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Abstract

To face the explosion of the Internet tra�c, a new generation of optical networks is being
developed; the Elastic Optical Networks (EONs). EONs use the optical spectrum e�ciently and
flexibly, but that gives rise to more di�culty in the resource allocation problems. In this article,
we study the problem of Spectrum Assignment (SA) in Elastic Optical Tree-Networks. Given a
set of tra�c requests with their routing paths (unique in the case of trees) and their spectrum
demand, a spectrum assignment consists in allocating to each request an interval of consecutive
slots (spectrum units) such that a slot on a given link can be used by at most one request. The
objective of the SA problem is to find an assignment minimizing the total number of spectrum
slots to be used. We prove that SA is NP-hard in undirected stars of 3 links and in directed stars of
4 links, and show that it can be approximated within a factor of 4 in general stars. Afterwards, we
use the equivalence of SA with a graph coloring problem (interval coloring) to find constant-factor
approximation algorithms for SA on binary trees with special demand profiles.

Keywords: Elastic optical networks, spectrum assignment, interval coloring, chordal graphs.

1. Introduction

Elastic Optical Networks (EONs) [12] have been proposed as a potential candidate to replace
the traditional Wavelength Division Multiplexing (WDM) networks. In EONs, new technologies
such as optical OFDM, adaptive modulation techniques, bandwidth variable transponders, and
flexible spectrum selective switches are used to ensure an e�cient utilization of the optical resources
and to enable a flexible grid as opposed to the WDM fixed-grid. In fact, the optical spectrum in
EONs is subdivided into small channels, called slots, which are finer than the 50GHz wavelengths
used under WDM. With these slots, small bitrates are not over-provisioned and big bitrates can
be satisfied as single entities, under the constraint of contiguity. This constraint dictates that the
slots used by a request should be consecutive. This results in an e�cient use of the spectrum but
it also makes the problems of resource allocation in EONs more di�cult than their counterparts
in WDM.

The key resource allocation problem in EONs is referred to as Routing and Spectrum Assign-
ment (RSA). In RSA, the input is a set of tra�c requests and the objective is to allocate to each
request, a path in the optical network and an interval of spectrum slots along that path, minimiz-
ing the utilized spectrum. The spectrum allocated to a request has to be contiguous (contiguity
constraint), it has to be the same over all links of the routing path (continuity constraint) and
requests with paths sharing a link should be assigned disjoint spectrum intervals (non-overlapping
constraint). For a recent survey of the literature on RSA, we refer the reader to [28]. If the rout-
ing is fixed, i.e. a path is predefined for each request, RSA reduces to the problem of Spectrum
Assignment (SA).
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Related work. The SA problem is a generalization of the well studied problem of Wavelength
Assignment (WA) (WA is the special case of SA in which all requests have equal demands). Since
WA has been proved NP-complete in [5], SA is also NP-complete. In fact, SA remains NP-hard
even in networks where WA is tractable, particularly in path networks. Indeed, SA has been
proved to be equivalent to other problems studied in the literature which we describe in details in
Section 2. Using the results obtained for the equivalent problems, SA is NP-complete in paths even
if the requests’ demands do not exceed 2 slots [3]. Furthermore, SA is NP-complete in paths with
4 links and unidirectional rings with 3 links [29]. On the positive side, SA can be approximated
within a factor of 2+ ✏ in paths, a factor of 4+ ✏ in rings, and a factor of O(log(k)) in binary trees
where k is the number of requests [27].

Contribution. In this article, we study the SA problem in trees. We focus on special cases
where the tree is a star or a binary tree. By studying these special cases, we hope to gain more
insight into the general problem in trees and design a constant-factor approximation algorithm
or prove that such algorithm does not exist. We prove that SA is NP-hard in undirected stars
of 3 links and in directed stars of 4 links, and show that in general stars it can be approximated
within a factor of 4. Afterwards, we use the equivalence of SA with a graph coloring problem
(interval coloring) to find constant-factor approximation algorithms for SA on binary trees with
special demand profiles. Namely, we examine the cases where the demands are in a set {k, kX}

(k,X 2 N⇤), in a set {kX, k(X + 1)} (k,X 2 N⇤), or bounded by D. For the latter case, we
give a general approximation when the demands are bounded by D 2 N and then give better
approximations for the cases where the demands are bounded by D 2 {3, 4, 5, 6}.

This article is organized as follows. In Section 2, we formally define the SA problem and survey
its relation to other problems and its complexity in path networks in particular. Afterwards, we
present our results in stars and binary trees in Sections 3 and 4, respectively.

2. Problem statement and related problems

In this section, we first define the problem of Spectrum Assignment (SA) and then present
some related problems and highlight their relation to SA. In the last subsection, we list the results
implied by these relations for the complexity of SA in paths.

2.1. Spectrum Assignment

An instance (N ,R) of the problem consists of a graph N = (N,L) and a set of requests R. The
graph N models an optical network with N as the set of nodes and L as the set of links. A request
r 2 R consists of a path P (r) in N and a spectrum demand d(r) 2 N (number of spectrum slots).
We say that two requests r, r

0
2 R are conflicting if their paths P (r) and P (r0) share a link. A

spectrum assignment of (N ,R) is a mapping f from R to N⇤ such that for every pair of conflicting
requests r, r0 2 R, we have {f(r), . . . , f(r) + d(r)� 1}\ {f(r0), . . . , f(r0) + d(r0)� 1} = ;. We say
that all the slots in {f(r), . . . , f(r) + d(r)� 1} are occupied by r. In this article, we consider slots
as integers (which will be useful for the relation with colors in interval colorings); however other
authors consider slots as intervals of unit length. In fact the set of slots {f(r), . . . , f(r)+d(r)�1}
corresponds to the spectrum interval ]f(r)�1, f(r)+d(r)�1]. The span of a spectrum assignment
f , denoted s(f), is the smallest integer s such that for each request r 2 R, f(r) + d(r) � 1  s.
The span of an instance (N ,R), denoted by s(N ,R) is the minimum of the spans over all possible
spectrum assignments. We formulate the Spectrum Assignment problem as follows:

Problem 1 (Spectrum Assignment (SA)). Given an instance (N ,R), compute s(N ,R).

For an instance (N ,R) of SA, the load of a link `, denoted by ⇡(`), is the sum of the demands
of the requests using ` and the load of an instance, denoted by ⇧(N ,R), is the maximum load
over all its links. It is straightforward that ⇧(N ,R)  s(N ,R). In the approximations we obtain
for SA in this article, the span is usually upper bounded by a function of the maximum load.

The greedy algorithm for SA is an algorithm which assigns spectrum to requests ordered in a
given order r1, . . . , rn such that a request ri is assigned the smallest positive integer g(ri) such
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Figure 1: Example of an instance of SA and its associated conflict graph

that {g(ri), . . . , g(ri) + d(i) � 1} \ {g(rj), . . . , g(rj) + dj � 1} = ; for each rj in {r1, . . . , ri�1}

conflicting with ri. It is important to note here that every optimal result can be obtained by this
algorithm (once it is provided with the correct order of the vertices). We will use this algorithm
many times in the rest of this article.

Figures 1a, 1b illustrate an instance of SA on a binary tree with 5 requests. Note that the
order of the requests with which the greedy algorithm is applied has a direct impact on the
number of spectrum slots used. In the example of Figure 1a, applying the greedy algorithm in the
order r1, r2, r3, r4, and then r5 results in the use of 7 spectrum slots respectively {1}, {2, 3}, {4},
{5, 6, 7}, and {5, 6} , while applying the algorithm in the order r3, r1, r5, r2, and then r4 results in
the use of only 5 spectrum slots: slots {1}, {2}, {2, 3}, {4, 5}, and {3, 4, 5} for r3, r1, r5, r2, and
r4, respectively. The span of this instance is exactly 5, as the load is equal to 5 on the two links
used by r3.

2.2. Related problems

2.2.1. Interval Coloring

As pointed out in [27], the problem of SA is also equivalent to a graph coloring problem called
Interval Coloring (IC). An interval coloring or a contiguous coloring [14] of a vertex-weighted
graph (G = (V,E), w) is a mapping f : V ! N⇤ such that for every v, v

0
2 V , if (v, v0) 2 E then

{f(v), . . . , f(v) + w(v) � 1} \ {f(v0), . . . , f(v0) + w(v0) � 1} = ;. The number of colors used by
an interval coloring f , denoted by �f (G,w) is the smallest integer s such that for each vertex
v 2 V , f(v) + w(v)� 1  s. The interval chromatic number of a weighted graph (G,w), denoted
by �(G,w), is the smallest number of colors needed to color the vertices with intervals, i.e. it is
the minimum of �f (G,w) among all possible interval colorings f of (G,w). The interval coloring
problem is defined as follows.

Problem 2 (Interval Coloring (IC)). Given a vertex-weighted graph (G,w), compute �(G,w).

To see the equivalence between SA and IC we do the following. For an instance (N ,R) of
SA, we create a weighted graph (G = (V,E), w) modeling the dependency between the di↵erent
requests called the conflict graph. We associate to every request r 2 R a vertex vr in V . We add
an edge between two vertices vr and vr0 if the corresponding requests r and r

0 are conflicting.
The weight w(vr) of each vertex vr is equal to the demand of the corresponding request r (i.e.
w(vr) = d(r)). Figure 1c shows the conflict graph associated to the SA instance of Figure 1a.

If (N ,R) is an instance of SA and (G,w) is its conflict graph, then finding a spectrum assign-
ment of (N ,R) is equivalent to finding an interval coloring of (G,w) and s(N ,R) = �(G,w).

