares estimate of the slope β of the log-log
plot of the MSD versus time [19]. Didier and Zhang [20] study
the limiting distribution of the pathwise MSD according to the
true value of β. Nevertheless, MSD has some limitations.

First, the variance increases with the time lag (see Fig. 2);
only the first few points of the MSD may be used to estimate
the slope. Moreover, the MSD variance is also severely
affected at short time lags by dynamic localization error and
motion blur. Michalet [15] details an iterative method, known
as the optimal least-squares fit, for determining the optimal
number of points to obtain the best fit to MSD in the presence
of localization uncertainty.

In order to take account of the variance of the MSD estimate,
several authors use a set of independent trajectories rather
than single trajectories. These trajectories may have different
lengths but are assumed to have the same kind of motion. For
instance, Pisarev et al. [21] consider a weighted-least-squares
estimate for β by estimating the variance of pathwise MSD.
Their motion model selection is then based on the modified
Akaike information criterion. Monnier et al. [22] propose a
Bayesian approach to compute relative probabilities of an
arbitrary set of motion models (free, confined, anomalous,
or directed diffusion). In general, this averaging process can
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FIG. 2. Classification rule for motion modes from MSD. The solid
line is the theoretical MSD of the standard Brownian motion. The
dash-dotted lines are the bounds defined by [19]: t → tβ , β = 0.9,
and 1.1. If β̂, the estimation of β, is such that 0.9 < β̂ < 1.1 it is
classified as Brownian motion. The dashed lines are the pointwise
high-probability interval of 95% associated with the empirical MSD
curve for a standard Brownian motion trajectory of length n = 30. The
bounds of the interval are the 2.5% and 97.5% empirical quantiles
of (2) and are computed by Monte Carlo simulation from 10 001
Brownian trajectories of size n = 30.

lead to oversimplification and misleading conclusions about
the biological process [23].

Second, the MSD statistic is a summary statistic and does
not suffice to characterize the dynamics of the trajectory.
Gal et al. [23] present several other statistics which can
be associated with MSD for trajectory analysis. Lund et al.
[24] propose a decision tree for a selection motion model
combining MSD, a Bayesian information criterion, and the
radius of gyration [25]. Lysy et al. [7] present a likelihood-
based inference as an alternative to MSD for the comparison
between two models of subdiffusions: fractional Brownian
motion and a generalized Langevin equation. They consider
a Bayesian model to estimate the parameter of the diffusion
and they use the Bayes factor to compare the models. Wagner
et al. [26] combine different trajectory features including the
radius of gyration, the fractional dimension, the kurtosis, and a
ratio based on the MSD to classify the trajectories with random
forests and then are able to classify individually each trajectory
into four groups of diffusion. The algorithm comprises a
training step in which simulated trajectories of each group
of diffusion are used. The way the trajectories are simulated
is of paramount importance as it influences very much the
classification.

B. Our contribution

In this paper we propose a measure that circumvents some
limitations of the MSD and is efficient for classifying single
trajectories. Also, our method is not influenced by simulation
choices, like the procedure of Wagner et al. [26], since we
do not rely on simulations. Our procedure is a three-decision-
test procedure [27]. The null hypothesis is that the observed
trajectory is generated from a Brownian motion and the two
distinct alternatives are subdiffusion and superdiffusion. The
test statistic Tn is the standardized largest distance covered by
the particle from its starting point. We interpret this measure as

follows: (i) If the value of Tn is low, it means that the process
stayed close to its initial position and the particle may be
trapped in a small area or hindered by obstacles (subdiffusion),
and (ii) if the value of Tn is high, the particle went far from its
initial position and the particle may be driven by a motor in a
certain direction (superdiffusion). In our model we restrict sub-
diffusion and superdiffusion to processes which are solutions
of a stochastic differential equation. However, our procedure
can be extended to others types of subdiffusion in principle
(see Appendix B). Then we study the asymptotic behavior of
our procedure under the null hypothesis and four parametric
models illustrating superdiffusion and subdiffusion and which
are commonly considered in the biophysics literature. As
stated before, we will not distinguish confined and anomalous
subdiffusion and consider that both are subdiffusion. The
study of the behavior of the test statistic under all existing
subdiffusion processes is beyond the scope of this paper.
Ultimately, we derive a multiple-test procedure in order to
simultaneously apply the test to a collection of independent
trajectories which are tracked inside the same living cell. This
procedure is an adaptation of the procedure of Benjamini and
Hochberg [28]. It allows us to control the false discovery rate
(FDR). Moreover, in the case of rejection of the null hypothesis,
our multiple-test procedure is able to state for which alternative
(subdiffusion or superdiffusion) we reject the null hypothesis.

The present paper is organized as follows. In Sec. II we
describe the inference model and provide some examples
of subdiffusion and superdiffusion. Our testing procedure is
defined in Sec. III. In Sec. IV we derive a multiple-testing
procedure for a collection of trajectories. We carry out a
simulation study and illustrate the method on real data in
Sec. V. We focus on the analysis of the Rab11a GTPase
protein. This protein is involved in the trafficking of molecules
from the endosomes located inside the cell to the cell plasma
membrane. The data are computed from temporal sequences
of total internal reflection fluorescence (TIRF) microscopy
images depicting the last steps of exocytosis events observed
in the region very close the plasma membrane [29]. Finally
in Sec. VI we propose a modification of our test procedure to
address two issues encountered in microscopy data namely,
missing points and localization uncertainty. The proofs are
postponed to Appendix A. The case of continuous-time random
walk (CTRW) is discussed in Appendix B.

II. DIFFUSION MODELS FOR PARTICLE
TRAJECTORY ANALYSIS

We observe the successive positions of a single particle in a
two-dimensional space at times t0,t1, . . . ,tn. We suppose that
the lag time between two consecutive observations is a constant
�. The observed trajectory of the particle is

Xn = (Xt0 ,Xt1 , . . . ,Xtn ),

where Xti = (X1
ti
,X2

ti
) ∈ R2 is the position of the particle at

time ti = t0 + i�, i = 0, . . . ,n. This discrete trajectory is
generated by a stochastic process (Xt )t0�t�tn with a continuous
path and assumed to be solution of the stochastic differential
equation (SDE)

dXi
t = μi

(
Xi

t

)
dt + σdB

h,i
t , i = 1,2, (3)
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where B
h,i
t are unobserved, independent, one-dimensional

fractional Brownian motions of unknown Hurst parameter
0 < h < 1, σ > 0 is the unknown diffusion coefficient, and
(μ1(x1),μ2(x2)) : R2 �→ R2 is the unknown drift term. We note
that when h = 1/2 the SDE (3) is driven by Brownian motion.
Then the solution of the SDE (3) is defined through Itô’s theory
of stochastic calculus developed for semimartingalelike Brow-
nian motion [30]. When h �= 1/2, the SDE (3) is driven by the
fractional Brownian motion which has correlated increments.
In this case, the definition of the solution of the SDE (3) is
more involved (see [31], Chaps. 2 and 3).

Assumption 1. We assume that μi fulfills the linear growth
hypothesis

|μi(x)| � K(1 + |x|) (4)

and the Lipschitz condition

|μi(x) − μi(y)| � M|x − y|. (5)

We denote by L the set of functions verifying Assumption
1. Assumption 1 is sufficient to ensure that SDE (3) admits a
strong solution (see [32] for the case 0 < h � 1/2 and [31],
Chap. 3, for the case 1/2 < h < 1). For a given fractional
Brownian motion, we say that Xt is a strong solution of the
SDE (3) if Xt verifies (3), has continuous paths, and, at time
t , depends only on Xt0 and on the trajectory of the fractional
Brownian motion up to time t . In the following, Ph,μ,σ denotes
the measure induced by the stochastic process Xt solution
of (3). This measure comprises all the finite-dimensional
distributions of the process that is the distribution of the
vectors (Xt0 , . . . ,Xtn ), n ∈ N∗, and t1 < · · · < tn. We also note
P = {Ph,μ,σ : 0 < h < 1,μ ∈ L,σ > 0}, the set of solutions
of the SDE (3).

Remark 2. In the following, we adopt the large-sample
scheme to derive asymptotic properties of our procedure, that
is, the interobservation time � remains fixed and the number of
observations n tends to infinity. In the experimental context of
microscopic sequences, � is the resolution of the microscopy
device, while n is the number of frames during which we
track the particle. Other schemes exist (see [33]) such as the
high-frequency scheme for which � tends to zero while the
duration of observation is fixed.

Heuristically, a SDE models the motion of a particle in a
fluid submitted to a deterministic force due to the fluid and
a random force due to random collisions with other particles.
That is why we model efficiently the motion of intracellular
particles with these processes. In Eq. (3), the velocity of the
fluid is given by the drift μ, while the term σdB

h
t expresses the

random component of the motion due to random collisions.

A. Free diffusion

Free diffusion or Brownian motion is the most popular
process for describing particle motion suspended in a liquid
[34]. It is particularly well suited for describing intracellular
particle motion as the interior of the cell is mainly made of
a fluid called the cytosol. Brownian motion allows dissolved
macromolecules to be passively transported without any input
of energy. In the SDE (3), it matches with the situation where
the drift μi = 0 and h = 1/2.

B. Subdiffusion

We present two models of subdiffusion which are solutions
of the SDE (3). We give their MSD which is, by definition of
subdiffusion, sublinear. The first subdiffusion is an example of
confined diffusion, while the second is an anomalous subdif-
fusion. It corresponds to two distinct biological scenarios.

