
HAL Id: hal-01964700
https://inria.hal.science/hal-01964700

Submitted on 23 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of Dynamic Algorithms via Primal-Dual Method
Sayan Bhattacharya, Monika Henzinger, Giuseppe F Italiano

To cite this version:
Sayan Bhattacharya, Monika Henzinger, Giuseppe F Italiano. Design of Dynamic Algorithms via
Primal-Dual Method. ICALP 2018 - International Colloquium on Automata, Languages, and Pro-
gramming, Jul 2015, Kyoto, Japan. pp.206-218, �10.1007/978-3-662-47672-7_17�. �hal-01964700�

https://inria.hal.science/hal-01964700
https://hal.archives-ouvertes.fr

ar
X

iv
:1

60
4.

05
33

7v
1

 [c
s.

D
S

]
18

 A
pr

 2
01

6

Design of Dynamic Algorithms via Primal-Dual Method∗

Sayan Bhattacharya† Monika Henzinger‡ Giuseppe F. Italiano§

August 27, 2018

Abstract

We develop a dynamic version of the primal-dual method for optimization problems, and apply
it to obtain the following results. (1) For the dynamic set-cover problem, we maintain anO(f2)-
approximately optimal solution inO(f · log(m + n)) amortized update time, wheref is the maximum
“frequency” of an element,n is the number of sets, andm is the maximum number of elements in the uni-
verse at any point in time. (2) For the dynamicb-matching problem, we maintain anO(1)-approximately
optimal solution inO(log3 n) amortized update time, wheren is the number of nodes in the graph.

1 Introduction

The primal-dual method lies at the heart of the design of algorithms for combinatorial optimization prob-
lems. The basic idea, contained in the “Hungarian Method” [16], was extended and formalized by Dantzig
et al. [6] as a general framework for linear programming, and thus it became applicable to a large variety
of problems. Few decades later, Bar-Yehuda et al. [2] were the first to apply the primal-dual method to
the design of approximation algorithms. Subsequently, this paradigm was applied to obtain approximation
algorithms for a wide collection of NP-hard problems [10, 11]. When the primal-dual method is applied to
approximation algorithms, an approximate solution to the problem and a feasible solution to the dual of an
LP relaxation are constructed simultaneously, and the performance guarantee is proved by comparing the
values of both solutions. The primal-dual method was also extended to online problems [5]. Here, the input
is revealed only in parts, and an online algorithm is required to respond to each new input upon its arrival
(without being able to see the future). The algorithm’s performance is compared against the benchmark of
an optimal omniscient algorithm that can view the entire input sequence in advance.

In this paper, we focus on dynamic algorithms for optimization problems. In the dynamic setting, the
input of a problem is being changed via a sequence of updates,and after each update one is interested in
maintaining the solution to the problem much faster than recomputing it from scratch. We remark that the
dynamic and the online setting are completely different: inthe dynamic scenario one is concerned more with
guaranteeing fast (worst-case or amortized) update times rather than comparing the algorithms’ performance
against optimal offline algorithms. As a main contribution of this paper, we develop a dynamic version of the
primal-dual method, thus opening up a completely new area ofapplication of the primal-dual paradigm to

∗A preliminary version of this paper appeared in ICALP’ 2015 (Track A).
†The Institute of Mathematical Sciences, Chennai, India. Email: bsayan@imsc.res.in
‡Faculty of Computer Science, University of Vienna, Austria. Email: monika.henzinger@univie.ac.at. The research leading to

this work has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
number 317532 and from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-
2013)/ERC grant agreement number 340506.

§Università di Roma “Tor Vergata”, Italy. E-mail: giuseppe.italiano@uniroma2.it. Partially supported by MIUR, the Italian
Ministry of Education, University and Research, under Project AMANDA (Algorithmics for MAssive and Networked DAta).

1

http://arxiv.org/abs/1604.05337v1

the design of dynamic algorithms. With some careful insights, our recent algorithms for dynamic matching
and dynamic vertex cover [4] can be reinterpreted in this new framework. In this paper, we show how
to apply the new dynamic primal-dual framework to the designof two other optimization problems: the
dynamic set-cover and the dynamicb-matching. Before proceeding any further, we formally define these
problems.