Complexity of IC. The problem of IC has been introduced in [14] where its relation to other
problems such as DSA has been highlighted. It has also been proved in [14] that IC is equivalent
to the problem of finding, for a vertex-weighted graph, an acyclic orientation which minimizes the
weight of the longest path, where the length of a path is the sum of the weights of its vertices.
The complexity of DSA implies that IC is strongly NP-complete in interval graphs. IC is also
strongly NP-complete in proper interval graphs [26]. On the positive side, IC is polynomial in
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comparability graphs [14] and can be approximated within a factor of 2 + ✏ in interval graphs
[4], a factor of 2 for proper interval graphs [26] and claw-free chordal graphs [7], and a factor of
O(log(n)) in chordal graphs where n is the number of vertices [25].

Since the conflict graph associated to an instance of SA in a path is an interval graph (and vice
versa), all the results established for IC in interval graphs apply to SA in paths. In section 4, we
will use the fact that the conflict graph associated with a binary tree is a chordal graph to obtain
results for SA in binary trees using interval coloring of chordal graphs.

2.2.2. Scheduling Tasks on Multiprocessor Systems

It has been proved in [29] that SA in a network of k links can be reduced to the problem of
Scheduling Tasks on Multiprocessor Systems (STMS) with k processors. In the STMS problem, we
are given a set of n tasks and a set of identical processors, a processing time d(j) and a prespecified
set Pj of processors for each task j, j 2 {1, . . . , n}. The objective is to schedule the tasks so as to
minimize the makespan Cmax = max

j
Cj , where Cj denotes the completion time of task j, under

the following constraints: (1) preemptions (interruptions of a task) are not allowed, (2) each task
must be processed simultaneously by all processors in Pj , and (3) each processor can work on at
most one task at a time.

Given an instance (N ,R) of SA, an instance of STMS is constructed as follows. For each link
` of N , we associate a processor w`, and for each request r in R with path P (r) and demand d(r),
we associate a task tr with processing time d(r) and a set of processors {w` | ` 2 P (r)}. The
makespan is then the span of the instance of SA.

Complexity of STMS. Note that the relation above is only in one direction as there exist instances
of STMS for which there is no corresponding instance of the SA problem. However for 3 processors
we can associate to an instance of STMS an instance of SA in an unidirectional ring with 3 links
(each processor being associated to one of the links). It has been shown in [18] that the problem
of STMS is strongly NP-complete even if the number of used processors is at most 3. Using
this result, it is proved in [29] that the SA problem is strongly NP-complete in an unidirectional
ring with 3 links. On the positive side, it has been proved in [13] and [19] that STMS can be
approximated within 7

6 and 1.5 when the number of processors is 3 and 4, respectively. Theorem 1
follows from these approximations.

Theorem 1. There are approximation algorithms with ratios
7
6 and 1.5 for the Spectrum Assign-

ment problem in networks with 3 and 4 links, respectively.

2.2.3. Dynamic Storage Allocation

When the network is a path, the SA problem is equivalent to the problem of Dynamic Storage
Allocation (DSA). In the DSA problem, we are given a set A of items to be stored, each a 2 A

having size d(a), an arrival time ↵(a), and a departure time �(a) (with �(a) > ↵(a)). A storage
allocation for A is a function f : A ! N⇤ which associates to each item a 2 A a storage interval
I(a) = {f(a), . . . , f(a)+d(a)�1} such that for all a, a0 2 A with a 6= a

0, if ]↵(a),�(a)]\]↵(a0),�(a0)]
is not empty, then I(a) \ I(a0) is empty. The storage size used by a storage allocation f denoted
by s(f) is the smallest integer s such that for each item a 2 A, f(a)+ d(a)� 1  s. The objective
in DSA is to find a storage allocation which minimizes the used storage size.

If we consider the time interval as a path network and each of the items to be stored as a
request, we can see the equivalence between the problem of SA in paths and the DSA problem. In
more details, given an instance of SA on a path (v1, . . . , vk), we associate to each request r with
demand d(r), an item ar of size d(r). We also associate to each vertex vi of the path network time
i. Let vi and vj be the endvertices of the path P (r) of the request r (i < j), then we choose for
the associated item ar the arrival time ↵(ar) = i and the departure time �(ar) = j. The fact that
two requests r and r

0 are conflicting corresponds to the fact that the time intervals ]↵(ar),�(ar)]
and ]↵(ar0),�(ar0)] intersect. Then a spectrum assignment with span � corresponds to a storage
allocation using a storage size �. Conversely using the opposite transformation we can associate
to an instance of DSA an instance of SA on a path.
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Complexity of DSA. The problem of DSA has been extensively studied. It has been proved that
DSA is strongly NP-complete, even when restricted to instances where the storage size of all items
is in {1, 2}. The proof of NP-completeness is by reduction from the 3-PARTITION problem and
can be found in the appendix of [3]. On the positive side, many approximation algorithms have
been proposed to solve DSA. The first proposed algorithms are based on a greedy algorithm called
First Fit (FF) and its performance for online coloring of interval graphs. The relation between
online coloring of interval graphs and dynamic storage allocation can be found in [6]. Using FF a
constant approximation was proved in [20] and a ratio of 6 was given in [21]. Gergov has adopted
another approach not using FF, yielding an approximation of 5 and 3 sequentially in [10] and
[11]. In his approach, Gergov defines and uses a 2-allocation which is a storage allocation where
two items but not three are allowed to overlap. A better approximation has been achieved in [4]
where the authors use the idea of boxing items to design a 2+ ✏-approximation algorithm. Better
approximations were achieved for DSA with restricted item sizes. In [22], the authors present
a 4

3 -approximation algorithm when the maximum size is 2, and a 1.7-approximation algorithm
when the maximum size is 3. In [24], it is proved that for instances with sizes of 1 and X, an
approximation of ratio 2� 1

X can be guaranteed. All these results established for DSA apply, by
equivalence, to SA in paths.

2.3. Spectrum Assignment in paths

The results deduced from the equivalence to the problems defined above can be summarized
as follows for path networks.

• With respect to the number of links, SA is NP-complete in path networks with 4 links and
polynomial in paths with at most 3 links [29], and it can be approximated within a factor
of 1.5 in paths with 4 or 5 links [29].

• With respect to the demands, SA is strongly NP-complete even if the requests have demands
in the set {1, 2} [3]. It can be approximated within a factor of 4

3 and a factor of 1, 7 when
the maximum demand is 2 and 3, respectively [22]. It also can be approximated within a
factor of 2� 1

X when the demands are in the set {1, X} [24].

• In general, SA in paths can be approximated in paths within a factor of 2 + ✏ [4] and it can
be approximated within a factor of 2 when the paths of the requests are such that no path
is strictly included in another [26].

3. Spectrum Assignment in stars: hardness and approximability results

A star is a tree-network with at most one node of degree at least 2. The problem of wavelength
assignment (WA) is NP-complete in undirected stars, but polynomial in directed stars [1].

We prove in this section that SA is not only NP-complete in undirected stars but also in
directed stars with 4 links. On the positive side, we prove the existence of a 4-approximation
algorithm for the general case.

Theorem 2. The problem of Spectrum Assignment is strongly NP-complete in undirected stars

with 3 links.

Proof. It was shown in [29] that the SA problem is strongly NP-complete in a 3-link unidirectional
ring (see subsection 2.2.2). Let us consider an instance of SA in a 3-link ring C = (l1, l2, l3) with
a request set R. Let us build a star S with three links l

0
1, l

0
2 and l

0
3, and a set of requests R

0

defined as follows. For each request r 2 R using at most 2 links, we create a request r0 in R
0 such

that if the path of r in C is P (r) = li, i 2 {1, 2, 3}, then the path of r0 in S is P (r0) = l
0
i, and if

P (r) = lilj , then P (r0) = l
0
il
0
j . Solving SA in (C,R) is equivalent to solving SA in (S,R0).

Theorem 3. The problem of Spectrum Assignment is weakly NP-complete in directed stars with

3 ingoing links and one outgoing link or 3 outgoing links and one ingoing link.
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Figure 2: Reduction from 2-PARTITION to SA in a directed star

Proof. The proof is by reduction from the 2-PARTITION problem. In the 2-PARTITION problem,
we are given a set A of k integers a1, a2, . . . , ak such that B =

Pk
j=1 aj and the objective is to decide

whether A can be partitioned into two disjoint sets A1 and A2 such that
P

aj2A1
aj =

P
aj2A2

aj .

Given an instance of the 2-PARTITION problem with a set of k integers A = {a1, a2, . . . , ak}

such that B =
Pk

j=1 aj , we create an instance of the Spectrum Assignment problem in a 4-link
directed star network S (Figure 2a) and a set of requestsR. The star S has 3 ingoing links l1,l2, and
l3 and one outgoing link l4. The set of requests R consists of the requests presented in Figure 2b:
requests ra, rb, rc, r1, and r2 and for every integer ai in the set A, a request ri3 with demand ai and
using link l3. We prove that finding a spectrum assignment for (S,R) with span 3

2B is equivalent
to finding a partition of A into two sets A1 and A2 such that

P
aj2A1

aj =
P

aj2A2
aj = B

2 . In

fact, if there is a partition of A into A1 and A2 such that
P

aj2A1
aj =

P
aj2A2

aj = B
2 , then we

can assign spectrum as shown in Figure 2c. Now let us suppose there is a spectrum assignment for
(S,R) with span 3

2B. There are two possible symmetric assignments to the requests on links l1

and l2. We suppose we assign to r1, ra, r2 and rb spectrum intervals {1, . . . , B}, {B+1, . . . , 3
2B},

{
B
2 + 1, . . . , 3

2B}, and {1, . . . , B
2 },, respectively (the analysis is similar for the other assignment).

This assignment forces request rc to use the interval {B
2 ,+1 . . . , B}, and the other requests on

link l3 will have to be partitioned into two sets of the same size B
2 .

Theorem 4. The problem of Spectrum Assignment in directed stars with at most 3 links or exactly

2 ingoing links and 2 outgoing links can be solved in polynomial time.