In the first scenario, the particle is attracted by an external
force modeled by a potential well. We can then use the SDE
(3) with a specific form for the drift μi(x) = −∇Ui(x)/γi ,
where −∇Ui is the external force of the fluid and γi is
the frictional coefficient. For instance, we may consider the
Ornstein-Uhlenbeck process

dXi
t = −λi

(
Xi

t − θi

)
dt + σdB

1/2,i
t , i = 1,2, (6)

where λi > 0. Here the particle is assumed to be trapped in a
single domain and the potential U is unimodal and is approxi-
mated by a polynomial of order 2: Ui(x) = (1/2)ki(xi − θi)2.
The parameter ki = λiγi measures the strength of attraction of
the potential (related to the potential depth), while θ = (θ1,θ2)
is the equilibrium position of the particle. The Ornstein-
Uhlenbeck process is a confined diffusion according to the
MSD criterion since its MSD is sublinear,

MSD(t) = 2σ 2(1 − e−λt )

λ
� 2σ 2t ; (7)

here it is written in the case λi = λ for the sake of simplicity. A
subdiffusion having this form of MSD is known as a confined
diffusion [5,21,22].

Anomalous subdiffusion can occur for two main reasons.
First, the particle can bind to an immobile trap that can generate
long jump times [35]. In this situation, its motion can be
modeled by a continuous-time random walk [9]. We study the
performance of our test when subdiffusion is modeled by a
continuous-time random walk in Appendix B. Hence we show
that our procedure is still relevant even if the particle motion is
not driven by the SDE (3). Second, the particle can be hindered
by mobile or immobile obstacles as the interior environment of
cells is crowded with solutes and macromolecules [36]. Thus,
a popular model is the fractional Brownian motion [17], which
corresponds to the case 0 < h < 1/2 and μi = 0 in (3),

dXi
t = σdB

h,i
t , i = 1,2. (8)

Its MSD is given by

MSD(t) = 2σ 2tβ � 2σ 2t, (9)

with β = 2h < 1. As already mentioned in Sec. I, a subdiffu-
sion having this form of MSD is known as an anomalous dif-
fusion [5,9,21,22]. We note that anomalous diffusion has also
been studied through complex simulation schemes involving
obstacles of varying sizes and spatial distribution [37,38]. We
will not consider such models for the sake of simplicity.

C. Superdiffusion

At the macroscopic level, the main type of active intracellu-
lar transport involves molecular motors which carry particles
(cargo) along microtubular filament tracks. The molecular
motors and their cargo undergo superdiffusion on a network
of microtubules in order to reach a specific area quickly. The
molecular motor moves step by step along the microtubules
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due to a mechanicochemical energy transduction process. A
single step of the molecular motor is modeled by the so-called
Brownian ratchet [39]. When we observe the motion of the
molecular motor along a filament on longer timescales (several
steps), its dynamic can be approximated by a Brownian motion
with constant drift (also called directed Brownian motion)
[40,41].

The Brownian motion with drift is a solution of the SDE,

dXi
t = vidt + σdB

1/2,i
t , i = 1,2, (10)

where v = (v1,v2) ∈ R2 is the constant drift parameter mod-
eling the velocity of the molecular motor. The MSD of the
directed Brownian motion is given by

MSD(t) = ‖v‖2t2 + 2σ 2t � 2σ 2t. (11)

It is superlinear and thus defines a superdiffusion. Superdiffu-
sion can also be modeled by fractional Brownian motion with
the Hurst parameter 1/2 < h < 1. Its MSD is given by (9), as
we already said. However, this time it is superlinear as β =
2h > 1. Then fractional Brownian motion with 1/2 < h < 1
is an anomalous superdiffusion. However, we note that in the
biophysics literature the use of the fractional Brownian motion
is mainly related to anomalous subdiffusion.

III. STATISTICAL TEST PROCEDURE
FOR A SINGLE TRAJECTORY

We suppose that the trajectory Xn = (Xt0 , . . . ,Xtn ) is gen-
erated from some unknown diffusion process Xt solution of
the SDE (3). Our procedure allows us to test from which type
of diffusion the observed trajectory is generated.

We derive two hypothesis-testing procedures: one for test-
ing H0 (Xt is a free diffusion) versus H1 (Xt is a subdiffusion)
and the second for testing H0 (Xt is a free diffusion) versus H2

(Xt is a superdiffusion). Then we aggregate the two procedures
to build a three-decision procedure.

A. Test statistic

Let us consider the standardized maximal distance Tn of the
process from its starting point

Tn = Dn√
(tn − t0)σ̂ 2

n

, (12)

where Dn is the maximal distance of the process from its
starting point

Dn = max
i=1,...,n

∥∥Xti − Xt0

∥∥
2 (13)

and σ̂n is a consistent estimator of σ . The choice of σ̂ is
discussed in Sec. III D. If Tn is small, it means the process
stays close to its initial position during the period [t0,tn]; it is
likely that it is a subdiffusion. On the contrary, if Tn is large,
it means the process goes away from its starting point as a
superdiffusion does with high probability. It is worth noting
that Tn can be related to the mean maximum excursion second
moment proposed by Tejedor et al. [42] as an alternative to the
MSD. Now this measure introduces an order in the diffusion
process solution of the SDE (3). Then it allows us to classify
them into the different classes of diffusion, i.e., free diffusion,
superdiffusion, and subdiffusion. We want to build a test whose

null hypothesis is that the trajectory comes from a Brownian
motion (equivalently a free diffusion), a very popular process
in biophysics. As a consequence, Tn must be a pivotal statistic
under the hypothesis H0 that is the trajectory is Brownian.

Lemma 1. Let σ̂n be a consistent estimator of σ such that the
distribution of σ̂n/σ does not depend on σ . If Xt is a Brownian
motion, the distribution of Tn does not depend on σ .

Let qn(α) be the quantile of Tn of order α ∈ (0,1) when Xt

is a Brownian motion. From Lemma 1, qn(α) does not depend
on σ .

B. Two-hypothesis-test procedure derived from the test statistic

First we define φ1,α as the hypothesis test associated with H0

versus H1 at the level α ∈ (0,1). The procedure φ1,α is defined
through its critical region

R1,α = {Tn < qn(α)} (14)

as

φ1,α(Xn) =
{

1 if Xn ∈ R1,α

0 otherwise.

Then Tn has the probability α to lie in the critical region (14).
According to Lemma 1, the level of the test φ1,α is α,

sup
σ>0

P1/2,0,σ (Tn < qn(α)) = α, (15)

where P1/2,0,σ is the probability measure under the Brownian
hypothesis. In fact, as we already mentioned, Brownian motion
is the solution of the SDE (3) with h = 1/2, μ = (0,0), and
diffusion coefficient σ > 0.

In a similar way, we can perform the test φ2,α by replacing
subdiffusion by superdiffusion in the alternative hypothesis.
The associated critical region is

R2,α = {Tn > qn(1 − α)}. (16)

C. Three-decision-test procedure

From the two tests φ1,α/2 and φ2,α/2, we define a procedure
φ as follows:

we decide H1 if Xn ∈ R1,α/2;

we decide H2 if Xn ∈ R2,α/2;

we do not reject H0 otherwise.

(17)

This procedure is well defined since the intersection of the
critical regions R1,α and R2,α is empty. This procedure is a
three-decision-test procedure and admits three kinds of errors
(see Table I).

The first kind of error is to reject the null hypothesis H0

while H0 is actually true. The probability that this error occurs

TABLE I. The three kinds of error in a three-decision-test
procedure.

Truth\Decision Do not reject H0 Decide H1 Decide H2

H0 true no error type I type I
H1 true type II no error type III
H2 true type II type III no error
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is the level of the test, which is defined as

sup
σ>0

E1/2,0,σ (φ1,α + φ2,α) = α, (18)

where E1/2,0,σ is the expectation operator under the Brownian
hypothesis. We only control the occurrence of this first kind
of error. Then we note that acceptance of H0 (Xt is a free
diffusion) does not necessarily demonstrate that H0 is true. It
only means that data do not show any evidence against the null
hypothesis. Ultimately, we reject this assumption in favor of
one of the alternatives at level α/2.

The second type of error occurs when we do not reject the
null hypothesis while one of the alternatives is true.

The last type of error is to reject the null hypothesis in favor
of a wrong alternative. In the literature of three-decision tests
such an error is called a type III error (see, for example, [43]
and references therein).

D. Choosing the estimator of σ

Ideally, we would like to find an estimator of σ which is
consistent according to the large-sample scheme under the
hypotheses H0, H1, and H2 and satisfies the assumption that
the distribution of σ̂n/σ is free of σ under H0. However, the
large-sample scheme is not favorable to get an estimator with
such properties. For instance, Florens-Zmirou [44] shows
that the naive maximum-likelihood estimator for the drift
parameter has an asymptotic bias of the order of the lag
time �. Thus, the high-frequency scheme and the rapidly
increasing design turn out to be more convenient to provide
consistent estimators. In fact, in the limit, these schemes
correspond to the situation in which we have a continuous
observation of the process on the time interval of observation.
Jiang and Knight [45] propose nonparametric estimators of
both the drift and the diffusion coefficient. The consistency of
these estimators is proven under the high-frequency scheme
only. Therefore, in this section we discuss the estimation of
the diffusion coefficient under the large sample scheme.

The first proposition to estimate σ may be

σ̂ 2
1,n = 1

2n�

n∑
j=1

∥∥Xtj − Xtj−1

∥∥2
2. (19)

Even if the estimator (19) is strongly consistent under the high-
frequency scheme for every process Xt solution of (3) [46], the
following proposition tells us that it is not the case under the
large-sample scheme.

Proposition 1.
(a) Under H0, σ̂1,n is strongly consistent and the distribution

of σ̂1,n/σ is free of σ .
(b) If Xt is an Ornstein-Uhlenbeck process (6), σ̂ 2

1,n/σ
2

converges in probability to (1 − e−λ�)/λ�.
(c) If Xt is a Brownian motion with drift (10), σ̂ 2

1,n/σ
2

converges almost surely to �‖v‖2
2/2σ 2 + 1.