Definition 1.1 (Set-Cover). We are given a universeU of at mostm elements, and a collectionS of n sets
S ⊆ U . Each setS ∈ S has a (polynomially bounded byn) “cost” cS > 0. The goal is to select a
subsetS ′ ⊆ S such that each element inU is covered by some setS ∈ S ′ and the total cost

∑

S∈S′ c(S) is
minimized.

Definition 1.2 (Dynamic Set-Cover). Consider a dynamic version of the problem specified in Definition 1.1,
where the collectionS, the costs{cS}, S ∈ S, the upper boundf on the maximum frequencymaxu∈U |{S ∈
S : u ∈ S}|, and the upper boundm on the maximum size of the universeU remain fixed. The universeU ,
on the other hand, keeps changing dynamically. In the beginning, we haveU = ∅. At each time-step, either
an elementu is inserted into the universeU and we get to know which sets inS containu, or some element
is deleted from the universe. The goal is to maintain an approximately optimal solution to the set-cover
problem in this dynamic setting.

Definition 1.3 (b-Matching). We are given an input graphG = (V,E) with |V | = n nodes, where each
nodev ∈ V has a capacitycv ∈ {1, . . . , n}. A b-matching is a subsetE′ ⊆ E of edges such that each node
v has at mostcv edges incident to it inE′. The goal is to select theb-matching of maximum cardinality.

Definition 1.4 (Dynamic b-Matching). Consider a dynamic version of the problem specified in Defini-
tion 1.3, where the node setV and the capacities{cv}, v ∈ V remain fixed. The edge setE, on the
other hand, keeps changing dynamically. In the beginning, we haveE = ∅. At each time-step, either a new
edge is inserted into the graph or some existing edge is deleted from the graph. The goal is to maintain an
approximately optimal solution to theb-matching problem in this dynamic setting.

As stated in [5, 19], the set-cover problem has played a pivotal role both for approximation and for
online algorithms, and thus it seems a natural problem to consider in our dynamic setting. Our definition
of dynamic set-cover is inspired by the standard formulation of the online set-cover problem [5], where
the elements arrive online. There exists algorithms for online set cover that achieve a competitive ratio of
O(log n logm) [5], and it is also known that this bound is asymptotically tight [15].

Our Techniques. Roughly speaking, our dynamic version of the primal-dual method works as follows.
We start with a feasible primal solution and an infeasible dual solution for the problem at hand. Next, we
consider the following process: gradually increase all theprimal variables at the same rate, and whenever
a primal constraint becomes tight, stop the growth of all theprimal variables involved in that constraint,
and update accordingly the corresponding dual variable. This primal growth process is used to define a
suitable data structure based on a hierarchical partition.A level in this partition is a set of the dual variables
whose corresponding primal constraints became (approximately) tight at the same time-instant. To solve the
dynamic problem, we maintain the data structure, the hierarchical partition and the corresponding primal-
dual solution dynamically using a simple greedy procedure.This is sufficient for solving the dynamic
set-cover problem. For the dynamicb-matching problem, we need some additional ideas. We first get a
fractional solution to the problem using the previous technique. To obtain an integral solution, we perform
randomized rounding on the fractional solution in a dynamicsetting. This is done by sampling the edges
with probabilities that are determined by the fractional solution.

2

Our Results. Our new dynamic primal-dual framework yields efficient dynamic algorithms for both the
dynamic set-cover problem and the dynamicb-matching problem. In particular, for the dynamic set-cover
problem we maintain aO(f2)-approximately optimal solution inO(f · log(m+ n)) amortized update time
(see Theorem3.2 in Section3). On the other hand, for the dynamicb-matching problem, we maintain a
O(1)-approximation inO(log3 n) amortized time per update (see Theorem4.8 in Section4). Further, we
can show that an edge insertion/deletion in the input graph,on average, leads toO(log2 n) changes in the
set of matched edges maintained by our algorithm.

Related Work. The design of dynamic algorithms is one of the classic areas in theoretical computer
science with a countless number of applications. Dynamic graph algorithms have received special attention,
and there have been many efficient algorithms for several dynamic graph problems, including dynamic
connectivity, minimum spanning trees, transitive closure, shortest paths and matching problems (see, e.g.,
the survey in [7]). The b-matching problem contains as a special case matching problems, for which many
dynamic algorithms are known [3, 4, 12, 17, 18]. Unfortunately, none of the results on dynamic matching
extends to the dynamicb-matching problem. To the best of our knowledge, no previousresult was known
for dynamic set-cover problem.