Proof. In all of these cases, the span is equal to the maximum load and the greedy algorithm with
specific orders can achieve the optimal span.

• When the star has only ingoing or outgoing links, the problem is trivial since any conflicting
requests use the same link and the greedy algorithm with any order can achieve the optimal
span.

• For the case where the star is a directed path of length 2, an optimal spectrum assignment
consists in using the greedy algorithm with an order where the requests using two links come
first. This way, the spectrum span will be defined by the link with the maximum load.

• For the case where the star has two ingoing links l1 and l2 and one outgoing link l3 (or the
opposite), an optimal spectrum assignment consists in using the greedy algorithm with an
order where the requests using l1 and l3 come first and the requests using l2 and l3 come
last. Indeed let Ai3 be the sum of the demands of the requests using li and l3 for i 2 {1, 2}
and let Ai be the sum of the demands of the requests using only link li for i 2 {1, 2, 3}.
Then the span of the spectrum used on link l1 is A13 +A1 = ⇡(l1), and that on links l2 and
l3 is equal to max(A13+A3, A2)+A23 = max(⇡(l2),⇡(l3)), and so the span of this spectrum
assignment is equal to the maximum load of the instance.

• When the star has 2 ingoing links l1 and l2 and 2 outgoing links l3 and l4, let Aij be the sum of
the demands of the requests using li and lj for i 2 {1, 2} and j 2 {3, 4} and let Ai be the sum
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of the demands of the requests using only link li for i 2 {1, 2, 3, 4}. First, the requests using
l1 and l3 and the requests using l2 and l4 are assigned with the greedy algorithm; the span
of the spectrum used on links l1 and l3 is equal to A13, and the span of the spectrum used
on links l2 and l4 is equal to A24. Afterwards, the requests using only one link are assigned;
the span of the spectrum used on links l1, l2, l3, and l4 is A13+A1, A24+A2, A13+A3, and
A24 +A4, respectively. Finally, the requests using l1 and l4 and the requests using l2 and l3

are assigned with the greedy algorithm; the span of the spectrum used on links l1 and l4 is
equal to max(A13 +A1, A24 +A4) +A14 = max(⇡(l1),⇡(l4)), and the span of the spectrum
used on links l2 and l3 is equal to max(A13 + A3, A24 + A2) + A23 = max(⇡(l2),⇡(l3)).
This means that the span of this spectrum assignment is equal to the maximum load of the
instance.

Now we give a 4 approximation algorithm for any star. The theorem follows from a more
general result valid for any network, when the lengths of the paths associated to the requests have
a bonded size.

Theorem 5. Let (N ,R) be an instance of SA. If the length of the paths associated to the requests in

R is at most ↵, then the greedy algorithm gives a 2↵-approximation for the Spectrum Assignment

problem. In particular there is a 4-approximation polynomial-time algorithm for the Spectrum

Assignment problem in stars.

Proof. Let (N ,R) be an instance of SA. Let the requests of R be ordered in the non-increasing
order of demands r1, r2, . . . , rq (i.e., d(r1) � d(r2) � · · · � d(rq)). Let ⇧ be the maximum load.
We will use at most 2↵⇧ slots to allocate spectrum to the requests of R. Suppose that we have
already assigned spectrum to the first requests rj , j < i with the span 2↵⇧ and consider the
request ri with demand d(ri) = d. For each link l of the path P (ri), let Ri(l) be the set of requests
already assigned conflicting with ri on the link l. As the load of the link l is at most ⇧, the
sum of the demands of the requests of Ri(l) is at most ⇧ � d. Since each of these requests has
demand at least d, we have at most ⇧�d

d requests in Ri(l). This implies that the path P (ri) has

at most ↵(⇧�d)
d requests conflicting with ri which have been already assigned spectrum. Consider

the slots not occupied by these requests (available slots). If there exists an interval of d or more
available slots below these requests or between two requests, we can assign to request ri the first
such interval.

Otherwise, between slot 1 and the first slot occupied by the conflicting requests and between
the last slot occupied by a request and the first slot of the next request there are at most d � 1
available slots. As there are at most ↵(⇧�d)

d requests conflicting with ri, we have at most ↵(⇧�d)
d

such intervals. As the requests in Ri(l) occupy at most (⇧�d) slots, we have at most ↵(⇧�d) slots

occupied by the conflicting requests and at most ↵(⇧�d)
d (d � 1) slots available where we cannot

provision ri. Altogether, we have a number of non usable slots equal to ↵(⇧�d)+ ↵(⇧�d)
d (d�1) =

2↵⇧� 2↵d� ↵(⇧�d)
d . So, there is an interval of 2↵d+ ↵(⇧�d)

d available contiguous slots above all
the requests conflicting with ri. Then, we can allocate to ri d contiguous slots in this interval. In
particular, in the case of stars where ↵ = 2, we obtain a 4-approximation.

This approximation algorithm for stars together with the 2 + ✏-approximation algorithm for
paths presented in [4], imply a constant factor approximation for tree networks which are spiders.
A spider is a tree with one vertex of degree at least 3 and all others with degree at most 2.

Theorem 6. There is a (6 + ✏)-approximation for the Spectrum Assignment problem in spiders.

Proof. Let (S,R) be an instance of SA in a spider. Let v be the vertex of S of degree at least
3 and let S

0 be the star induced by v and all the vertices of S which are at distance 1 from v.
We first consider the set of requests R1 using an edge of S0. For a request r of R1 we associate
the restricted request r

0 in S
0 with path the subpath of r restricted to S

0 and same demand as

7



r. We use the 4-approximation presented in Theorem 5, to allocate spectrum to these restricted
requests using the star S

0. That induces a spectrum assignment to the requests of R1, as two
such requests intersect if and only if their restricted requests intersect. Now we consider the other
set of requests R2 which are included in some path P of the paths of S \ S

0. We use the 2 + ✏-
approximation algorithm to allocate spectrum to the requests of R2 using P . We can use the same
spectrum range for two di↵erent paths as they have no link in common. So altogether we get a
(6 + ✏)-approximation algorithm.

4. Spectrum Assignment in binary trees with restricted weight requests

The SA problem in binary trees (trees in which each node has degree at most three) has been
studied in [27]. It has been proved that SA can be approximated within a ratio of O(log(k))
where k is the number of requests. The proof is based on the equivalence between SA and the
problem of Interval Coloring (IC). In fact, the conflict graph of an instance of SA in a binary
tree corresponds to an edge intersection graph of paths in a binary tree. These graphs have been
proved to be chordal graphs in [15, 17]. Note that the edge intersection graph of paths in a general
tree are not chordal, contrarily to a strange remark in [16] p.151, where it is claimed that edge
intersection and vertex intersection give rise to identical classes of graphs in the case of subtrees
of trees (although they give just after an example of an edge intersection graph of paths in a tree
which is not chordal). In fact it has been shown in [9] that a graph is chordal if and only if it is the
vertex intersection graph of subtrees of a tree. In contrary any graph can be represented as the
edge intersection graph of subtrees in a star. It is easy to build examples of non chordal graphs
which are edge intersection graph of paths in a tree. For example consider a star with central
vertex 0 and end vertices 1 to n. Consider the paths of length 2: i, 0, i+1 for i = 1, . . . , n (indices
modulo n). The edge intersection graph of these paths is the cycle of length n. More details on
the edge intersection graphs of paths in a tree can be found in [17, 23].

Therefore in this section we give some constant-factor approximation algorithms for the prob-
lem of interval coloring in chordal graphs with special demand profiles. Using the fact that the
conflict graph of an instance of SA in a binary tree is chordal, we deduce constant-factor ap-
proximation algorithms for the problem of spectrum assignment in binary trees with the same
special demand profiles. Namely, we examine the cases where the demands are in a set {k, kX}

(k,X 2 N⇤), in a set {kX, k(X + 1)} (k,X 2 N⇤), or bounded by D. For the latter case, we
give a general approximation when the demands are bounded by D 2 N and then give better
approximations for the cases where the demands are bounded by D 2 {3, 4, 5, 6}. It is important
to recall here that even if the network is a path and the demands are bounded by 2, SA is strongly
NP-complete. We first start by giving some definitions and then we state our results.

4.1. Definitions

A chord of a cycle C in a graph is an edge of the graph connecting two vertices that are not
adjacent in C. A graph G is chordal if every cycle of G with at least 4 vertices has a chord. One
important property of chordal graphs is their perfect elimination order. The perfect elimination

order (PEO) of a graph is an ordering x1, x2, . . . , xn of the vertices of the graph such that for
i = 1, . . . , n � 1, the neighbors of xi in G[{xi+1, . . . , xn}]1 form a clique. It is well known that a
graph is chordal if and only if it has a perfect elimination order. Paper [30] describes a linear time
algorithm called maximum cardinality search that can be used to determine if a given graph has a
perfect elimination order and construct such an ordering if it exists. Throughout the remainder of
this article, we use the reverse perfect elimination order (RPEO) in the design of some algorithms.
Note that if v1, v2, . . . , vn is a RPEO of the vertices of a chordal graph, then for i = 2, . . . , n,
the neighbors of vi in G[{v1, . . . , vi�1}] form a clique. Another tool we will be using is the greedy

algorithm for IC. Defined similarly to the greedy algorithm for SA, the greedy algorithm for IC,

1
For S ✓ V , we define G[S] as the subgraph of G induced by the vertices of S, i.e. the subgraph of G containing

the vertices of S and all the edges of G which have both endpoints in S.
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(also called in the literature the First Fit algorithm (FF)) is an algorithm which assigns colors to
vertices in a given order v1, . . . , vn such that a vertex vi is assigned the smallest positive integer
g(vi) such that {g(vi), g(vi)+w(vi)�1}\{g(vj), g(vj)+w(vj)�1} = ; for each vj in {v1, . . . , vi�1}

which is adjacent to vi. In a weighted graph (G = (V,E), w), we define the weight of a subset
S ✓ V to be the quantity w(S) =

P
v2S w(v). The maximum weighted clique is a clique with

the biggest weight. The density of (G = (V,E), w) is the weight of the maximum weighted clique
and is denoted by �(G,w). It is straightforward that �(G,w)  �(G,w), where �(G,w) is the
interval chromatic number of (G,w).