(d) If Xt is a fractional Brownian motion (8), σ̂ 2
1,n/σ

2

converges almost surely to �2h−1.
A proof of Proposition 1 is given in Appendix A 2. Propo-

sition 1 states that σ̂1,n is adequate for our procedure under
the null hypothesis in the large sample scheme. However,
σ̂1,n is asymptotically biased under some alternatives (again

in the large sample scheme). Notice that if Xt is an Ornstein-
Uhlenbeck process (6), then σ̂ 2

1,n underestimates σ 2 on average
since (1 − e−x)/x < 1 for x > 0. Then Tn might be overvalued
with this estimator, increasing the type II or type III error rate
in our procedure. If Xt is a Brownian motion with drift (10), σ̂ 2

1
overestimates σ 2 on average. Then Tn might be undervalued
with this estimator, increasing the type II or type III error
rate. For fractional Brownian motion (8), the ratio σ̂ 2

1,n/σ
2

is inhomogeneous and depends on the value of �. Let us
assume � < 1. For subdiffusive fractional Brownian motion
(h < 1/2), we can show that σ̂ 2

1,n overestimates σ 2 in average
as �2h−1 > 1 for h < 1/2. Then Tn might be undervalued
with this estimator, decreasing type II or type III error rate in
our procedure. For superdiffusive fractional Brownian motion
(h > 1/2), we can show that σ̂ 2

1,n underestimates σ 2 in average
as �2h−1 < 1 for h > 1/2. Then Tn might be overvalued with
this estimator, decreasing type II or type III error rate in
our procedure. Then the bias of σ̂ 2

1,n can be favorable to our
procedure for certain alternatives (fractional Brownian motion
with � < 1) and defavorable for others (Ornstein-Uhlenbeck
and Brownian motion with drift).

The second suggestion to estimate σ may be based on the
second-order differences rather than the first-order differences,

σ̂ 2
2,n = 1

2n�

n−1∑
j=1

∥∥(
Xtj+1 − Xtj

) − (
Xtj − Xtj−1

)∥∥2
2. (20)

Like σ̂ 2
1,n, σ̂ 2

2,n fulfills the assumption of Lemma 1 under H0.
This estimator has the advantage of decreasing the bias under
some alternatives. For instance, it removes the bias in the case
of Brownian motion with drift.

E. Approximation of the distribution of the statistic under the
null hypothesis and asymptotic behavior of our procedure

In this paragraph, we emphasize again that we study the
asymptotic under the large sample scheme: The interobser-
vation time � remains fixed and the number of observations
n tends to infinity. The following theorem gives the asymptotic
behavior of our procedure under the null hypothesis.

Theorem 1. Let Xt be a Brownian motion on R2. Let σ̂n be a
consistent estimator of the diffusion parameter σ of Xt . The test
statistic Tn converges in distribution to S0 = sup0�s�1 ‖Ws‖2

as n → ∞. Here Wt is a standard two-dimensional Brownian
motion that is the Brownian motion of variance I2 and initial-
ization W0 = (0,0)�.

A proof of Theorem 1 is given in Appendix A 1. The limit
distribution of the test statistic under H0 admits an analytical
form [47]

x ∈ (0, + ∞) →
∞∑

k=1

2e−j 2
0,k/2x2

j0,kJ1(j0,k)
,

where x � 0, Jν is the Bessel function of order ν, and 0 <

jν,1 < jν,2 < · · · are the positive zeros of Jν . Replacing the
quantiles qn(α) by the quantiles of S0 in our test procedure
provides us with a test of the asymptotic level α.

Furthermore, the following proposition gives the asymp-
totic behavior of the test statistic under parametric alternatives
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TABLE II. Estimation of the quantiles of order α/2 and 1 − α/2
(α = 5%) for different trajectory lengths n, using Algorithm 1
(Appendix B) with N = 1 000 001.

Trajectory size

Quantile order 10 30 100 Asymptotic

2.5% 0.725 0.754 0.785 0.834
97.5% 2.626 2.794 2.873 2.940

when the estimator σ̂1,n is considered (see Appendix A 3 for
a proof). More generally, as long as the estimator σ̂n of the
diffusion coefficient is such that σ̂n/σ converges in probability
to a positive constant whatever the dynamic of Xt , then the
following proposition holds.

Proposition 2. Assume that we consider the estimator (19)
in our procedure (12).

(a) If Xt is an Ornstein-Uhlenbeck process (6), Tn converges
in probability to 0.

(b) If Xt is a fractional Brownian motion (8) with 0 < h <

1/2, Tn converges in probability to 0.
(c) If Xt is a fractional Brownian motion (8) with 1/2 <

h < 1, Tn converges in probability to +∞.
(d) If Xt is a Brownian motion with drift (10), Tn converges

in probability to +∞.
Note that Theorem 1 and Proposition 2 allow us to control

the error rates of type II and type III under parametric
alternatives; the associated error rates converge to 0 with n.

However, as in practice n may be small, the asymptotic
approximation of the quantiles of Tn may not be accurate.
Then the level of the test is no longer α. Since we are able
to draw a sample from the distribution of Tn under H0 (see
Algorithm 1), we propose a Monte Carlo estimate of the
quantile qn(x), 0 < x < 1. This estimate is defined as the
[xN]th-order statistic q (N)

n (x) of the sample (T (1)
n , . . . ,T (N)

n ).
Table II shows that there is a significant difference between
asymptotic and nonasymptotic quantiles. As expected, as n →
∞, qn(α) converges to the quantile of S0 of order α (column
Asymptotic in Table II).

Algorithm 1. Simulation of an N sample (T (1)
n , . . . ,T (N )

n ) of the
distribution of the statistic Tn under H0.

Input: n, α, and L

// the length n of the trajectory

// the probability α ∈ (0,1)
// the number N of Monte Carlo experiments

Result: q (N )
n (α)

for i = 1 to N do
// Simulation of a Brownian trajectory of size n,
of variance σ = 1, and with resolution time � = 1.

initialization Y
(i)
0 = (0,0)�;

for j = 1 to n do
Draw ε ∼ N (0 , I2);
Y

(i)
j = Y

(i)
j−1 + ε;

end
// Computation of the test statistic

Compute the ratio T (i)
n = D(i)

n /σ̂ (i)
n from (Y (i)

0 , . . . ,Y (i)
n );

end

In dealing with a test, we can also be interested in computing
the p value. The p value of the test H0 vs H1 (subdiffusion as
the alternative) is defined as

p1,n = Fn(Tn), (21)

where Fn denotes the cumulative distribution function of Tn

under H0. The p value of the test H0 vs H2 (superdiffusion as
the alternative) is defined as

p2,n = 1 − Fn(Tn). (22)

Testing the hypothesis H0 vs the hypothesis H1 or H2 is
more tricky as we use a two-sided test with a nonsymmetric
distribution. In this case we can define the p value as

pn = 2 min{p1,n,p2,n}. (23)

Doubling the lowest one-tailed p value can be seen as a
correction for carrying out two one-tailed tests. We estimate
Fn with the standard empirical distribution function estimated
by Monte Carlo simulations using Algorithm 1,

F̂n(x) = N−1
N∑

i=1

1
(
T (i)

n � x
)
, (24)

where 1(A) is the indicator function of event A. Then we
estimate the p value (23) replacing Fn with F̂n.

IV. MULTIPLE-TEST PROCEDURE FOR A POPULATION
OF TRAJECTORIES

Trackers compute a collection of particle trajectories from
a sequence of images. Thus, it is desirable to decide the
modes of mobility for a collection of particle trajectories. For
now, we consider a collection Xm of m trajectories which are
simultaneously observed. We denote by X(k)

nk
the observations

associated with the kth particle,

X(k)
nk

= (
X

(k)
t0 , . . . ,X

(k)
tnk

)
, k = 1, . . . ,m,

Xm = {
X(k)

nk
,k = 1, . . . ,m

}
.

We assume that the observed trajectories are independent.
For all trajectories k = 1, . . . ,m, we derive our trichotomy-
hypothesis-test procedure: H (k)

0 (X(k)
t is a free diffusion) versus

H
(k)
1 (X(k)

t is a subdiffusion) or H
(k)
2 (X(k)

t is a superdiffusion).
We are faced with the problem of simultaneous tests when
the rejections of null hypotheses H

(k)
0 are accompanied by

claims of the direction of the alternative (H (k)
1 or H

(k)
2 ). In this

setup, multiple-test procedures are preferable over single-test
procedures. Indeed, applying the procedure at level α for each
trajectory produces on average a number of mα type I errors. A
multiple-testing procedure aims to control the number of false
discoveries. We refer the reader to [48–50] for a review.

A multiple-testing procedure of m null hypotheses against
two alternative hypotheses is a rule R1(Xm) × R2(Xm), where
R1(Xm) and R2(Xm) are disjoint subsets of {H (1)

0 , . . . H
(m)
0 }.

For i = 1,2,Ri(Xm) is the set of the rejected hypothesesH
(k)
0 to

the benefit of the alternative H
(k)
i . We may commit three kinds

of errors in such a multiple-testing procedure. Let us introduce
the following notation before listing these errors. We denote by
m0 the number of true hypotheses H

(k)
0 . In our context m0 is the
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TABLE III. Outcomes in testing m null hypotheses against two
alternatives. For i = 1,2, Ri is the cardinal of Ri(Xm). The variables
(Si)i=1,...,4, (Ti)i=1,2, U , and (Vi)i=1,2 are not observed and depend on
Xm and P .

Truth\Decision Accept H0 Accept H1 Accept H2 Total

H0 U V1 V2 m0

H1 T1 S1 S3 m1

H2 T2 S4 S2 m2

Total m − R1 − R2 R1 R2 m

number of true Brownian trajectories. We emphasize that m0 is
an unobservable random variable. We define by R = R1 + R2

the observed number of null hypotheses which are rejected
by the multiple-testing procedure. Table III summarizes the
number of errors which may occur following a multiple-testing
procedure.