In the static setting, a simple greedy algorithm for the set-cover problem givesO(log n) approxi-
mation [13], whereas a primal-dual algorithm givesf -approximation [2]. Both the algorithms run in
O(f · (m + n))-time. On the other hand, there exists some constantc > 0 such that obtaining ac log n-
approximation to the set cover problem in polynomial time will imply P = NP [8]. Similarly, under the
Unique-Games conjecture, one cannot obtain a better thanf -approximation to the set cover problem in
polynomial time [14].

For the maximumb-matching problem, the best known exact algorithm runs inO(mn log n)-time [9]
in the static setting, wheren (resp. m) is the number of nodes (resp. edges) in the graph. Very recently,
Ahn and Guha [1] presented another static algorithm that runs inO(m · poly(δ−1, log n))-time and returns
a (1 + δ)-approximation for maximumb-matching, for anyδ > 0.

Roadmap for the rest of the paper. We first define a problem called “fractional hypergraphb-matching”
(see Definitions1.5 and1.6). In Section2, we show how to maintain a fractional hypergraphb-matching
in a dynamic setting. In Section3, we use our result from Section2 to design a dynamic algorithm for set
cover. Finally, in Section4 we present our result for dynamicb-matching.

Definition 1.5 (Fractional Hypergraphb-Matching). We are given an input hypergraphG = (V,E) with
|V | = n nodes andat mostm ≥ |E| edges. LetEv ⊆ E denote the set of edges incident upon a nodev ∈ V ,
and letVe = {v ∈ V : e ∈ Ev} denote the set of nodes an edgee ∈ E is incident upon. Letcv > 0 denote
the “capacity” of a nodev ∈ V , and letµ ≥ 1 denote the “multiplicity” of an edge. We assume that theµ
and thecv values are polynomially bounded byn. Our goal is to assign a “weight”x(e) ∈ [0, µ] to each
edgee ∈ E in such a way that (a)

∑

e∈Ev
x(e) ≤ cv for all nodesv ∈ V , and (b) the sum of the weights of

all the edges is maximized.

Definition 1.6 (Dynamic Fractional Hypergraphb-Matching). Consider a dynamic version of the problem
specified in Definition1.5, where the node-setV , the capacities{cv}, v ∈ V , the upper boundf on the
maximum frequencymaxe∈E |Ve|, and the upper boundm on the maximum number of edges remain fixed.
The edge-setE, on the other hand, keeps changing dynamically. In the beginning, we haveE = ∅. At each
time-step, either an edge is inserted into the graph or an edge is deleted from the graph. The goal is to
maintain an approximately optimal solution to the problem in this dynamic setting.

3

2 Maintaining a Fractional Hypergraph b-Matching in a Dynamic Setting

2.1 Preliminaries

We first define a linear program for fractional hypergraphb-matching (Definition1.5). Next, we define the
concept of a “λ-maximal” solution of this LP (Definition2.1) and prove the approximation guarantee for
such a solution (Theorem2.2). Our main result is summarized in Theorem2.3and Corollary2.4.

Below, we write a linear program for a fractional hypergraphb-matching.

Primal LP: Maximize
∑

e∈E

x(e) (1)

subject to:
∑

e∈Ev

x(e) ≤ cv ∀v ∈ V. (2)

0 ≤ x(e) ≤ µ ∀e∈ E. (3)

Dual LP: Minimize
∑

v∈V

cv · y(v) +
∑

e∈E

µ · z(e) (4)

subject to: z(e) +
∑

v∈Ve

y(v) ≥ 1 ∀e ∈ E. (5)

y(v), z(e) ≥ 0 ∀v ∈ V, e ∈ E. (6)

We next define the concept of a “λ-maximal” solution.

Definition 2.1. A feasible solution to LP (1) is λ-maximal (forλ ≥ 1) iff for every edgee ∈ E with
x(e) < µ, there is some nodev ∈ Ve such that

∑

e′∈Ev
x(e′) ≥ cv/λ.

Theorem 2.2. Letf ≥ maxe∈E |Ve| be an upper bound on the maximum possible “frequency” of an edge.
Let OPT be the optimal objective value of LP (1). Anyλ-maximal solution to LP (1) has an objective value
that is at least OPT/(λf + 1).

