E. I. Vlahogianni, M. G. Karlaftis, and J. C. Golias, Short-term traffic forecasting: Where we are and where we're going, Transportation Research Part C: Emerging Technologies, vol.43, pp.3-19, 2014.

A. Ermagun and D. Levinson, Spatiotemporal traffic forecasting: review and proposed directions, Transport Reviews, vol.0, issue.0, pp.1-29, 2018.

M. Lippi, M. Bertini, and P. Frasconi, Short-term traffic flow forecasting: An experimental comparison of time-series analysis and supervised learning, IEEE Transactions on Intelligent Transportation Systems, vol.14, pp.871-882, 2013.

G. Fusco, C. Colombaroni, and N. Isaenko, Short-term speed predictions exploiting big data on large urban road networks, Transportation Research Part C: Emerging Technologies, vol.73, pp.183-201, 2016.

S. Sun, R. Huang, and Y. Gao, Network-scale traffic modeling and forecasting with graphical lasso and neural networks, Journal of Transportation Engineering, vol.138, issue.11, pp.1358-1367, 2012.
DOI : 10.1061/(asce)te.1943-5436.0000435

URL : http://arxiv.org/pdf/1801.00711

Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Y. Wang, Traffic flow prediction with big data: A deep learning approach, IEEE Transactions on Intelligent Transportation Systems, vol.16, issue.2, pp.865-873, 2015.

H. Yu, Z. Wu, S. Wang, Y. Wang, and X. Ma, Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks, Sensors, vol.17, issue.7, 2017.

Y. Li, R. Yu, C. Shahabi, and Y. Liu, Diffusion convolutional recurrent neural network: Data-driven traffic forecasting, International Conference on Learning Representations, 2018.

G. Nicholas, V. O. Polson, and . Sokolov, Deep learning for short-term traffic flow prediction, Transportation Research Part C: Emerging Technologies, vol.79, pp.1-17, 2017.

Y. Duan, Y. Lv, Y. Liu, and F. Wang, An efficient realization of deep learning for traffic data imputation, Transportation Research Part C: Emerging Technologies, vol.72, pp.168-181, 2016.

S. Kataoka, M. Yasuda, C. Furtlehner, and K. Tanaka, Traffic data reconstruction based on markov random field modeling, Inverse Problems, vol.30, issue.2, p.25003, 2014.
DOI : 10.1088/0266-5611/30/2/025003

URL : http://arxiv.org/pdf/1306.6482

Y. Hara, J. Suzuki, and M. Kuwahara, Network-wide traffic state estimation using a mixture gaussian graphical model and graphical lasso, Transportation Research Part C: Emerging Technologies, vol.86, pp.622-638, 2018.

C. Furtlehner, J. M. Lasgouttes, and A. De-la-fortelle, A belief propagation approach to traffic prediction using probe vehicles, Intelligent Transportation Systems Conference, pp.1022-1027, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00175627

V. Martin, J. Lasgouttes, and C. Furtlehner, Latent binary MRF for online reconstruction of large scale systems, Annals of Mathematics and Artificial Intelligence, pp.1-32, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01186220

C. Furtlehner and A. Decelle, Cycle-based cluster variational method for direct and inverse inference, Journal of Statistical Physics, vol.164, issue.3, pp.531-574, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01214155

V. Martin, C. Furtlehner, Y. Han, and J. M. Lasgouttes, GMRF estimation under topological and spectral constraints, ECML PKDD Proceedings,Part II, pp.370-385, 2014.
DOI : 10.1007/978-3-662-44851-9_24

URL : https://hal.archives-ouvertes.fr/hal-01065607

A. Attanasi, L. Meschini, M. Pezzulla, G. Fusco, G. Gentile et al., A hybrid method for real-time short-term predictions of traffic flows in urban areas, 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), pp.878-883, 2017.

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference, 1988.

D. Bickson, Gaussian Belief Propagation: Theory and Application, 2008.

Y. Weiss and W. T. Freeman, Correctness of belief propagation in gaussian graphical models of arbitrary topology, Neural Comput, vol.13, issue.10, pp.2173-2200, 2001.

O. Banerjee, L. E. Ghaoui, and A. , Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data, JMLR, vol.9, pp.485-516, 2008.

J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the graphical lasso, Biostatistics, vol.9, issue.3, pp.432-441, 2008.
DOI : 10.1093/biostatistics/kxm045

URL : https://academic.oup.com/biostatistics/article-pdf/9/3/432/17742149/kxm045.pdf

K. Scheinberg and I. Rish, Learning sparse Gaussian Markov networks using a greedy coordinate ascent approach, ECML-PKDD, 2010.
DOI : 10.1007/978-3-642-15939-8_13

D. M. Malioutov, J. K. Johnson, and A. S. Willsky, Walk-sums and Belief Propagation in Gaussian graphical models, JMLR, vol.7, pp.2031-2064, 2006.

T. P. Speed, Gaussian Markov distributions over finite graphs. The Annals of Statistics, vol.14, pp.138-150, 1986.
DOI : 10.1214/aos/1176349846

URL : https://doi.org/10.1214/aos/1176349846

C. Hsieh, M. A. Sustik, I. S. Dhillon, and K. Ravikumar, Sparse inverse covariance matrix estimation using quadratic approximation, NIPS, 2011.

C. Chen, J. Kwon, J. Rice, A. Skabardonis, and P. Varaiya, Detecting errors and imputing missing data for single-loop surveillance systems, Transportation Research Record, pp.160-167, 1981.
DOI : 10.3141/1855-20