(a) We make a type I error on H
(k)
0 when we reject H

(k)
0

while it is a true null hypothesis. The number of errors of the
first kind is V = V1 + V2.

(b) A type II error occurs when we do not reject a null
hypothesis H

(k)
0 while H

(k)
0 is false. The number of errors of

the second kind is T = T1 + T2.
(c) The type III errors are directional errors: The hypothesis

H
(k)
0 is correctly rejected [k ∈ R1(Xm) ∪ R2(Xm)], but for the

wrong alternative. We mix up the alternatives deciding one
while it is the other. The number of errors of the third kind is
S = S3 + S4.

To measure the type I error rate, it is common to consider
the k familywise error rate (FWER) or the FDR (see [49] and
references therein). In our settings, controlling the type I error
rate is a first step, but it would be necessary to control type
III errors as well. In the literature, the sum of the number
of errors of the first and third kinds is controlled using the
mixed-directional familywise error rate (MDFWER) or the
mixed-directional false discovery rate (MDFDR) (see [48]).
The MDFWER and MDFDR are only controlled for the prob-
lem of testing null hypotheses against two-sided alternatives
for finite-dimensional parameters (see, for example, [51] and
references therein).

Biologists are interested in the proportions of each dynamic
(subdiffusion, superdiffusion, and Brownian motion) and their
geographic location in the cell. In this context, controlling
the FWER, that is, the probability of making a single false
discovery, is not relevant. That is why we focus on a procedure
which enables us to control the FDR. Guo and Romano (see
[51], Sec. 5) also present several multiple-test procedures
associated with three-decision problems which aim to control
the FDR. Their approach is different since the problem is
rewritten as a problem which carries out 3m null hypotheses.
Their proposed procedures control strongly the FDR only on
2m null hypotheses among the 3m under the dependence or
independence of the test statistics. In this section we propose
to adapt the multiple-testing procedures of Benjamini and
Hochberg [52] and Benjamini and Hochberg [28] controlling
the FDR that is the average proportion of false discoveries
among the discoveries. We stress that our model is nonpara-
metric. Then we will consider the control of the MDFDR or
MDFWER for a next issue.

Let p(k), p
(k)
1 , and p

(k)
2 be, respectively, the p value (23),

(21), and (22) associated with the kth trajectory, k = 1, . . . ,m.
Let p(1:m) � p(2:m) � · · · � p(m:m) be the ordered p values
p(k), and H

(1:m)
0 , . . . ,H

(m:m)
0 the associated null hypotheses.

The adaptation of the Benjamini-Hochberg (BH) procedure is
described in the following procedure.

Procedure 1.
(a) Use the Benjamini-Hochberg procedure on the p

values (p(k))k=1,...,m: (i) Let k� be the largest k for which
p(k:m) � k

m
α and (ii) let Rα(Xm) be the set of hypotheses

{H (1:m),H (2:m), . . . ,H (k�:m)}.
(b) Let R1,α(Xm) be the subset Rα(Xm) such that p

(k)
1 <

p
(k)
2 .

(c) Let R2,α(Xm) be the subset Rα(Xm) such that p
(k)
1 >

p
(k)
2 .

The set Rα(Xm) is the set of all rejected null hypotheses for
our trichotomy test. According to Finner and Roters [53], we
have

FDR[Rα(Xm)] = E

(
V

max(R,1)

)

= m0

m
α,

where E is the expectation associated with the m-tuplet
stochastic processes (X(k)

t , k = 1, . . . ,m) which generates the
m trajectories. Then the FDR of Procedure 1 is controlled by
α. Moreover, the p values p

(k)
1 and p

(k)
2 give the information to

which side of the distribution Fnk
the associated test statistic

T (k)
nk

is. The case of equality (p(k)
1 = p

(k)
2 = 1/2) never occurs

since such a null hypothesis will not be rejected at step (a) of
Procedure 1.

Actually, we may also use the adaptive BH procedure of
[28] as the first step of Procedure 1. Thus Procedure 1 will
be referred to as the adaptive (standard) Procedure 1 when we
use the adaptive (standard) BH procedure as the first step. The
adaptive BH procedure is more powerful than the standard BH
procedure. It uses an estimation of the number of true null
hypotheses m0 to increase the power of the BH procedure.
Benjamini and Hochberg [28] simply define the adaptive BH
procedure by replacing m by an estimator m̂0 of m0 in the BH
procedure. The associated FDR is (m0/m̂0)α and is less than
α if m̂0 � m0 almost surely.

The procedure to estimate m0 presented in [28] is made for
m̂0 to be upward biased. This bias favors the control of the FDR
at level α. Due to the fact that m̂0 does not fulfill the condition
m̂0 � m0 almost surely, we cannot say that the adaptive BH
procedure controls the FDR at level α theoretically. However,
simulations from [28] suggest that the adaptive BH procedure
controls the FDR at levelα. Based on simulations (see Table V),
we show that Procedure 1 also controls the MDFDR defined
as E[(V + S)/ max(R,1)].

V. SIMULATION STUDY AND APPLICATION
TO REAL MICROSCOPY DATA

We assess the power of our single-test procedure (on a single
trajectory) and our multiple-test procedure (on a collection
of trajectories) by Monte Carlo simulations. We consider
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parametric alternatives: the Ornstein-Uhlenbeck (6) and the
fractional Brownian motion with Hurst index 0 < h < 1/2
for subdiffusion processes (H1) and the Brownian motion
with drift (10) and the fractional Brownian motion with Hurst
index 1/2 < h < 1 for superdiffusion processes (H2). Then
we apply our procedure to real data, comparing our results
with those obtained due to a method based on the mean-square
displacement.

A. Power of the test procedure for a single trajectory

The power is defined as the probability of accepting the
alternative hypothesis Hi , i = 1,2, when Hi is effectively true.
Thus, the higher the power (ideally the closest to 1), the better
the test procedure can discriminate correctly the hypotheses.
In what follows, Fig. 3 (and Fig. 13 in Appendix B) display
the power under parametric alternatives for a range of values
of the parameter and for different trajectory sizes. For instance,
when the alternative hypothesis H1 is the Ornstein-Uhlenbeck
process (6), the power is defined as the function f :

f (λ,n) = P (Xn(λ) ∈ R1,α/2|H1 is true), (25)

where Xn(λ) denotes a trajectory of size n from an Ornstein-
Uhlenbeck process (6) of the parameter λ. We recall that
the event {Xn(λ) ∈ R1,α/2} means that the three-decision test
accepts hypothesis H1 at level α for the trajectory Xn [see
Eq. (17)]. As expected, the power of the test under parametric
alternatives converges to 1 withn (see Fig. 3 as well as Fig. 13 in
Appendix B). This property is a consequence of Proposition 2
for the mentioned alternatives. Indeed, the larger the trajectory
size n is, the more information we have about the trajectory
and the better the test detects the alternative hypothesis Hi ,
i = 1,2, when Hi is true. Thus, a power curve corresponding
to a test on long trajectories (large n) will be above the power
curve corresponding to a test on short trajectories (small n). On
the other hand, in statistical testing, it is well known that the
further from the null hypothesis the process is (for instance,
λ chosen far from 0 for an Ornstein-Uhlenbeck process), the
higher the power is.

If Xt is an Ornstein-Uhlenbeck process (6) which is entered
in its stationary regime, then the distribution of the test statistic
does not depend on θ (see Appendix A 4). Figure 3(b) shows
the plot of the power regarding the values of λ which models the
strength of the restoring force toward the equilibrium position
θ . The power function is an increasing function of λ. The larger
λ is, the stronger is the restoring force and then the better the
test will detect correctly the alternative hypothesis H1. In short,
the stronger the force is, more powerful the test is.

Furthermore, if Xt is a Brownian motion with drift with
parameters v and σ such that ‖v‖√� > σ , then the particle
goes toward the direction of v while the Brownian random
part of the SDE (10) does not affect much its trajectory
(see Appendix A 4). Consequently, the trajectory looks quite
straight and the test has a high probability of detecting it as a
superdiffusion (hypothesis H2). In other words, the larger the
norm of the drift parameter v is compared to σ , more powerful
the test is [see Fig. 3(a)].

If Xt is a fractional Brownian motion, then the distribution
of Tn depends only on the Hurst index h (see Appendix A 4).
Then the test procedure is equivalent to test the null hypothesis

FIG. 3. Monte Carlo estimate of the power of the test at level
α = 0.05 according to the trajectory length n and the parameter
associated with the following parametric alternatives: (a) Brownian
motion with drift [with the parameter v = (v1,v2) such that v1 = v2],
(b) the Ornstein-Uhlenbeck process (parameter λ), and (c) fractional
Brownian motion (parameter h). We use 10 001 Monte Carlo replica-
tions to compute each point of the power curves.

h = 1/2 (corresponding to the Brownian hypothesis) versus
h �= 1/2 [see Fig. 3(c)]. When 0 < h < 1/2 (subdiffusive
process), low values of h correspond to a process whose MSD
has a low exponent β [MSD(t) ∝ tβ ; see Eq. (9)]. Therefore,
the lower h is, the more subdiffusive the trajectory is and
the better the test detects correctly subdiffusion: The power
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TABLE IV. Parameters used for simulating the alternative hy-
potheses. For simplicity, we took σ = 1 for all processes (including
Brownian motion). We chose � = 1.

Hypothesis Process Parameter Value

H1 Ornstein-Uhlenbeck λ 0.53
H1 fractional Brownian h 0.13
H2 Brownian motion with drift ‖v‖ 0.66
H2 fractional Brownian h 0.85

function is decreasing for h ∈ (0,1/2). On the contrary, when
h > 1/2 (superdiffusive process), large values of h correspond
to a process whose MSD has a large exponent β. The larger
h is, the more superdiffusive the trajectory is and the better
the test detects correctly superdiffusion: The power function is
increasing for h ∈ (1/2,1).