Proof. Let {x∗(e)} be aλ-maximal solution to the primal LP. Construct a dual solution {y∗(v), z∗(e)}, as
follows. For everyv ∈ V , sety∗(v) = 1 if

∑

e∈Ev
x∗(e) ≥ cv/λ, andy∗(v) = 0 otherwise. For every

e ∈ E, setz∗(e) = 1 if x∗(e) = µ andz∗(e) = 0 otherwise.
Consider the dual constraint corresponding to any edgee′ ∈ E. Since the primal solution{x∗(e)} is

λ-maximal, eitherx∗(e) = µ or there is somev′ ∈ Ve′ for which y∗(v′) = 1. In the former case we have
z∗(e) = 1, whereas in the latter case we havey∗(v′) = 1. Hence, the dual constraint under consideration is
satisfied. This shows that the values{y∗(v), z∗(e)}, constitute a feasible dual solution. Next, we infer that:

∑

v∈V

cv · y
∗(v) +

∑

e∈E

µ · z∗(e)

=
∑

v∈V :y∗(v)=1

cv +
∑

e∈E:z∗(e)=1

µ (7)

≤
∑

v∈V :y∗(v)=1

λ ·
∑

e∈Ev

x∗(e) +
∑

e∈E:z∗(e)=1

x∗(e) (8)

≤
∑

v∈V

λ ·
∑

e∈Ev

x∗(e) +
∑

e∈E

x∗(e)

≤ λ · f ·
∑

e∈E

x∗(e) +
∑

e∈E

x∗(e) (9)

= (λf + 1) ·
∑

e∈E

x∗(e)

4

Equation7 holds sincey∗(v) ∈ {0, 1} for all v ∈ V andz∗(e) ∈ {0, 1} for all e ∈ E. Equation8 holds
sincey∗(v) = 1 only if

∑

e∈Ev
x∗(e) ≥ cv/λ, and sincex∗(e) = µ for all e ∈ E with z∗(e) = 1. Equation9

holds since each edge can be incident upon at mostf nodes.
Thus, we have constructed a feasible dual solution whose objective is at most(λf+1)-times the objective

of theλ-maximal primal solution. The theorem now follows from weakduality.

Our main result is summarized below. For the rest of Section2, we focus on proving Theorem2.3.

Theorem 2.3. We can maintain a(f + 1 + ǫf)-maximal solution to the dynamic fractional hypergraph
b-matching problem inO(f · log(m+ n)/ǫ2) amortized update time.

Corollary 2.4. We can maintain anO(f2)-approximate solution to the dynamic hypergraphb-matching
problem inO(f log(m+ n)/ǫ2) amortized update time.

Proof. Follows from Theorem2.2and Theorem2.3.

2.2 The (α, β)-partition and its properties.

For the time being, we restrict ourselves to the static setting. Inspired by the primal-dual method for set-
cover, we consider the following algorithm for the fractional hypergraphb-matching problem.

• Consider an initial primal solution withx(e)← 0 for all e ∈ E, and defineF ← E.

• WHILE there is some primal constraint that is not tight:

– Keep increasing the primal variables{x(e)}, e ∈ F , uniformly at the same rate till some pri-
mal constraint becomes tight. At that instant, “freeze” allthe primal variables involved in that
constraint and delete them from the setF , and set the corresponding dual variable to one.

In Figure1, we define a variant of the above procedure that happens to be easier to maintain in a dynamic
setting. The main idea is to discretize the continuous primal growth process. Definecmin = minv∈V cv,
and without any loss of generality, assume thatcmin > 0. Fix two parametersα, β > 1, and defineL =
⌈logβ(mµα/cmin)⌉.

Claim 2.5. If we setx(e)← µ · β−L for all e ∈ E, then we get a feasible primal solution.

Proof. Clearly, x(e) ≤ µ for all e ∈ E. Now, consider any nodev ∈ V . We have
∑

e∈Ev x(e) =

|Ev| · µ · β
−L ≤ |E| · µ · β−L ≤ m · µ · β−L ≤ m · µ · (cmin/(mµα)) = cmin/α < cv. Hence, all the primal

constraints are satisfied.

01. Setx(e)← µ · β−L for all e ∈ E, and definec∗v = cv/(fαβ) for all v ∈ V .
02. SetVL ← {v ∈ V :

∑

e∈Ev
x(e) ≥ c∗v}, andEL ←

⋃

v∈VL
Ev.