In the remainder of this section, we present our results for SA in binary trees with bounded
demands as corollaries after proving theorems for IC in weighted chordal graphs with bounded
weights using the fact that every conflict graph of an instance of SA in a binary tree is a chordal
graph [15].

4.2. Demands k and kX

In this section, we present an approximation algorithm for the SA problem when the demand
of each request is either k or kX, with k,X 2 N⇤. We start by proving the following theorem for
interval coloring in chordal graphs.

Theorem 7. Let (G,w) be a weighted chordal graph with weights in the set {k, kX}. There exists

a polynomial time algorithm that finds an interval coloring of (G,w) with 2�(G,w) � kb
�(G,w)

kX c

colors.

Proof. It has been proved in [24] that there is an algorithm to find a (2 � 1
X )-approximation for

the problem of interval coloring in interval graphs whenever there are only two weights 1 and X.
We generalize this algorithm for chordal graphs as follows.

Without loss of generality, we only do the proof for k = 1. Indeed to color a graph (G,w)
with weights in {k, kX}, we can transform it to a graph (G,w

0) with weights in {1, X}, color
(G,w

0) and then transform the colors we found into intervals of colors of size k. So, let (G,w) be
a weighted chordal graph with weights in {1, X} and let � = �(G,w) be its density. We will use
2�� b

�
X c colors to color (G,w) as follows. We partition the colors into two sets. The first set S1

contains colors from 1 to � and the second set S2 contains colors from �+ 1 to 2�� b
�
X c.

We order the vertices of G in the reverse perfect elimination order. Let v1, . . . , vn be the
obtained ordering. Recall that the neighbors of vi in {v1, . . . , vi�1} form a clique in the graph
induced by {v1, . . . , vi�1}. We use the greedy algorithm to assign colors to the vertices in this
order with the additional property that colors assigned to a vertex are either included in S1 or
S2 (we cannot use colors from both sets). We prove that with this algorithm, all vertices will be
assigned colors in S1 or S2.

• All vertices of weight 1 will have a color in S1. In fact, if a vertex vi of weight 1 cannot
be assigned a color in S1, then its neighbors in {v1, . . . , vi�1} occupy all colors of S1. This
implies that vi and its neighbors in {v1, . . . , vi�1}form a clique of size �+1 a contradiction.

• For vertices of weight X, suppose that there is a vertex vj of weight X to which we cannot
assign colors neither in S1 nor in S2. The minimum number of colors used in S1 that can
make it not possible to color vj with colors from S1 is b�

X c (X�1 free colors then 1 occupied
color, then X�1 free colors and 1 occupied color . . . ). Therefore the weight of the neighbors
of vj in {v1, . . . , vj�1} which use colors in S1 is at least b�

X c. Since we cannot assign colors
from S2 to vj and knowing that only vertices of the same weight X use colors from S2

with the greedy algorithm, we deduce that the sum of the weights of the neighbors of vj in
{v1, . . . , vj�1} which use colors in S2 is at least |S2|� (X � 1). So vj and its neighbors form
a clique of size at least X + b

�
X c+ |S2|� (X � 1) � �+ 1 as |S2| = �� b

�
X c. This implies

that the density of G is at least �+ 1, a contradiction.

Thanks to Theorem 7, we can deduce the following corollary.
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Corollary 1. Let I be an instance of SA in a binary tree such that the demands of requests are

in the set {k, kX} and the span of I is OPT . There is a polynomial-time algorithm that finds a

spectrum assignment for I with span less than (2� 1
X )OPT + k.

In the rest of this subsection, we find a lower bound on the interval chromatic number of
chordal graph with weights in {k, kX}.

Theorem 8. There exists a family of weighted chordal graphs (Gm)m2N⇤ , with weights in the set

{k, kX}, for which the ratio between the interval chromatic number and the density tends to 2� 1
X

when m tends to infinity.

Proof. For m > 0, we build the weighted graph Gm of density k(mX
2 + 1) as follows.

• mX
2 + 1 vertices of weight k each forming a ”big” clique.

• For each subset S of mX + 1 vertices of the big clique, we add m(X � 1) new vertices of
weight kX each. These vertices form a clique with the vertices of S.

In any interval coloring of Gm, there exists an integer � in {0, . . . , kX� 1} such that the ”big”
clique uses mX + 1 colors congruent to � modulo kX. Suppose that this is not true and that the
big clique uses for each integer i in {0, . . . , kX � 1} at most mX colors which are congruent to i

modulo kX. This means that the number of colors used is at most kmX
2. This is not possible

since this maximum clique has weight k(mX
2+1). Let S be a subset of mX+1 vertices of the big

clique using colors that are congruent to � modulo kX. Vertices of S form a clique with m(X�1)
vertices of weight kX. Each of these vertices uses a color congruent to � modulo kX. In total,
m(2X � 1) + 1 colors which are congruent to � are used. All the colors congruent to another
value appear at least m(2X � 1) times. This implies that the total number of colors used is at
least kmX(2X � 1)+ 1. The ratio between the chromatic number and the density is then at least
kmX(2X�1)+1

k(mX2+1) = 2� 1
X �

(2k�1)X�k
kX(mX2+1) . When m goes to infinity, this ratio goes to 2� 1

X .
Finally, let us prove that Gm is chordal. Let C be a cycle in Gm. If C is entirely included in

the big clique or in a clique of the second type, then the subgraph induced by the vertices of C is
complete and C has a chord. Otherwise, if C is not entirely included in a clique, then C contains
two vertices of the big clique which are not adjacent in the cycle and the edge between them is a
chord.

4.3. Demands kX and k(X + 1)
In this section, we present an approximation algorithm for the SA problem when the demand

of each request is either kX or k(X + 1). We start by proving the following theorem for interval
coloring in chordal graphs.

Theorem 9. Let (G,w) be a weighted chordal graph with weights in {kX, k(X + 1)}. There is a

polynomial time algorithm to color G with at most
X+1
X �(G,w) colors.

Proof. Let (G,w) be a weighted chordal graph with weights in {kX, k(X+1)}. Let m = b
�(G,w)

kX c;
we prove that we can color (G,w) with k(X + 1)m colors. We partition the set of colors
{1, . . . , k(X + 1)m} into m contiguous intervals Ii, 1  i  m of size k(X + 1) each. Let us
order the vertices of (G,w) in the RPEO order. We use the greedy algorithm to color the vertices
in this order using for each vertex colors from exactly one interval Ii, 1  i  m. Suppose that we
cannot color some vertex vj , this means that each interval Ii, 1  i  m, contains a neighbor of vj
with weight at least kX (recall that the weights are either kX or k(X + 1)). Since the neighbors
of vj which appear first in the RPEO form a clique with vj , we have a clique of weight at least
mkX + kX > �(G,w) which is not possible. Therefore we can color all the vertices.

Theorem 9 implies the following corollary.

Corollary 2. There is a
X+1
X -approximation algorithm for the Spectrum Assignment problem in

binary trees when the demands of the requests are in the set {kX, k(X + 1)}.
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4.4. Maximum demand D

In this section, we present an approximation algorithm for the SA problem when the maximum
demand is D.

Theorem 10. Let (G,w) be a weighted chordal graph with maximum weight W . There is a

polynomial time algorithm that finds an interval coloring of (G,w) with at most 2 log2(W )�(G,w)
colors.

Proof. The proof is inspired from that of [25] which presents a O(log2(n))-approximation where
n is the number of vertices.

Let (G,w) be a weighted chordal graph with maximum weight W . Let us partition the set of
vertices V into k subsets Si, i 2 {1, . . . , k} such that for each vertex v 2 Si, w(v) 2 [ai, bi], with
ai and bi integers, a1 = 1, ai+1 = bi + 1 and bk = W . We first ignore the weights and optimally
color each graph Gi induced by the subset Si. As the graphs are chordal, we can color the vertices
of Gi with !(Gi) colors where !(Gi) is the clique number of Gi. Afterwards, we replace the color
of each vertex v 2 Gi by an interval of w(v) colors. This way, we obtain an interval coloring of
Gi with at most bi!(Gi) colors. Therefore, the vertices of G can be colored with c colors where

c =
kP

i=1
bi!(Gi). Note that ai!(Gi)  �(G,!), which implies that c 

kP
i=1

bi
ai
�(G,w)

Let us choose bi = 2ai for i < k. We will have then ai = 2i � 1 for i  k and bi = 2i+1
� 2

for i < k. If 2h  W  2h+1
� 2, then we choose k = h = blog2(W )c and we will have

c  2blog2(W )c�(G,w). If W = 2h+1
� 1, then we choose k = h + 1. In this case, we have

bk = W = ak = 2h+1
� 1 and c  (2h + 1)�(G,w). Since 22h+1

 (2h+1
� 1)2, we have

2h+ 1  2 log2(W ) and therefore we always have c  2 log2(W )�(G,w).

Theorem 10 implies the following corollary.

Corollary 3. There is a 2 log2(D)-approximation for the Spectrum Assignment problem in binary

trees where D is the maximum demand.

4.5. Maximum demand at most 6

In the previous subsection, an approximation algorithm for the SA problem in binary trees
where the maximum demand is at most D has been presented. This approximation is achieved by
partitioning the requests into subsets of close demands. This technique is used not only in binary
trees but also in general graphs as a heuristic [31]. In what follows, we use di↵erent techniques to
find better approximations for SA in binary trees for some given values of the maximum demand
D. The techniques we use were introduced in [22] to approximate DSA. Results in [22] can extend
directly to SA in path networks giving approximation algorithms with factors 4

3 and 1.7 when
the spectrum demands are bounded by 2 and 3, respectively. In what follows we use the same
techniques to design constant-factor approximations for SA in binary trees when the spectrum
demand is bounded by 6.