Appendix B explores the case where the process is a
subdiffusion modeled by a continuous-time random walk.
The corresponding power curves are plotted in Fig. 13
(Appendix B).

As a concluding remark, we observe that under all the
parametric alternatives studied here, the power corresponding
to a trajectory size n = 10 is significantly lower compared
to n = 30,50. Thus, we argue that it is very hard to classify
accurately a trajectory with fewer than ten points, as we have
very little information about the dynamics in this case.

B. Average power and the MDFDR of the multiple-test
procedure for a collection of trajectories

The simulation settings are described as follows. According
to experience, we choose the number of trajectories to be
m = 100 or 200. All the trajectories are assumed to have
the same size n = 30, since this size is reasonable regarding
real data. The diffusion coefficient σ and the lag time � are
set to 1. The collection of trajectories Xm is composed of
m0 < m Brownian trajectories (H0); (m − m0)/2 subdiffusive
trajectories (H1), half from an Ornstein-Uhlenbeck process
with parameter λ > 0 and half from a fractional Brownian
motion with Hurst index 0 < h < 1/2; and (m − m0)/2 su-
perdiffusive trajectories (H2), half from a Brownian motion
with drift v ∈ R2 and half from a fractional Brownian motion
with Hurst index 1/2 < h < 1. The parameters to simulate
these trajectories are given in Table IV. We take the parameters
corresponding to a power of the single-test procedure of 80%.
Such parameters are used to produce Fig. 1(a). This choice
seems coherent in regard to trajectories from real data [see
Fig. 1(b)]. To better picture the trajectories, we show the spread
of the exponent β, a commonly used descriptor of the data in
biophysics, in Fig. 4 (for the fractional Brownian motion only).
For a given m, the proportion of true null hypotheses H0 varies:
m0/m ∈ {0,0.2,0.4,0.6,0.8}.

The MDFDR is a rate which controls the error of type I
and type III. It is defined as E[(V + S)/ max(R,1)] (see
Table III). Table V shows that Procedure 1 also controls the
MDFDR. The MDFDR and FDR appear to be very close,
meaning that the number of type III errors is extremely low.
Furthermore, the adaptive Procedure 1 (where m0 is estimated)
is less conservative than the standard Procedure 1. As expected,

FIG. 4. Box plots of the estimated exponent β̂. From left to right,
we plot the box plot of β̂ corresponding to Brownian trajectories
(h = 1/2), subdiffusive fractional Brownian trajectories (h = 0.13),
and superdiffusive fractional Brownian trajectories (h = 0.85). The
trajectory size is n = 30. Here β̂ is obtained by linear regression from
the log(MSD) curve. We use the first 25 points of the MSD curve
to estimate β. The dashed lines correspond to the true β for each
situation. We recall that in the case of fractional Brownian motion of
the parameter h we have β = 2h.

the FDR and MDFDR increase as the proportion of true null
hypotheses increases.

To assess the performance of our multiple-test procedure,
we use the average power [48]

E

(
Si

mi

)
, i = 1,2, (26)

where mi is the number of true alternatives Hi and Si (i = 1,2)
is defined in Table III. In our simulation scheme, we set mi =
(m − m0)/2. The average power is the expected proportion of
hypotheses accepted as Hi among all true alternatives Hi . Then
a perfect multiple-test procedure would have an average power
equal to one. Average powers of the different simulations
corresponding to different values of m0/m and m are shown
in Fig. 5.

TABLE V. Monte Carlo estimate of the FDR and MDFDR for both
the standard and adaptive Procedure 1 at level α = 0.05. The number
of replications is 10 001. The error rate estimations are expressed in
percentages.

Standard Adaptive

m m0/m FDR MDFDR FDR MDFDR

100 0 0 0 0 0.2
100 0.2 1 1 3.7 3.7
100 0.4 2.1 2.1 4.2 4.2
100 0.6 3.2 3.2 4.7 4.7
100 0.8 4.1 4.1 4.8 4.8
200 0 0 0 0 0.4
200 0.2 1 1 3.4 3.4
200 0.4 2.1 2.1 4 4
200 0.6 3.2 3.2 4.6 4.6
200 0.8 4 4 4.7 4.7
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FIG. 5. Monte Carlo estimate of the average power against the
proportion of true null hypotheses m0/m in the collection of hypothe-
ses tested: (a) m = 100 hypotheses and (b) m = 200 hypotheses.

First, we can see that the powers of H1 and H2 are not
very sensitive to the number of hypotheses m for both the
standard Procedure 1 and the adaptive Procedure 1 [red and
blue solid and dashed lines, respectively, which are similar
in Figs. 5(a) and 5(b)]. Second, the adaptive Procedure 1 is
more powerful than the standard Procedure 1 (red and blue
dashed lines, respectively, above the red and blue solid lines
in Fig. 5). The benefit of the adaptive Procedure 1 over the
standard Procedure 1 decreases as the proportion of true null
hypotheses m0/m increases (solid and dashed lines of the same
color getting closer as m0/m increases in Fig. 5). This is due
to the fact that, as m0/m tends to 1, m0 and then m̂0 tend to m.
As a result, the adaptive and standard versions of Procedure 1
become similar.

Remark 3. We observe that, given a certain procedure
(standard or adaptive Procedure 1), the average power of H1

is lower than the average power of H2 (see Fig. 5). It is

FIG. 6. Box plots of the p value p30 [Eq. (23)] under H1 and
H2. We simulate a set of trajectories Xm with m = 100 and m0 = 20
according to the simulation scheme described in Sec. V. We plot the
box plot of the p values p

(i:m)
30 corresponding to each true alternative

hypothesis H1 and H2. The green (orange) line is the threshold
h = p(k∗) obtained by the first step of Procedure 1 (first step of adaptive
Procedure 1). The null hypothesis is rejected if the p value is lower
than h. The black line is the level α = 5%.

not due to the choice of parameters as both alternatives H1

and H2 are simulated to share the same power (80%) as the
single-test procedure. Actually, it comes from the fact that
the p values under H2 are stochastically smaller than the p

values under H1 (see Fig. 6). Then the true superdiffusive
trajectories are more easily detected as non-Brownian in the
first step of the (adaptive) Procedure 1 than the true subdiffusive
trajectories. We note that if we use other parametric models for
subdiffusion (H1) and superdiffusion (H2), we can have the
opposite situation.

Finally, we compare the adaptive Procedure 1 to the MSD
classification of Feder et al. [19], based on a fit of the MSD
curve to t → tβ . We assess the two methods on a single
collection of trajectories Xm with m = 200 and m0/m = 0.4,
composed of a mixture of Brownian motion, subdiffusion, and
superdiffusion as described at the beginning of this section.
We get the confusion matrices of Tables VI and VII for,
respectively, the MSD method and the adaptive Procedure 1.
As suggested by the limiting curves used by Feder et al. [19]
(see Fig. 2), the MSD method mixes up the Brownian trajec-
tories with both subdiffusion and superdiffusion (see row 1
of Table VI). Another big issue is that 40% of the particles
undergoing subdiffusion are considered as immobile by the
MSD method. On the other hand, the adaptive Procedure 1
detects well subdiffusion and superdiffusion in the setting of
this simulation (rows 2 and 3 of Table VII). More importantly,
it controls the number of false discoveries through the FDR
(row 1 of Table VII).

C. Real data: The Rab11a protein sequence

Fluorescence imaging and microscopy has a prominent role
in life science and medical research. It consists of detecting
specific cellular and intracellular objects of interest at the
diffraction limit (200 nm). These objects are first tagged with
genetically engineered proteins that emit fluorescence, e.g.,

TABLE VI. Confusion matrix for the MSD method.

Truth/Label Brownian Subdiffusion Superdiffusion Still

Brownian 19 45 36 0
subdiffusion 0 60 0 40
superdiffusion 3 0 97 0
not moving 0 0 0 0
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TABLE VII. Confusion matrix for the adaptive Procedure 1.

Truth/Label Brownian Subdiffusion Superdiffusion

Brownian 96 0 4
subdiffusion 23 77 0
superdiffusion 10 0 90

green fluorescent protein (GFP). Then they can be observed
using wide-field or confocal microscopy. Several image anal-
ysis methods have been developed to quantify intracellular traf-
ficking, including object detection and tracking of fluorescent
tags in cells [2,54].

Here we are particularly interested in studying the exocy-
tosis process, which is the mechanism of active transport of
proteins out of the cell. Small structures, called vesicles, travel
from organelles to the cell membrane, propelled by motor
activity. The vesicle fuses with the plasma membrane and
delivers the transported protein in the extracellular medium.
Given computed trajectories, we investigate here the quan-
tification of vesicle dynamics and trafficking. As explained
earlier in the paper, the trajectories can be generally classified
into three categories: Brownian motion, subdiffusion, and
superdiffusion.

As a model of exocytosis or recycling, we focus on the
Rab11a protein. This protein is a member of the dynamic
architecture of the complex molecular assembly which reg-
ulates recycling organelle trafficking. It plays an essential role
in the regulation of late steps of vesicle recycling to the plasma
membrane, namely, the tethering-docking process [29]. During
exocytosis, Rab11a is attached to the vesicle membrane.
Then tracking Rab11a amounts to tracking the vesicle during
the exocytosis phase. After the fusion of the vesicle to the
cell membrane, Rab11a is recycled in the cytosol. During
the recycling step, the tracking of Rab11a is not accurate
as the proteins are detached from the vesicle and scatter around
the cytosol. It is currently under investigation. For that reason,
we focus on the exocytosis process until the fusion time with
the cell membrane.

