S. Mallat, Group invariant scattering, Commun. Pure Appl. Math, vol.65, issue.10, pp.1331-1398, 2012.

R. H. Byrd, P. Lu, and J. Nocedal, A limited memory algorithm for bound constrained optimization, SIAM J Sci. Stat. Comp, vol.16, issue.5, pp.1190-1208, 1995.

C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, Algorithm 778: LBFGS-B: Fortran subroutines for large-scale bound-constrained optimization, ACM Trans. Math. Softw, vol.23, issue.4, pp.550-560, 1997.

B. B?aszczyszyn, M. Haenggi, P. Keeler, and S. Mukherjee, Stochastic geometry analysis of cellular networks, 2018.

I. Siomina and D. Yuan, Analysis of cell load coupling for LTE network planning and optimization, IEEE Trans. Wireless Comm, vol.11, issue.6, pp.2287-2297, 2012.

B. Blaszczyszyn, M. Jovanovic, and M. K. Karray, How user throughput depends on the traffic demand in large cellular networks, IEEE WiOpt/SpaSWin, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00849743

B. Blaszczyszyn, R. Ibrahim, and M. K. Karray, Spatial disparity of QoS metrics between base stations in wireless cellular networks, IEEE Trans. Comm, vol.64, pp.4381-4393, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01427698

B. B?aszczyszyn and M. K. Karray, Performance analysis of cellular networks with opportunistic scheduling using queueing theory and stochastic geometry, p.1824986, 2018.

D. A. Awan, R. L. Cavalcante, and S. Stanczak, A robust machine learning method for cell-load approximation in wireless networks, IEEE ICASSP, 2018.

M. Eickenberg, G. Exarchakis, M. Hirn, and S. Mallat, Solid harmonic wavelet scattering: Predicting quantum molecular energy from invariant descriptors of 3d electronic densities, NIPS, 2017.

M. Hirn, S. Mallat, and N. Poilvert, Wavelet scattering regression of quantum chemical energies, Multiscale Model. Simul, vol.15, issue.2, pp.827-863, 2017.

S. Mallat and L. Sifre, Rotation, scaling and deformation invariant scattering for texture discrimination, IEEE CVPR, vol.65, pp.1233-1240, 2013.

M. D. Penrose and J. E. Yukich, Weak laws of large numbers in geometric probability, Ann. Appl. Probab, vol.13, issue.1, pp.277-303, 2003.

Y. Baryshnikov and J. E. Yukich, Gaussian limits for random measures in geometric probability, Ann. Appl. Probab, vol.15, pp.213-253, 2005.

B. B?aszczyszyn, D. Yogeshwaran, and J. Yukich, Limit theory for geometric statistics of point processes having fast decay of correlations, 2016.

J. Bruna, S. Mallat, E. Bacry, and J. Muzy, Intermittent process analysis with scattering moments, Ann. Stat, vol.43, pp.323-351, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01297107

B. B?aszczyszyn and D. Yogeshwaran, On comparison of clustering properties of point processes, Adv. Appl. Probab, vol.46, issue.1, pp.1-21, 2014.

, Clustering comparison of point processes, with applications to random geometric models, Stochastic Geometry, Spatial Statistics and Random Fields, pp.31-71, 2015.

D. J. Daley and D. Vere-jones, An introduction to the theory of point processes: volume II, 2007.

J. Antoine, P. Carrette, R. Murenzi, and B. Piette, Image analysis with two-dimensional continuous wavelet transform, Signal processing, vol.31, issue.3, pp.241-272, 1993.

G. Last and M. Penrose, Lectures on the Poisson process, vol.7, 2017.

B. B?aszczyszyn, Factorial moment expansion for stochastic systems, Stoch. Proc. Appl, vol.56, issue.2, pp.321-335, 1995.

B. B?aszczyszyn, E. Merzbach, and V. Schmidt, A note on expansion for functionals of spatial marked point processes, Stat. & Probab. Letters, vol.36, issue.3, pp.299-306, 1997.

C. Robert, Machine learning, a probabilistic perspective, 2014.

A. Baddeley and R. Turner, Spatstat: an R package for analyzing spatial point patterns, Journal of statistical software, vol.12, issue.6, pp.1-42, 2005.

J. Andén, L. Sifre, S. Mallat, M. Kapoko, V. Lostanlen et al., Scatnet, 2014.

J. Bruna, P. Sprechmann, and Y. Lecun, Super-resolution with deep convolutional sufficient statistics, 2015.

S. Mallat, S. Zhang, and G. Rochette, Phase harmonics and correlation invariants in convolutional neural networks, 2018.