We prove the following theorem for interval coloring.

Theorem 11. Let (G,w) be a weighted chordal graph. There are polynomial-time algorithms which

find an interval coloring of (G,w) with at most
3
2�(G,w) + 1

2 ,
19
10�(G,w) + 8

5 ,
59
27�(G,w) + 67

27 ,
859
336�(G,w) + 229

56 and
287
100�(G,w) + 885

200 colors when the maximum weight is bounded by 2, 3, 4,

5 and 6, respectively.

Proof. As in the previous sections, �(G,w) refers to the density of the weighted graph (G,w) and
will be abbreviated in this proof to �.

Let C(d, S) denote the set of instances of IC in which the graph is chordal, the density is at
most d and the weights are in the set S. Let c(d, S) denote the smallest integer ↵ such that for
each instance of C(d, S), there is an interval coloring with at most ↵ colors (if such ↵ exists).

We present first the general approach to solve the problem for any maximum weight W , before
applying it to the case the case W = 3. In the appendix, as well as in [2], we present the cases
W 2 {3, 4, 5, 6} in detail.
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General Approach. Let (G,w) be a weighted chordal graph with maximum weight W . To color
the graph G, we proceed in two phases as follows.

• Partitioning the vertices into multi-level blocks: in this phase, the vertices are partitioned
into blocks. We will have for each i 2 {1, . . . ,W}, a set Bi of ni level-i blocks B

1
i , . . . , B

ni
i

each of density di. The values of ni and di will be chosen after to satisfy various conditions.

We order the blocks in the lexicographic order: block B
j
i is before block B

j0

i0 if i < i
0 or

i = i
0 and j < j

0.

Our algorithm consists in considering successively the vertices in the RPEO order and as-
signing a new vertex v to the first available block (in the block’s order). In more details, we
assign a vertex v to a block B if the weight of the clique induced by v and its neighbors in B

does not exceed the density of the block. The vertex v and its neighbors in B indeed form
a clique since the graph is chordal and we consider the vertices in the RPEO order.

We will choose the parameters di and ni (see details after) in such a way that the following
property is satisfied:

Property *: Each vertex of weight i is assigned to some block in the set Bl such that l  i.

In particular, this means that at the end of the algorithm each vertex is assigned to some
block.

• Solving the problem of interval coloring for each block: in this second phase, the vertices of
each block of Bi are colored using an algorithm to solve instances with density di and weights
in Si = {i, . . . ,W} (the possible weights of the vertices in B

j
i ). Note that the vertices of a

block of Bi induce a graph which belongs to C(di, Si). The algorithm we use is designed to
use no more than c(di, Si) colors.

Therefore, the total number of colors used to color the whole graph is at most

WX

i=1

nic(di, {i, . . . ,W})

The total number of colors depends on ni and di. In fact, we will proceed as follows. For a
chosen set of values of the densities di, we will choose the smallest possible ni such that Property*
is satisfied. Afterwards, we will compute c(di, {i, . . . ,W}) and therefore the total number of colors
for the chosen values of di. We will do this for many values of the densities di and keep the set of
values which minimize the total number of colors.

Choice of the ni. Note that, if for some i, di < i, then ni = 0 as a block of Bi cannot be used to
assign a vertex of weight < i (recall that the vertices of weight < i are by Property * all assigned
to blocks of Bl with l < i). So, in the following claims, we suppose di � i for all i.

Claim 1. If n1 �

l
�
d1

m
, then Property * is satisfied.

Proof. Suppose that a vertex v of weight 1 cannot be assigned to any block of B1. This means
that, for each block B of B1, vertex v and its neighbors in B form a clique of size > d1 and so the
weight of the neighbors of v in B is at least d1. This implies that the weight of the neighbors of v
in all of the blocks in B1 is at least n1d1. Since we are considering the vertices in the RPEO, this
implies that the clique induced by v and its neighbors in B1 is of weight n1d1 + 1 which exceeds

� for n1 =
l

�
d1

m
. This is not possible.

Claim 2. If n2 =
l
��1�n1(d1�1)

�2
2

m
where �2

2 = max{2, d2 � 1}, then Property * is satisfied.
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Proof. Suppose that a vertex v of weight 2 cannot be assigned to any block of B1 or B2. This
means that, for each block B of B1 (resp. B2), vertex v and its neighbors in B form a clique of
size > d1 (resp. > d2) and so the weight of the neighbors of v in B is at least d1�1 (resp. d2�1).
However, if d2 = 2, as all the vertices of weight 1 are assigned to blocks of B1, v has necessarily
one neighbor of weight 2 in each block of B2. Therefore, if we let �2

2 = max{2, d2 � 1}, the clique
induced by v and its neighbors in the RPEO has a weight at least n1(d1 � 1) + n2�2

2 + 2 which

exceeds � for n2 =
l
��1�n1(d1�1)

�2
2

m
.

Example: case W=2: Consider the case W = 2. We will see how the application of the
claims above enables us to find another proof of the ration 3/2 already obtained inTheorem 7 and
in fact a slightly better results. Let d1 = 2and d2 = 2. Applying the formula we get n1 = d

�
2 e and

n2 = d
��1�n1

2 e. Using the fact that c(2, {1, 2}) = c(2, {2}) = 2 the number of colors is 2n1 + 2n2

that is 6p for � = 4p; 6p+2 for � = 4p+1 and for � = 4p+2 and 6p+4 for � = 4p+3 that we
can express as 2�� 2d��1

4 e. That is slightly better than the value obtained in Theorem 7 more
precisely one less when � = 4p+2 (resp. 4p+3) where we get 6p+2 (resp. 6p+4) colors instead
of 6p+ 3 (resp. 6p+ 5).

Claims 1 and 2 can be generalized as follows:

Claim 3. If ni =

2

666

�+1�i�
i�1P
l=1

nl�
l
i

�i
i

3

777
where �l

i = max{l, dl + 1� i}, then Property * is satisfied.

Proof. Suppose that a vertex v of weight i cannot be assigned to any block of Bl with l  i. This
means that, for each block B of Bl, vertex v and its neighbors in B form a clique of size > dl and so
the weight of the neighbors of v in B is at least dl+1� i. Furthermore, as all the vertices of weight
< l are assigned to blocks of Bj for j < l, v has necessarily one neighbor of weight at least l in any
block of Bl. Therefore, if we let �l

i = max{l, dl +1� i}, the clique induced by v and its neighbors

in the RPEO has a weight at least
iP

l=1
nl�l

i + i which exceeds � for ni =

2

666

�+1�i�
i�1P
l=1

nl�
l
i

�i
i

3

777
.

Maximum weight 3. Let W = 3. We choose some values for di and using the claims above, we
obtain the following values of ni:

• d1 = d2 = d3 = 3. n1 =
⌃
�
3

⌥
and n2 =

⌃
��1�2n1

2

⌥
and n3 =

⌃
��2�n1�2n2

3

⌥
.

• d1 = 5, d2 = d3 = 3. n1 =
⌃
�
5

⌥
and n2 =

⌃
��1�4n1

2

⌥
and n3 =

⌃
��2�3n1�2n2

3

⌥
.

• d1 = d2 = 5, d3 = 3. n1 =
⌃
�
5

⌥
and n2 =

⌃
��1�4n1

4

⌥
and n3 =

⌃
��2�3n1�3n2

3

⌥
.

To compare the values of the total number of colors we need to compute c(3, S) for some basic
sets S. We recall that c(d, S) is the minimum number of colors which can be used in an interval
coloring of any chordal graph with density d and weights in S.

• c(3,{1,2,3}) = 4.

We first prove that c(3, {1, 2}) � 4. Let us consider the example presented in Figure 3 in
which the density is 3 and the maximum weight is 2. The graph in the example consists of
a clique of 3 vertices of weight one, such that each vertex of weight one is joined to a vertex
of weight 2. This graph cannot be colored using only 3 colors. If we suppose that it can be
colored with 3 colors {1, 2, 3}, then one of the vertices of weight one will have to be assigned
color 2. For this vertex, the neighbor of weight 2 cannot be colored since the only available
colors are 1 and 3 which are not contiguous.

To prove that c(3, {1, 2, 3})  4, we use the greedy algorithm in the RPEO which needs at
most 4 colors.Vertices of weight 3, if any, are isolated and can be colored with 3 colors. If
a vertex v of weight 2 is considered, then v has at most one neighbor of weight 1. Let ↵ be
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its color. If ↵ = 1 or 2, then v can be colored with colors {3, 4}, and if ↵ = 3 or 4, then v

can be colored with colors {1, 2}. If a vertex of weight 1 is considered, it has at most two
neighbors of weight 1 or one neighbor of weight 2 and it can be colored with one of the two
colors that are not used.

1

1

1 2

2

2
Figure 3: An example showing that c(3, {1, 2}) 6= 3

• c(3,{2,3}) = c(3,{3}) = 3.

In fact in an instance of C(3, {2, 3}), all vertices are isolated and we can hence easily color
them with at most 3 colors.

• c(4,{1,2,3}) = 6.

We first prove that c(4, {1, 2, 3}) � 6. Let us consider the example presented in Figure 4
which consists of a clique of four vertices of weight one. Each vertex of weight one is joined
to a vertex of weight 3 and each pair of vertices of weight one is joined to a vertex of weight
2. Suppose that we only use 5 colors {1, 2, 3, 4, 5} to color this graph. If one of the vertices
of weight 1 uses color 3, then its neighbor which has weight 3 cannot be colored. Otherwise,
if the vertices of weight 1 use colors {1, 2, 4, 5}, then the vertex of weight 2 which is adjacent
to the vertices of weight 1 which have colors 2 and 4 cannot be colored.