An illustration of the Rab11a sequence is shown in Fig. 7
where the dark spots correspond to Rab11a-GFP vesicles
in a “crossbow” micropatterned shape cell. A typical image
extracted from an image sequence is shown in Fig. 7. The
image sequence is composed of 600 images of size 256×240
(1 pixel = 160 nm) acquired at 10 frames/s (� = 0.1 s). All
imaging acquisition was carried out in a full conditioned
medium at 37 ◦C and 5% CO2. Simultaneous dual-color TIRF
microscopy sequences were acquired on a Nikon TE2000
inverted microscope equipped with a 100× TIRF objective
(numerical aperture equal to 1.49). We tracked 1561 trajecto-
ries with the multiple-hypothesis tracking method with default
parameters [55], available on the Icy software [56]. However,
we discarded too small and too long trajectories corresponding
to tracking errors in most cases. Then we have to get rid of the
particles that do not move enough and consequently cannot
be modeled by diffusion processes. In practice, we analyze
only the trajectories with at least 20 distinct positions and the
vesicles that stop at the same position less than K = �n/10�
times (with n the length of the trajectory). In the case of

FIG. 7. Map of the classification of the trajectories of the Rab11a
sequence with (a) the standard multiple-test Procedure 1, (b) the adap-
tive version of Procedure 1, (c) MSD, and (d) a single-test procedure.
The color code is blue for Brownian motion, red for superdiffusion,
green for subdiffusion, and cyan for immobile particles (for the MSD
method only).

the aforementioned image sequence, we end up with 166
trajectories whose median length is n = 84.5. Some common
statistics describing quantitatively this set of 166 trajectories
are given in Fig. 8, which includes histograms of the trajectories
length, of the MSD exponent β, and of the diffusion coefficient,
and the MSD curves. We also give the histogram of the test
statistic (12) in Fig. 9.

In Fig. 7 our results show that the four procedures, i.e.,
adaptive Procedure 1, standard Procedure 1, our test for a single
trajectory at level 5%, and the MSD method of Feder et al. [19],
do not produce similar classification results visually. From the
simulations, we found that the MSD method tends to wrongly
overdetect subdiffusion and superdiffusion (see Tables VI
and VII). This is probably true also in the case of a real
Rab11a sequence. In Table VIII we give the proportion of each
type of diffusion for the different aforementioned methods.

TABLE VIII. Percentages of Brownian, superdiffusive, and subd-
iffusive trajectories in the Rab11a sequence according to the different
methods of classification.

Method Brownian Subdiffusion Superdiffusion

standard Procedure 1 80 16 4
adaptive Procedure 1 73 23 4
single test 66 28 6
MSD 16 63 21
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FIG. 8. Descriptive statistics of the 166 trajectories of the RAb11a
sequence. (a) Histogram of the trajectories length. (b) The MSD
curves of the first 50 trajectories. We plot only the first 30 points
of the curves. (c) Histogram of the exponent β obtained from a
linear regression of the log(MSD). The green and red vertical lines
correspond to the thresholds β = 0.9 and β = 1.1, respectively,
proposed by [19] for classifying the trajectories. (d) Histogram of
the diffusion coefficient (in μm2 s−1) estimated with the estimator
(19) which corresponds to the first point of the MSD curve.

The adaptive Procedure 1 tends to decrease the number of
Brownian trajectories compared to the standard Procedure 1.
It is not surprising as the adaptive Procedure 1 is defined
to be more powerful than the standard Procedure 1: It more
easily rejects the null hypothesis. This gain in power benefits
the alternative H1 (subdiffusion). In fact, we detect 23% of
subdiffusion for the adaptive Procedure 1 against 16% for the
standard Procedure 1 while both detect 4% of superdiffusion

FIG. 9. Histogram of the test statisticTn obtained from the Rab11a
sequence. The green (red) vertical line represents the quantile of order
2.5% (97.5%) of the asymptotic distribution of Tn.

FIG. 10. Box plots of the proportions of Brownian motion, sub-
diffusion, and superdiffusion computed from 12 Rab11a sequences
obtained with the single-test procedure (blue), Procedure 1 (cyan),
the adaptive Procedure 1 (violet), and the MSD method (orange).
Here Br stands for Brownian motion, Sb for subdiffusion, and Sp for
superdiffusion.

(see Table VIII). The single-test procedure detects even less
Brownian motion but we know that it cannot control the FDR.
In Fig. 7 the subdiffusion trajectories labeled with the test
approach are located more in the center of the cell in a region
corresponding to the endosomal recycling compartment which
is known to organize Rab11a carrier vesicles [29]. It is also true
for the subdiffusion trajectories labeled with the MSD analysis,
but we have just said that there is probably an overdetection of
the subdiffusion with this method. We note that we carry the
classification of trajectories with our different test procedures
and the MSD method on multiple sequences of Rab11a protein
(see Fig. 10).

VI. SPECIFIC PROBLEMS DUE
TO THE IMAGING PROCESS

In this section we discuss two problems encountered in
microscopy data, namely, missing points and localization
uncertainty. First, until now, we assumed that the positions of
a particle Xt0 ,Xt1 , . . . ,Xtn were observed at equispaced times,
that is, ti+1 − ti = �. However, we can have missing points
along the trajectory when we lose the trace of the particle
over a few steps of time until the particle reappears. In the
presence of missing points, we have to modify the estimator
σ̂n of σ involved in the computation of the test statistic (12).
For the sake of simplicity, let suppose that we estimate σ with
an estimator similar to σ̂1,n [Eq. (19)] based on the first-order
differences Xtj − Xtj−1 . We propose the following estimator:

σ̂ 2
1,n,miss = 1

2�I

n∑
j=1

∥∥Xtj − Xtj−1

∥∥2
21(tj − tj−1 = �), (27)

where 1(A) is the indicator function of event A and I =∑n
j=1 1(tj − tj−1 = �) is the number of pairs of successive

positions (Xtj−1 ,Xtj ) separated by the lag time �. In other
words, we only use the increments Xtj − Xtj−1 such that
tj − tj−1 = � for estimating σ . Clearly, the estimator σ̂1,n,miss
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TABLE IX. Type I error of the single-test procedure at level
α = 5% depending on the number of missing points. We also give in
which direction (subdiffusion H1 or superdiffusion H2) we make the
error. We compute these type I errors of the test over 10 001 Brownian
trajectories of size n = 30 with σ = 1 and � = 1.

% of missing Direction of the error

points H1 H2 Type I error

0 2.50 2.69 5.19
20 2.99 2.58 5.57
40 3.78 2.53 6.31

shares the same statistical properties as the estimator σ̂1,n

used where there is no missing point. Then we compute Tn

with the estimator σ̂ 2
1,n,miss and use the quantiles qn(α/2) and

qn(1 − α/2) for the single-test procedure, where n is the total
number of points including the missing points. Alternatively,
we can use a multiple-test procedure through the calculus of
the p values p1,n, p2,n, and pn, where n is again the total
number of points including the missing points. We study the
robustness of our single-test procedure against the presence of
missing points with Monte Carlo simulations. To simulate a
trajectory of total size n with missing points, we first simulate
a trajectory of size n with a step of time �. Then we select
randomly, with a discrete uniform distribution, the points to
remove. We never remove the two first and two last points.
We show that, even with a high proportion of missing points,
our single-test procedure almost controls the type I error at a
level of 5% (see Table IX). We can also see that we make more
type I errors in favor of subdiffusion (hypothesis H1) than in
favor of superdiffusion (hypothesis H2). In other words, the
higher the number of missing points, the more we mix up a
true Brownian trajectory with a subdiffusion. Power results
similar to those given in Fig. 3 are given in Fig. 11. The power
curves corresponding to different proportions of missing points
(0%, 20%, and 40%) are almost the same, demonstrating the
robustness of our single-test procedure against the presence of
missing points.

Secondly, the measured positions Xti are different from
the true positions denoted by X̃ti . Two factors contribute
to the differences between measured and true positions: the
measurement noise and the motion blurring due to the camera
integration times [57]. The measurement noise is due to the fact
that we observe a diffraction spot and not a single position in the
image. This spot is modeled by the point spread function (PSF)
of the microscope. A typical choice for the PSF is a Gaussian
of variance σ 2

0 whose mean is the center of the diffraction spot.
The value of σ 2

0 depends on, among other factors, the number
of photons recorded in the diffraction spot: It decreases with
the number of photons. For simplicity, we will not consider
the problem of motion blurring. Then, with no motion blurring
and a Gaussian PSF, we have

Xti = X̃ti + εti , (28)

where εti is a Gaussian white noise of variance σ 2
0 . Vestergaard

et al. [58] define the signal-to-noise ratio (SNR)

SNR = σ
√

�

σ0
, (29)

FIG. 11. Monte Carlo estimate of the power of the test at level
α = 0.05 for different percentages of missing points (0, 20%, and
40%) along trajectories of size n = 30. We give the power of the test
for different parametric alternative hypotheses: (a) Brownian motion
with drift [with the parameter v = (v1,v2) such that v1 = v2], (b) the
Ornstein-Uhlenbeck process (parameter λ), and (c) fractional Brow-
nian motion (parameter h). We use 10 001 Monte Carlo replications
to compute each point of the power curves. We note that we limit the
study to a proportion of missing points less than 50%. Beyond 50%,
we can consider that the time resolution between two observations
� has changed. Consequently, it is no longer a problem of missing
points and we can restrict our study to the case where there is less
than 50% missing points.

where as before σ is the diffusion coefficient, � the resolution
time, and σ0 the standard deviation of the Gaussian measure-
ment noise. We study the situation where SNR > 1, that is,
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TABLE X. Type I error of the single-test procedure at level
α = 5% depending on the level of measurement noise. We also give in
which direction (subdiffusion H1 or superdiffusion H2) we make the
error. We compute these type I errors of the test over 10 001 Brownian
trajectories.