To color any instance in C(4, {1, 2, 3}) with at most 6 colors, we use the greedy algorithm in
the RPEO.

1 1

11
3

3 3

32

2

2

2

2 2
Figure 4: An example showing that c(4, {1, 2, 3}) 6= 5

• c(4,{2,3}) = 4.

The greedy algorithm in the RPEO, colors any instance in C(4, {2, 3}) with at most 4 colors.

• c(5,{1,2,3}) = 7.

We first prove that c(5, {1, 3}) � 7. Let us consider the graph G consisting of a clique of
5 vertices each of weight 1 and such that each pair of vertices of the clique is connected to
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a vertex of weight 3. The graph G is chordal with density 5 and weights in {1, 3}. Let us
suppose that we can color G with only six colors. There are either two vertices of weight
one colored with colors 2 and 4 or two vertices of weight one colored with colors 3 and 5. In
both cases the vertex of weight 3 adjacent to these two vertices cannot be colored.

Now let us describe an algorithm that takes an instance of C(5, {1, 2, 3}) and colors it with
at most 7 colors. The algorithm is a greedy algorithm in the RPEO of the vertices with the
additional feature that colors 5 and 6 are forbidden for vertices of weight 1.

– If a vertex v of weight 3 is considered, then if v has a neighbor of weight 2 colored
with {↵,↵ + 1}, we color v with {1, 2, 3} if ↵ � 4 or {5, 6, 7} if ↵  3. If v has two
neighbors of weight 1; if color 7 is not used we color v with {5, 6, 7}. If color 7 is used,
but not color 4 we color v with {4, 5, 6}. If both colors 4 and 7 are used, we color v

with {1, 2, 3}.

– If a vertex v of weight 2 is considered, then if v has 3 neighbors of weight 1, we color
v with {5, 6}. If it has one neighbor of weight 2 colored {↵,↵ + 1} and one of weight
1 colored �, then we color v with {5, 6} if ↵  3; with {1, 2} if ↵ � 4 and � � 3; with
color {6, 7} if ↵ = 4 and �  2 or {3, 4} if ↵ � 5 and �  2.

• c(5,{2,3}) = 5.

The greedy algorithm in the RPEO in which we forbid color 3 to vertices of weight 2 uses
at most 5 colors (note that a vertex of weight 3 cannot be colored with {2, 3, 4}).

Now, we can compute the number of colors for the 3 cases considered above.

• If we set d1 = d2 = d3 = 3, the number of colors used is n1c(3, {1, 2, 3}) + n2c(3, {2, 3}) +
n3c(3, {3}) = 4n1+3n2+3n3. As n3 

��n1�2n2
3 the number of colors is at most�+3n1+n2

and as n2 
��2n1

2 it is at most 3�
2 + 2n1. Finally, as n1 

�
3 + 2

3 , the number of colors
used is at most 13

6 �+ 4
3 .

• If we set d1 = 5, d2 = d3 = 3, the number of colors used is n1c(5, {1, 2, 3}) + n2c(3, {2, 3}) +
n3c(3, {3}) = 7n1+3n2+3n3. As n3 

��3n1�2n2
3 the number of colors is at most�+4n1+n2

and as n2 
��4n1

2 it is at most 3�
2 + 2n1. Finally, as n1 

�
5 + 4

5 , the number of colors
used is at most 19

10�+ 8
5 .

• If we set d1 = d2 = 5, and d3 = 3, the number of colors used is n1c(5, {1, 2, 3}) +
n2c(5, {2, 3}) + n3c(3, {3}) = 7n1 + 5n2 + 3n3. As n3 

��3n1�3n2
3 the number of col-

ors is at most � + 4n1 + 2n2 and as n2 
��4n1+2

4 it is at most 3�
2 + 2n1 + 1. Finally, as

n1 
�
5 + 4

5 , the number of colors used is at most 19
10�+ 13

5 .

We have tried the other possible values of di and ni but we obtained bigger numbers of
colors.

Theorem 11 implies the following corollary.

Corollary 4. Let I be an instance of SA in a binary tree. Let OPT be the span of I. There

are polynomial-time algorithms which find a spectrum assignment for I with a span less than
3
2OPT + 1

2 ,
19
10OPT + 8

5 ,
59
27OPT + 67

27 ,
859
336OPT + 229

56 and
287
100OPT + 885

200 when the maximum

request demand is bounded by 2,3,4,5 and 6, respectively.

5. Conclusion

We have studied in this article the problem of Spectrum Assignment (SA) in tree networks.
We have proved that SA is NP-complete in undirected stars with 3 links and directed stars with
4 links. We have also shown that there is a 4-approximation algorithm to solve the problem in
general stars. Afterwards, we have focused on SA in binary trees with special demand profiles and
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we have designed constant approximation algorithms for several cases. As future work, we would
like to find approximation algorithms for interval coloring in chordal graphs in general and to SA
in binary trees in particular. Towards this objective, we believe the following directions might be
useful.

• It would be interesting to try to use the clique graph of the chordal graph [8] to find an acyclic
orientation where the number of maximal cliques to which a path belongs is bounded. In fact,
finding a k-approximation for interval coloring is equivalent to finding an acyclic orientation
in which the longest directed path has vertices in at most k maximal cliques [14]. This
approach has been used to find a 2-approximation for interval coloring in claw-free chordal
graphs [7].

• It would be also helpful to try to use ideas from the approximation algorithms used for
interval coloring in interval graphs. These algorithms were developed for the problem of
Dynamic Storage Allocation (DSA) as we mentioned in Section 2.2.3 and they use mainly
three techniques:

– 2-coloring (2-allocation) [11]: in this technique, which yields a 3-approximation for In-
terval Coloring (IC) in interval graphs, first, a 2-coloring is found where 2 adjacent
vertices but not three might use the same color. This 2-coloring is transformed after-
wards to a normal coloring. Is it possible to find a 2-coloring for chordal graphs in
polynomial time?

– Boxing vertices [4]: in this technique, which yields a 2 + ✏ approximation for IC in
interval graphs, vertices are modeled as rectangles (the dimensions of a rectangle cor-
responding to a vertex v are the weight of v and the interval corresponding to v in the
interval representation of the graph). These rectangles are cleverly boxed or gathered in
larger rectangles. Afterwards an exact algorithm is used to color these large rectangles.
Is it possible to adapt such technique to chordal graphs and find a clever way to box
the vertices?

– Buddy-decreasing-size algorithm [6]: in this algorithm, which yields a 6-approximation
for IC in interval graphs, vertices are colored in the decreasing order of their weights.
Some of the challenges in this direction is that using it as it is for chordal graphs cannot
give better than a log(n)-approximation; there is a tight example in [25]. In the tight
example however all the vertices have the same weight which means that there is an
exponential number of possible orders. Is there a clever order (something similar to
lexicographic order?) which can give a better approximation ratio?

Finally the case of SA in general trees remains a challenging problem. Perhaps the case of
trees with maximum degree 4 can be studied by using the fact that the conflict graph of these
instances of SA are in that case weakly chordal.

Acknowledgment: We thank the referees for their comments and pieces of advices which
helped to improve the paper.
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Appendix for the reviewers

We include in this appendix the parts of the proof of Theorem 11, which we have omitted from
the paper. These proofs can also be found in [2].

Maximum weight 4. Let us first compute c(4, S) for some basic sets S.

• c(4,{1,2,3,4}) = 6.

Since in an instance of C(4, {1, 2, 3, 4}), the vertices of weight 4 are isolated, we color them
and then use the algorithm used to prove that c(4, {1, 2, 3}) = 6 to color the other vertices.

• c(4,{2,3,4}) = 4.

A greedy algorithm in the RPEO uses at most 4 colors. In fact, in an instance of C(4, {2, 3, 4}),
vertices of weights 3 or 4 are isolated and it su�ces to color vertices of weight 2 with {1, 2}
or {3, 4}.

• c(4,{3,4}) = c(4,{4}) = 4.

In an instance of C(4, {3, 4}), all vertices are isolated and can be colored independently.

• c(5,{1,2,3,4}) = 8.

We first prove that c(5, {1, 2, 3, 4}) � 8. Let us consider the graph G which consists of a
clique of 5 vertices of weight 1 each and such that each vertex of weight one is connected to
a new vertex of weight 4 and each pair of vertices of weight 1 is connected to a new vertex
of weight 3. The graph G is chordal and has density 5 and maximum weight 4. Suppose
that only 7 colors can be used to color G. Color 4 cannot be used for any vertex of weight
1, otherwise its neighbor of weight 4 cannot be colored. Furthermore we can use for vertices
of weight 1 at most one of the pair of colors {2, 5} and {3, 6}, otherwise the neighbor of
weight 3 connected to this pair cannot be colored. So we have altogether 3 colors forbidden
for vertices of weight 1 and so only 4 available colors which is impossible.

Now let us describe an algorithm that takes an instance of C(5, {1, 2, 3, 4}) and colors it with
at most 8 colors. The algorithm uses the greedy algorithm in the RPEO with the additional
feature that colors 3 and 6 are forbidden to vertices of weight 1. Let us check that this
algorithm uses indeed at most 8 colors.

– If a vertex v of weight 4 is considered, then if v has a neighbor of weight 1 which has
been already colored ↵, we color v with {1, 2, 3, 4} if ↵ � 5 or {5, 6, 7, 8} if ↵  4.

– If a vertex v of weight 3 is considered, then if v has a neighbor of weight 2 colored with
{↵,↵ + 1}, we color v with {1, 2, 3} if ↵ � 4 or with {6, 7, 8} if ↵  3. If v has two
neighbors of weight 1 colored with ↵ < �, we color v with {1, 2, 3} if ↵ � 4 or {3, 4, 5}
if ↵  2 and � � 7 or {6, 7, 8} if ↵  2 and �  5 (recall that ↵ 6= 3 and � 6= 6).

– If a vertex v of weight 2 is considered, then if v has 3 neighbors of weight 1 colored
with ↵ < � < �, we color v with {1, 2} if ↵ � 4, or {3, 4} if ↵  2 and � � 5, or {5, 6}
if �  4 and � � 7, or {7, 8} if �  5. If v has one neighbor of weight 2 colored with
{↵,↵+ 1} and one of weight 1 colored �, we color v with {1, 2} if ↵ � 3 and � � 4, or
{4, 5} if ↵  2 and � � 7, or {7, 8} if ↵  2 and �  5, or {3, 4} if ↵ � 5 and �  2, or
{7, 8} if ↵  4 and �  2.

• c(5,{2,3,4}) = 5.

In an instance of C(5, {2, 3, 4}), vertices of weight 4 are isolated. We can color them then
all with colors {1, 2, 3, 4}. For the vertices of weights 2 and 3, we use the algorithm which
achieves c(5, {2, 3}) = 5.
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• c(6,{1,2,3,4}) = c(6,{1,2,3}) = 9.

We first prove that c(6, {1, 3}) � 9. Let us consider the graph G consisting of a clique of 6
vertices of weight 1 each and such that the vertices of each triple of the clique are connected
to a vertex of weight 3. The graph G is chordal with density 6 and weights in {1, 3}. Let us
suppose that we can color G with only 8 colors. There are three vertices of weight 1 using
colors {1, 4, 7} or three vertices of weight 1 using colors {2, 5, 8} or two vertices of weight 1
using colors {3, 6}. In any of these three cases, a vertex of weight 3 cannot be colored.

Now let us describe an algorithm that takes an instance of C(6, {1, 2, 3, 4}) and colors it with
at most 9 colors. The algorithm is a greedy algorithm in the RPEO of the vertices with two
additional features: colors 6,7 and 8 are forbidden to vertices of weight 1, and each vertex
of weight 2 is assigned colors {1, 2}, {3, 4}, {5, 6}, or {7, 8} and not any other contiguous
combination of two colors. This algorithm uses at most 9 colors.

– If a vertex v of weight 4 is considered, then if v has a neighbor of weight 2 which has
been already colored, the possible sets of color used by this neighbor are {1, 2}, {3, 4},
{5, 6}, or {7, 8}. In any case, v can be colored with 4 contiguous colors. If v has two
neighbors of weight 1 each that have been already colored, then either one of the colors
9 or 5 is not used by this neighbor, and in this case v can use it along with the colors
{6, 7, 8} (which are forbidden for vertices of weight 1), or both colors 9 and 5 are used
and v can use colors {1, 2, 3, 4}.

– If a vertex v of weight 3 is considered, then if v has a neighbor of weight 3 colored with
{↵,↵ + 1,↵ + 2}, we color v with {1, 2, 3} if ↵ � 4 or with {7, 8, 9} if ↵  3. If v has
two neighbors one of weight 2 colored with {↵,↵+1} and one of weight 1 colored with
�, then we color v with {6, 7, 8} if ↵ = 1 or 3; {1, 2, 3} if ↵ = 5 or 7 and � � 4; {7, 8, 9}
if ↵ = 5 and �  3; {4, 5, 6} if ↵ = 7 and �  3.

– If a vertex v of weight 2 is considered. If all its neighbors that have been already colored
are of weight 1, then v can be assigned colors {7, 8}. If v has two colored neighbors of
weight 2 each, or one colored neighbor of weight 2 and two other colored neighbors with
weight 1, or one colored neighbor of weight 3 and another of weight 1, or one vertex of
weight 4, then one of the channels {1, 2}, {3, 4}, {5, 6}, or {7, 8} is necessarily free to
be used.

• c(6,{2,3,4}) = 8.

We first prove that c(6, {2, 4}) � 8. Let us consider the graph G which consists of a clique
of 3 vertices of weight 2 each, and such that each vertex of weight 2 is connected to a vertex
of weight 4. The graph G is chordal and has density 6 and weights in {2, 4}. Let us suppose
that we can color G with only 7 colors. In any possible coloring of the vertices of weight 2,
a vertex v of weight 2 has to use either colors {3, 4} or {4, 5}. In both cases, the neighbor
of v which has weight 4 cannot be colored.

Now let us describe the algorithm that colors an instance of C(6, {2, 3, 4}). It is a greedy
algorithm in the RPEO with the additional feature that the possible combinations of colors
for vertices of weight 2 are the following: {1, 2}, {3, 4}, {5, 6}, and {7, 8}.

• c(6,{3,4}) = 6.

Vertices of weight 4 are isolated and can be all assigned colors {1, 2, 3, 4} and other vertices
can be colored using the greedy algorithm in the RPEO with at most 6 colors.

Now, we can compute the number of colors for d1 = 6 and d2 = d3 = d4 = 4.
The number of colors used is n1c(6, {1, 2, 3, 4})+n2c(4, {2, 3, 4})+n3c(4, {3, 4})+n4c(4, {4}) =

9n1 + 4n2 + 4n3 + 4n4.
We have n1 =

⌃
�
6

⌥
; n2 =

⌃
��1�5n1

3

⌥
; n3 =

⌃
��2�4n1�2n2

3

⌥
, and n4 =

⌃
��3�3n1�2n2�3n3

4

⌥
.

As n4 
��3n1�2n2�3n3

4 the number of colors is at most �+6n1+2n2+n3. As n3 
��4n1�2n2

3

the number of colors is at most 4�
3 + 14

3 n1+
4
3n2, and as n2 

��5n1+1
3 it is at most 16�

9 + 22
9 n1+

4
9 .
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Finally, as n1 
�+5
6 , the number of colors is at most 59

27�+ 67
27 .

We have computed the number of colors for other choices of the di but the values are bigger.

• For d1 = d2 = d3 = d4 = 4, then the number of colors used is 6n1 + 4n2 + 4n3 + 4n4 which
is at most 91

36�+ 97
36 colors.

• For d1 = 5 and d2 = d3 = d4 = 4, then the number of colors used is 8n1 + 4n2 + 4n3 + 4n4

which is at most 109
45 �+ 176

45 colors.

• For d1 = d2 = 5 and d3 = d4 = 4, then the number of colors used is 8n1 + 5n2 + 4n3 + 4n4

which is at most 73
30�+ 17

5 colors.

• For d1 = d2 = d3 = 6, d4 = 4, then the number of colors used is 9n1+8n2+6n3+4n4 which
is at most 139

60 �+ 167
60 colors.

• For d1 = d2 = 6 and d3 = d4 = 4, then the number of colors used is 9n1 + 8n2 + 4n3 + 4n4

which is at most 67
30�+ 91

30 colors.

For maximum weight 4, we obtain an approximation with a multiplicative ratio of
59
27 and an additive constant of 67

27 .

Maximum weight 5. Let us first compute c(5, S) for some basic sets S.

• c(5,{1,2,3,4,5}) = 8.

In fact, we know that c(5, {1, . . . , 4}) = 8 and for any chordal graph with density 5 and
maximum weight 5, vertices of weight 5 are isolated and can be colored independently from
the others.

• c(5,{2,3,4,5}) = 5.

In a chordal graph of density 5 and weights in {2, . . . , 5}, vertices of weight 4 or 5 are isolated
and can be easily colored. For other vertices, we know that c(5, {2, 3}) = 5.

• c(5,{3,4,5}) = c(5,{4,5}) = 5.

All vertices are isolated and can be easily colored.

• c(6,{1,2,3,4,5}) = 10.

We first prove that c(6, {1, . . . , 5}) = 10. Let us consider the graph G which consists of a
clique C of 6 vertices of weight 1 such that each of the vertices of C is connected to a vertex
of weight 5, and each pair of vertices of C is connected to a vertex of weight 4. Let us
suppose that we can color G with 9 colors. Color 5 cannot be used for any vertex of weight
1, otherwise its neighbor of weight 5 cannot be colored. Furthermore we can use for vertices
of weight 1 at most one of the pair of colors {2, 6}, {3, 7}, {4, 8}, otherwise the neighbor of
weight 4 connected to this pair cannot be colored. So we have altogether 4 colors forbidden
for vertices of weight 1 and so only 5 available colors which is impossible.

The greedy algorithm in the RPEO with the additional feature of forbidding colors {7, 8, 9, 10}
to vertices of weight 1 colors any instance of C(6, {1, . . . , 5}) with at most 10 colors.

• c(6,{2,3,4,5}) = 8.

Vertices of weight 5 are isolated and can be easily colored. As for other vertices we have
already proved that c(6, {2, 3, 4}) = 8.

• c(6,{3,4,5}) = 6.

Vertices of weight 4 and 5 are isolated and vertices of weight 3 can be colored using the
greedy algorithm in the RPEO with either the colors {1, 2, 3} or {4, 5, 6}.
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• c(7,{1,2,3,4,5})  12.

To obtain a coloring with 12 colors, we use the greedy algorithm in the RPEO with the
additional feature of forbidding colors {8, 9, 10, 11, 12} to vertices of weight 1 and colors
{8, 9} and {9, 10} for vertices of weight 2. The proof that the algorithm works is done by
considering the various possibilities when a new vertex is added.

– If a vertex v of weight 5 is considered, then if v has:

⇤ 2 neighbors of weight 1, we color v with {8, 9, 10, 11, 12}.

⇤ 1 neighbor of weight 2 colored with {↵,↵+1}, we color v with {1, 2, 3, 4, 5} if ↵ � 6
or with {8, 9, 10, 11, 12} if ↵  5.

– If a vertex v of weight 4 is considered, then if v has:

⇤ 3 neighbors of weight 1, we color v with {9, 10, 11, 12}.