Direction of the error

SNR H1 H2 Type I error

1 23.15 0 23.15
2 7.46 0.42 7.88
3 4.59 1.17 5.76
∞ 2.50 2.69 5.19

when the diffusive motion dominates the measurement noise.
The greater the SNR, the less the trajectory is corrupted by
measurement noise and, consequently, the closer the observed
and true positions are. We assess the robustness of our single-
test procedure against measurement noise on Monte Carlo
simulations. For a given type of stochastic process, we simulate
trajectories of size n = 30 with � = 1 and σ = 1. We add
a Gaussian noise of variance σ 2

0 according to Eq. (28). We
choose a different variance σ0 to have a different SNR [see
Eq. (29)]. Table X shows the type I error rate according to
different SNRs. We mainly mix real Brownian trajectories with
subdiffusions for low SNR (23.15% of Brownian trajectories
declared subdiffusive for SNR = 1). The test procedure almost
controls the type I error at level α for SNR � 3 (see Table X).
Power results similar to those given in Fig. 3 are given in
Fig. 12. For subdiffusion, the power curves corresponding to
low SNR are above the power curves with a high SNR [see
Fig. 12(b) and the left part of Fig. 12(c)]. This means that
a high amount of noise helps the detection of subdiffusion.
We observe the exact opposite situation for the superdiffusion
power curves [see Fig. 12(a) and the right part of Fig. 12(c)].
Actually, the noise makes the trajectories more tortuous. Hence
it favors the detection of subdiffusion characterized by zigzag
paths over superdiffusion characterized by straight trajectories.
In all cases, the power curves corresponding to different SNRs
are close (except for SNR = 1, a situation where the noise blurs
very much the true motion), demonstrating the robustness of
our procedure against a reasonable amount of noise.

VII. DISCUSSION

In this paper we proposed a method for classifying the
particle trajectories observed in living cells into three types of
diffusion: Brownian motion, subdiffusion, and superdiffusion.
We used a test approach with the Brownian motion as the
null hypothesis. More specifically, we developed a nonpara-
metric three-decision test whose alternatives are subdiffusion
and superdiffusion. On the one hand, we built a single-test
procedure for testing a single trajectory; on the other hand, we
proposed a multiple-test procedure for testing a collection of
trajectories. These procedures control, respectively, the type I
error and the false discovery rate at level α. It is worth noting
that the length of the trajectory n is taken into account in
our classification rule. Our approach can be considered as an
alternative to the MSD method. It gives more reliable results

FIG. 12. Monte Carlo estimate of the power of the test at level
α = 0.05 for trajectories of size n = 30 according to the signal-to-
noise ratio and the parameter associated with the following parametric
alternatives: (a) Brownian motion with drift [with the parameter
v = (v1,v2) such that v1 = v2], (b) the Ornstein-Uhlenbeck process
(parameter λ), and (c) fractional Brownian motion (parameter h). We
use 10 001 Monte Carlo replications to compute each point of the
power curves.

as confirmed by our Monte Carlo simulations and evaluations
on real sequences of images depicting protein dynamics ac-
quired with TIRF or single-particle tracking photoactivated
localization microscopy. Other real data of interest should be
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considered. Seisenberger et al. [59] study the infectious entry
pathway of single virus particles in living cells. The study of the
virus trajectory allows one to determinate by which biological
process the virus reaches the nucleus to replicate. With this
purpose, Seisenberger et al. [59] classified the trajectories due
to the β exponent obtained from the MSD curves using the
method of Feder et al. [19]. Then it will be of great interest
to study these data with our method and compare the results
of the two approaches. A MATLAB package of the method is
available in [60].
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APPENDIX A: PROOFS

1. Proof of Theorem 1

Proof of Theorem 1. Under the null hypothesis, Xt/σ = Bt

is a standard Brownian motion. Let us introduce the random
variable

T̃n = max
k=1,...,n

∥∥∥∥ 1√
n
Rk

∥∥∥∥
2

, (A1)

where Rk = ∑k
j=1(Bj� − B(j−1)�)/

√
�. Since σ̂n is a consis-

tent estimator of σ and using the Slutsky lemma, it remains
to prove that T̃n converges in distribution to S0. Using the fact
that the increments of the Brownian process are independent
and Gaussian, Rk is the sum of j independent identically
N (0,1)-distributed random variables. We define the process

W
(n)
t = 1√

n
R�nt�, t ∈ [0,1],

where �x� denotes the integer part of x ∈ R. Then we get

T̃n = sup
t∈[0,1]

∥∥W
(n)
t

∥∥
2. (A2)

Due to Donsker’s theorem [61], W
(n)
t converges in distri-

bution to the Wiener measure as n → ∞ over the space of a
continuous function on [0,1]. Since x → supt∈[0,1] ‖x(t)‖ is a
continuous function on the space of continuous functions from
[0,1] to R, T̃n converges in distribution to S0. �

2. Proof of Proposition 1: Convergence of the estimator (19)
of the diffusion coefficient

Note that σ̂n = σ̂1,n is strongly consistent under the null
hypothesis due to the strong law of large numbers and the
independence of the increments of the Brownian motion.

We focus now on the three alternatives. According to the
alternative, we denote by E the expectation associated with the
measure P of the solution of the related SDE [(8), (6), or (10)].

Proof of Brownian motion with drift. We may rewrite the
strong solution of the SDE (10) as

Xtk = Xtk−1 + v� + σ
√

�εk, k = 1, . . . ,n,

where
√

�εk = Btk − Btk−1 and Bt is a standard Brownian mo-
tion. Then the random variables Zk = ‖v� + σ

√
�εk‖2, k =

1 . . . n, are positive independent and identically distributed
random variables and admit a moment of order 1,

E(Zk) = �2‖v‖2 + 2�σ 2.

Then, according to the strong law of large numbers, σ̂n

converges almost surely to �‖v‖2/2 + σ 2. �
Proof of the Ornstein-Uhlenbeck process. Let Xt be an

Ornstein-Uhlenbeck process (6). The SDE (6) admits a unique
solution (see [1], Sec. 2.2.3)

Xt − Xs = (Xs − θ )(e−λ(t−s) − 1) + σ

∫ t

s

e−λ(t−u)dB1/2
u .

(A3)
Then Xt is a stationary Gaussian process where the transition
density p(s,x,t,y) is the density of

N (x + (x − θ )(e−λ(t−s) − 1),σ 2(1 − e−2λ(t−s))/2λI2).

Then we get that

E(‖Xt+� − Xt‖2 | Xt = x)

=
∫

‖x − y‖2p(t,x,t + �,y)dy

= ‖x − θ‖2(e−λ� − 1)2 + σ 2(1 − e−2λ�)/λ.

Moreover, the density μ of the stationary distribution of Xt is
the Gaussian variable N (θ,(σ 2Id )/2λ). Then we obtain that

E(‖Xt+� − Xt‖2) =
∫

E(‖Xt+� − Xt‖2 | Xt = x)μ(x)dx

= σ 2(e−λ� − 1)2/λ + σ 2(1 − e−2λ�)/λ

= 2σ 2(1 − e−λ�)/λ.

Now, according to Bibby and Sørensen (see [62], Lemma 3.1),
if Xt is a stationary diffusion, σ̂ 2

n converges in probability to
E(‖Xt+� − Xt‖2)/2�. We deduce the result. �

Proof of fractional Brownian motion. Let Xt be a fractional
Brownian motion (8). Due to the self-similarity property and
the stationary increments of the fractional Brownian motion,
the process

W
(n)
t = Xt0+n�t − Xt0

(n�)hσ
, t ∈ [0,1],

is a standard fractional Brownian motion. The statistic associ-
ated with the quadratic variation of the process W

(n)
t may be

defined as

Vn = 1

n

n∑
i=1

∥∥W
(n)
i/n − W

(n)
(i−1)/n

∥∥2

E
∥∥W

(n)
i/n − W

(n)
(i−1)/n

∥∥2 − 1

= σ̂ 2
n

σ 2�2h−1
− 1.

According to Coeurjolly (see [63], Proposition 1), Vn con-
verges almost surely to 0. Then we deduce that σ̂ 2

n /σ 2 tends to
�2h−1 almost surely. �
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3. Proof of Proposition 2: Asymptotic behavior of the test
statistic under parametric alternatives

Since the diffusion parameter σ is unknown, the test statistic
(12) is normalized by an estimator of σ . Proposition 1 states
that σ̂n/σ converges in probability to a constant. Therefore, it
is sufficient to study the asymptotic behavior of the test statistic
as if σ was known. Then, in this section, we consider the test
statistic Tn as

Tn = maxi=1,...,n

∥∥Xti − Xt0

∥∥
2

σ
√

tn − t0
. (A4)

Proof of Brownian motion with drift (H2). The process Xt

is a Brownian motion with drift (10) and may be rewritten as

Xtn − Xt0 = v(tn − t0) + σ (Btn − Bt0 ).

Using that Bt is a Brownian motion, the distribution of Btn −
Bt0 is N (02,(tn − t0)I2). Then we have

E

(∥∥∥∥Xtn − Xt0

σ (tn − t0)
− v

σ

∥∥∥∥
2
)

= 2

tn − t0
. (A5)

As tn − t0 = n� we deduce that Vn = (Xtn − Xt0 )/σ (tn − t0)
converges in probability to v/σ . As the Euclidean norm
is a continuous function, the variable ‖Vn‖ converges in
probability to ‖v‖/σ > 0. Then

√
n�Vn converges in prob-

ability to +∞. Since Tn is lower bounded by
√

n�Vn =
‖(Xtn − Xt0 )‖/(σ

√
tn − t0), the proof is complete. �

Proof of the Ornstein-Uhlenbeck process (H1). The process
Xt is an Ornstein-Uhlenbeck process (6). We assume that the
process is in its stationary regime, which means Xt0 is drawn
from the stationary distribution that is Xt0 ∼ N (θ,σ 2/2λI2).
The SDE (6) admits a unique solution (see [1], Sec. 2.2.3)

Xt − θ = (Xt0 − θ )e−λ(t−t0) + σ

∫ t

t0

e−λ(t−u)dB1/2
u . (A6)

Then we may bound the test statistic Tn by∥∥Xt0 − θ
∥∥

σ
√

n�
+

2∑
i=1

max
k=1,...,n

∣∣Xi
tk

− θi

∣∣
σ
√

n�
.