⇤ 1 neighbor of weight 2 colored with {↵,↵ + 1} and 1 neighbor of weight 1 colored
�, we color v with {9, 10, 11, 12} if ↵  7; otherwise ↵ � 10 and we color v with
{1, 2, 3, 4} if � � 5 or with {5, 6, 7, 8} if �  4 (Note that we use the fact that
↵ 6= 8; otherwise with ↵ = 8 and � = 4 we could not have colored v).

⇤ 1 neighbor of weight 3 colored with {↵,↵+ 1,↵+ 2}, we color v with {1, 2, 3, 4} if
↵ � 5 or {9, 10, 11, 12} if ↵  4.

– If a vertex v of weight 3 is considered, then if v has:

⇤ 4 neighbors of weight 1, we color v with {10, 11, 12}.

⇤ 1 neighbor of weight 2 colored with {↵,↵+ 1} and 2 neighbors of weight 1 colored
� < �, we color v with {10, 11, 12} if ↵  7; otherwise ↵ � 10, and we color v with
{1, 2, 3} if � � 4 or with {4, 5, 6} if �  3 and � � 7 or with {7, 8, 9} if �  3 and
�  6. (Note that we use the fact that ↵ 6= 9; otherwise with ↵ = 9, � = 3 and
� = 6 we could not have colored v).

⇤ 2 neighbors of weight 2 colored with {↵,↵ + 1} {�,� + 1} with ↵ < �, we color v
with {1, 2, 3} if ↵ � 4, or with {5, 6, 7} if ↵  3 and � � 10, or with {10, 11, 12} if
↵  3 and �  7.

⇤ 1 neighbor of weight 3 colored with {↵,↵ + 1,↵ + 2} and 1 neighbor of weight 1
colored �, we color v with {10, 11, 12} if ↵  7 or {1, 2, 3} if ↵ � 8 and � � 4 or
with {4, 5, 6, } if ↵ � 8 and �  3.

⇤ 1 neighbor of weight 4 colored with {↵,↵+1,↵+2,↵+3}, we color v with {1, 2, 3}
if ↵ � 4 or {10, 11, 12} if ↵  3.

– If a vertex v of weight 2 is considered, then if v has:

⇤ 5 neighbors of weight 1, we color v with {11, 12}.

⇤ 1 neighbor of weight 2 colored with {↵,↵+ 1} and 3 neighbors of weight 1 colored
� < � < �, we color v with {11, 12} if ↵  7; otherwise if ↵ � 10 we color v with
{1, 2} if � � 3, or with {3, 4} if �  2 and � � 5, or with {5, 6} if �  2, �  4 and
� � 7, or with {7, 8} if �  2, �  4 and �  6.

⇤ 2 neighbors of weight 2 colored with {↵,↵ + 1} and {�,� + 1} with ↵ < �, and
a neighbor of weight 1 colored �, we color v with {11, 12} if �  7; otherwise if
� � 10 we color v with {1, 2} if ↵ � 3 and � � 3, or with {4, 5} if ↵  2 and � � 6,
or with {6, 7} if ↵  2 and �  5, or with {3, 4} if ↵ � 5 and �  2, or with {6, 7}
if ↵  4 and �  2.

⇤ 1 neighbor of weight 3 colored with {↵,↵ + 1,↵ + 2} and 2 neighbors of weight 1
colored � < �, we color v with {11, 12} if ↵  8; otherwise if ↵ � 9 we color v with
{1, 2} if � � 3 or with {4, 5} if �  2 and � � 6 or with {6, 7} if �  2 and �  5.

⇤ 1 neighbor of weight 3 colored with {↵,↵ + 1,↵ + 2} and 1 neighbor of weight 2
colored {�,� + 1}, we color v with {1, 2} if ↵ � 3 and � � 3, or with {11, 12} if
↵  2 and �  7, or with {5, 6} if ↵  2 and � � 10, or with {4, 5} if ↵ � 6 and
�  2, or with {11, 12} if ↵  5 and �  2.
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⇤ 1 neighbor of weight 4 colored with {↵,↵+1,↵+2,↵+3} and 1 neighbor of weight
1 colored �, we color v with {11, 12} if ↵  7 or {1, 2} if ↵ � 8 and � � 3 or with
{3, 4} if ↵ � 8 and �  2.

⇤ 1 neighbor of weight 5 colored with {↵,↵+ 1,↵+ 2,↵+ 3,↵+ 4}, we color v with
{1, 2} if ↵ � 3 or {11, 12} if ↵  2.

Now we can compute the number of colors for d1 = 7 and d2 = d3 = d4 = d5 = 5.
The number of colors used is n1c(7, {1, 2, 3, 4, 5}) + n2c(5, {2, 3, 4, 5}) + n3c(5, {3, 4, 5}) +

n4c(5, {4, 5}) + n5c(5, {5}) = 12n1 + 5n2 + 5n3 + 5n4 + 5n5.
We have n1 =

⌃
�
7

⌥
, n2 =

⌃
��1�6n1

4

⌥
, n3 =

⌃
��2�5n1�3n2

3

⌥
, n4 =

⌃
��3�4n1�2n2�3n3

4

⌥
, and

n5 =
⌃
��4�3n1�2n2�3n3�4n4

5

⌥
.

As in the preceding cases, we, successively, use upper bounds for the ni. The number of colors
is at most � + 9n1 + 3n2 + 2n3 + n4, then

5�
4 + 8n1 +

5
2n2 +

5
4n3, then

5�
3 + 71

12n1 +
5
4n2, then

95�
48 + 97

24n1 +
5
8 

859
336�+ 229

56 .

We have computed the number of colors for other choices of the di but we obtained bigger
values as we present in what follows.

• If we set d1 = d2 = d3 = d4 = d5 = 5, then the number of colors used is 8n1 + 5n2 + 5n3 +
5n4 + 5n5 which is at most 679

240�+ 161
40 .

• If we set d1 = d2 = d3 = 6,d4 = d5 = 5, then the number of colors used is 10n1 + 8n2 +
6n3 + 5n4 + 5n5 which is at most 659

240�+ 343
60 .

• If we set d1 = 6, d2 = d3 = d4 = d5 = 5, then the number of colors used is 10n1 + 5n2 +
5n3 + 5n4 + 5n5 which is at most 763

288�(G,w) + 1275
288 .

For maximum weight 5, we obtain an approximation with a multiplicative ratio of
859
336 and an additive constant of 229

56 .

Maximum weight 6. Let us first compute c(6, S) for some basic sets S. Note that with a density
at most 6, any vertices of weight 6 are isolated. We can then deduce the following from what we
have computed for a maximum weight of 5.

• c(6,{1,2,3,4,5,6}) = 10.

• c(6,{2,3,4,5,6}) = 8.

• c(6,{3,4,5,6}) = c(6,{4,5,6}) = c(6,{5,6}) = c(6,{6}) = 6.

• c(7,{1,2,3,4,5,6}) = 12.

We use the algorithm which gives c(7, {1, 2, 3, 4, 5, })  12. If a vertex v of weight 6 is added
it is joined to at most one vertex of weight 1 of color �. If �  6, we color v with colors
{7, 8, 9, 10, 11, 12}) and if � = 7 with colors {1, 2, 3, 4, 5, 6}) and so c(7, {1, 2, 3, 4, 5, 6})  12.

To show that c(7, {1, 2, 3, 4, 5, 6}) � 12, we consider the chordal graph consisting of a clique
of 7 vertices of weight one such that each vertex of this clique is joined to a vertex of weight
6. Furthermore we join each pair of vertices of weight 1 to a vertex of weight 5. Suppose
that we can color the graph with 11 colors. Color 6 cannot be used for any vertex of weight
1, otherwise its neighbor of weight 6 cannot be colored. Furthermore we can use for vertices
of weight 1 at most one color of each of the following pairs of colors {2, 7}, {3, 8}, {4, 9},
{5, 10}, otherwise the neighbor of weight 5 connected to this pair cannot be colored. So
we have altogether 5 colors forbidden for vertices of weight 1 and so only 6 available colors
which is impossible.
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Now we can compute the number of colors for d1 = 7 and d2 = d3 = d4 = d5 = d6 = 6.
The number of colors used is n1c(7, {1, 2, 3, 4, 5, 6})+n2c(6, {2, 3, 4, 5, 6})+n3c(6, {3, 4, 5, 6})+

n4c(6, {4, 5, 6}) + n5c(6, {5, 6}) + n6c(6, {6}) = 12n1 + 8n2 + 6n3 + 6n4 + 6n5 + 6n6.
We have n1 =

⌃
�
7

⌥
, n2 =

⌃
��1�6n1

5

⌥
, n3 =

⌃
��2�5n1�4n2

4

⌥
, n4 =

⌃
��3�4n1�3n2�3n3

4

⌥
, n5 =⌃

��4�3n1�2n2�3n3�4n4
5

⌥
, and n6 =

⌃
��5�2n1�2n2�3n3�4n4�5n5

6

⌥
.

Like in the preceding cases, we obtain upperbounds on ni. The number of colors is at most
�+10n1+6n2+3n3+2n4+n5, then

6�
5 + 47

5 n1+
28
5 n2+

12
5 n3+

6
5n4, then

3�
2 + 41

5 n1+
47
10n2+

3
2n3,

then 15�
8 + 253

40 n1 +
16
5 n2 +

3
8 , then

503�
200 + 497

200n1 +
459
200 

287
100�+ 885

200 .

If we set d1 = d2 = d3 = 6 = d4 = d5 = d6 = 6, the number of colors used is 10n1 + 8n2 +
6n3 + 6n4 + 6n5 + 6n6 which is at most 603

200�(G,w) +O(1).
We could improve the value if we could prove that c(8, {1, 2, 3, 4, 5, 6})  14 but that seems

not possible. We can only prove c(8, {1, 2, 3, 4, 5, 6})  15 which gives a bigger number of colors.

For maximum weight 6, we obtain an approximation with a multiplicative ratio of
287
100 and an additive constant of 885

200 .
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