Since Xt0 is drawn from the stationary distribution, the term
‖Xt0 − θ‖/√n� converges in probability to zero. Now we
show that the second term in this equation tends to zero in
probability as well. We introduce the variables ξ 1

k and ξ 2
k

defined as

ξ i
k = (

Xi
tk

− θi

)√
2λ/σ, k = 1, . . . ,n, i = 1,2.

Then, for i = 1,2, the sequence (ξ i
k)k is a standardized station-

ary normal sequence with the covariance function

rk = E
(
ξ i
�ξ

i
�+k

) = e−k�, k � −�.

Let i be in {1,2}. Then {an[maxk=1,...,n(ξ i
k) − bn]}n converges

in distribution according to Leadbetter et al. [64], where
an = √

2 ln(n) and bn = an − (2an)−1[ln ln(n) + ln(4π )]. We
deduce that maxk=1,...,n(ξ i

k)/
√

n� converges in probability
to 0. Moreover, since (ξ i

k)k is a centered Gaussian process,
then maxk=1,...,n(−ξ i

k)/
√

n� converges in probability to 0 by
symmetry. Then we conclude that maxk=1,...,n |Xi

tk
− θi |/

√
n�

converges in probability to 0. �

Proof of the fractional Brownian motion (H1). The process
Xt is a fractional Brownian motion with h ∈ (0,1/2). From the
property of self-similarity and stationarity of increments of the
fractional Brownian motion, the process

Z
(n)
t = Xtn�+t0 − Xt0

σ (n�)h
, t ∈ [0,1], (A7)

is a fractional Brownian motion. We rewrite the test statistic as

Tn = 1

(n�)1/2−h
max

k=1,...,n

∥∥Z
(n)
k/n

∥∥.

Then Tn is bounded by

1

(n�)1/2−h

2∑
i=1

max
k=1,...,n

∣∣Zi,(n)
k/n

∣∣,
where Z

(n)
t = (Z1,(n)

t ,Z
2,(n)
t ). The process Z(n) has a version

with a continuous path as a result of being γ Hölder continuous
for any γ < h. Let i ∈ {1,2} be fixed. Then the random variable
maxk=1,...,n |Zi,(n)

k/n | is bounded by

M
(n)
i = sup

t∈[0,1]
|Zi,(n)

t |,

which possesses an absolutely continuous density on R∗
+

according to Zaïdi et al. [65]. That means the sequence
(maxk=1...n ‖Z(n)

k/n‖)n is tight. Since h < 1/2, we deduce that
Tn converges in probability to 0. �

Proof of the fractional Brownian motion (H2). The process
Xt is a fractional Brownian motion with h ∈ (1/2,1). From the
property of self-similarity we get that

Yn =
∥∥Xtn − Xt0

∥∥2
2

σ 2(t − t0)2h
∼ χ2(2). (A8)

We observe that T 2
n � Yn(n�)2h−1. Let x be a positive con-

stant. We have

P (Tn < x) � P (Yn(n�)2h−1 < x2)

� P (Yn < x2/(n�)2h−1). (A9)

Since h > 1/2, x2/(n�)2h−1 converges to 0 as n → ∞. Then
the right-hand side of (A9) converges to 0. That means P (Tn <

x) converges to 0 as n → ∞ and Tn converges to +∞ in
probability. �

4. Dependence of the power on the parameters
of the parametric alternatives

Lemma 2. Let Xt be a Brownian motion with drift (10).
Let σ̂n be the estimator of the diffusion coefficient defined
in Eq. (19). The distribution of Tn (12) depends only on the
parameter v

√
�/σ and the trajectory size n.

Proof of Lemma 2. We may rewrite the strong solution of
the SDE (10) as

Xtk = Xtk−1 + v� + σ
√

�εk, k = 1, . . . ,n,

where
√

�εk = Btk − Btk−1 and Bt is a standard Brownian
motion. Then εk is a sequence of independent Gaussian
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variables N (0,1). Furthermore, we have immediately

Xtk − Xt0 = vk� + σ
√

�

k∑
i=1

εi, k = 1, . . . ,n.

Finally, the test statistic Tn may be rewritten as

Tn =
maxk=1,...,n

∥∥∥∥k v
√

�
σ

+
k∑

i=1
εi

∥∥∥∥√
1
2

n∑
i=1

∥∥ v
√

�
σ

+ εi

∥∥2

.

As the distribution of εk is free of the parameters, the distribu-
tion of Tn depends only on v

√
�/σ . �

Lemma 3. Let Xt be a fractional Brownian motion (8). Let σ̂n

be the estimator of the diffusion coefficient defined in Eq. (19).
The distribution of Tn (12) depends only on the parameter h
and the trajectory size n.

Proof of Lemma 3. The fractional Brownian motion may be
described by its incremental process [66]

εk = (
Xtk − Xtk−1

)/
σ�h, k � 1, (A10)

where εk is a fractional Gaussian noise which is a sta-
tionary standardized Gaussian process with the autoco-
variance functionE(εkεk+i) = (1/2)(|i + 1|2h − 2|i|2h + |i −
1|2h). Finally, the test statistic Tn may be rewritten as

Tn =
maxk=1,...,n

∥∥∥∥ k∑
i=1

εi

∥∥∥∥√
1
2

n∑
i=1

‖εi‖2

.

Then the distribution of Tn depends only on the trajectory size
n and on h through the distribution of εk . �

APPENDIX B: CASE OF THE CONTINUOUS-TIME
RANDOM WALK

In this article we assumed that the particle motion was
driven by the stochastic differential equation (3). In this ap-
pendix we study the performance of our test when subdiffusion
is modeled by a continuous-time random walk (CTRW), a
process which is not related to the SDE (3). We want to show
that our test statistic (12) is relevant for dealing with other types
of motion of interest in biophysics but not necessarily defined
through a SDE. We note that another difference compared to
the stochastic processes studied previously is that the CTRWs
of interest here are not ergodic. Consequently, for this type
of process, the time-averaged MSD (2) does not converge to
the true MSD value, causing some problems when inferring the
motion [16]. As stated in Sec. II, a CTRW arises in the situation
where the particle binds to an immobile trap for a random time
until moving away and binding to another trap [35]. Then a
CTRW is defined through the distribution of the waiting times
w(t) and the distribution of the jumps between two binding
events f (x) (x ∈ R2). For simplicity, we assume here that the
waiting times and the jumps are independent. Subdiffusion
occurs when the second moment of f is finite and the first
moment of w is infinite, that is, w is likely to generate long

waiting times. In fact, in this case the MSD verifies

MSD(t) ∝ tβ, (B1)

with 0 < β < 1. In this appendix we suppose that w is a power
distribution with an infinite first moment

w(t) = β

τ

(
1 + t

τ

)−(1+β)

, (B2)

with the shape parameter 0 < β < 1 and scaling time τ . We
choose to define f as a two-dimensional Gaussian distribution
of mean 02 and variance σ 2I2. Note that σ 2 is expressed in
μm2 as the location noise variance σ 2

0 , while the diffusion
coefficient in the SDE (3) is expressed in μm2 s−1. With this
setup, we can show, following the methodology of Klafter and
Sokolov [67], that

MSD(t) = σ 2

�(1 + β)�(1 − β)

tβ

τ β
. (B3)

As a CTRW involves waiting times, the increments Xti − Xti−1

are equal to zero if no jump occurs in the interval [ti ,ti−1].
Consequently, the estimator of the diffusion coefficient (19)

FIG. 13. Monte Carlo estimate of the power of the test at level
α = 0.05 for a CTRW with different parameters settings: (a) �/τ = 1
and estimated power curves for different values of n and (b) n = 30
and estimated power curves for different values of�/τ . We use 10 001
Monte Carlo replications to compute each point of the power curves.
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based on the square of the increments is downward biased.
Then we use instead the estimator

σ̂1,n,wait = 1

2�J

n∑
j=1

∥∥Xtj − Xtj−1

∥∥2
21

(
Xtj �= Xtj−1

)
, (B4)

where J = ∑n
j=1 1(Xtj �= Xtj−1 ) is the number of observed

jumps along the trajectory. It is straightforward to show that
the estimator (B4) reduces to the standard estimator (19) if
the particle never stops. Then, using the estimator (B4) or
(19) is equivalent for motions driven by the SDE (3) for
which P (Xtj �= Xtj−1 ) = 1. Using the estimator (B4) allows
one to take into account the waiting times without interfering

if no waiting times occur. We assess the performance of our

single-test procedure for a CTRW with the aforementioned
distributions w and f . Note that, for this form of CTRW, we can
show that the power of the test only depends on the parameters
n, �/τ , and β, with n the trajectory size and � the step of
time as usual. Power curves are shown in Fig. 13. As expected,
the lower the exponent β, the better we detect the CTRW as a
subdiffusion [see Figs. 13(a) and 13(b)]. From Fig. 13(b) we
can see that, for the given size n = 30, the power of the test is
higher for low values of �/τ . When �/τ is low, the waiting
times are actually long, hence the particle gets stuck for a long
time at a given position and jump only a few times during the
period of observation. Therefore, the test detects the CTRW as
a subdiffusion with high probability [see the red dashed power
curve very close to one for �/τ = 0.1 in Fig. 13(b)].
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