03. FOR i = L− 1 to 1:
04. Setx(e)← x(e) · β for all e ∈ E \

⋃L
k=i+1Ei.

05. SetVi ←
{

v ∈ V \
⋃L

k=i+1 Vk :
∑

e∈Ev
x(e) ≥ c∗v

}

.

06. SetEi ←
⋃

v∈Vi
Ev.

07. SetV0 ← V \
⋃L

k=1 Vi, andE0 ←
⋃

v∈V0
Ev.

08. Setx(e)← x(e) · β for all e ∈ E0.

Figure 1: DISCRETE-PRIMAL-DUAL().

5

Our new algorithm is described in Figure1. We initialize our primal solution by settingx(e) ← µβ−L

for every edgee ∈ E, as per Claim2.5. We call a nodev nearly-tight if its corresponding primal constraint
is tight within a factor offαβ, andslackotherwise. Furthermore, we call an edgenearly-tightif it is incident
upon some nearly tight node, andslackotherwise. LetVL ⊆ V andEL ⊆ E respectively denote the sets of
nearly tight nodes and edges, immediately after the initialization step. The algorithm then performsL − 1
iterations.

At iteration i ∈ {L − 1, . . . , 1}, the algorithm increases the weightx(e) of every slack edgee by a
factor ofβ. Since the total weight received by every slack nodev (from its incident edges) never exceeds
cv/(fαβ), this weight-increase step does not violate any primal constraint. The algorithm then definesVi

(resp.Ei) to be the set of new nodes (resp. edges) that become nearly-tight due to this weight-increase step.
Finally, the algorithm definesV0 (resp.E0) to be the set of nodes (resp. edges) that are slack at the end

of iterationi = 1. It terminates after increasing the weight of every edge inE0 by a factor ofβ.
When the algorithm terminates, it is easy to check thatx(e) = µ · β−i for every edgee ∈ Ei, i ∈

{0, . . . , L}. We also havec∗v ≤
∑

e∈Ev
x(e) ≤ β · c∗v for every nodev ∈

⋃L
k=1 Vk, and

∑

e∈Ev
x(e) ≤ β · c∗v

for every nodev ∈ V0. Furthermore, at the end of the algorithm, every edgee ∈ E \E0 is nearly-tight, and
every edgee ∈ E0 has weightx(e) = µ. We, therefore, reach the following conclusion.

Claim 2.6. The algorithm described in Figure1 returns an(fαβ)-maximal solution to the fractional hy-
pergraphb-matching problem with the additional property thatc∗v ≤

∑

e∈Ev x(e) ≤ β · c∗v for every node

v ∈
⋃L

k=1 Vk, and
∑

e∈Ev
x(e) ≤ β · c∗v for every nodev ∈ V0.

Our goal is to make a variant of the procedure in Figure1 work in a dynamic setting. Towards this
end, we introduce the concept of an(α, β)-partition (see Definition2.7) satisfying a certain invariant (see
Invariant2.9). The reader is encouraged to notice the similarities between this construct and the output of
the procedure in Figure1.

Definition 2.7. An (α, β)-partition of the graphG partitions its node-setV into subsetsV0 . . . VL, where
L = ⌈logβ(mµα/cmin)⌉ andα, β > 1. For i ∈ {0, . . . , L}, we identify the subsetVi as theith “level”
of this partition, and calli the level ℓ(v) of a nodev. We also define the level of each edgee ∈ E as
ℓ(e) = maxv∈Ve {ℓ(v)}, and assign a “weight”w(e) = µ · β−ℓ(e) to the edgee.

Given an(α, β)-partition, letEv(i) ⊆ Ev denote the set of edges incident tov that are in theith level,
and letEv(i, j) ⊆ Ev denote the set of edges incident tov whose levels are in the range[i, j].

Ev(i) = {e ∈ Ev : ℓ(e) = i} ∀v ∈ V ; i ∈ {0, . . . , L} (10)

Ev(i, j) =

j
⋃

k=i

Ev(k) ∀v ∈ V ; i, j ∈ {0, . . . , L}, i ≤ j. (11)

Similarly, we define the notationsDv andDv(i, j).

Dv = |Ev| (12)

Dv(i) = |Ev(i)| (13)

Dv(i, j) = |Ev(i, j)| (14)

Given an(α, β)-partition, letWv =
∑

e∈Ev
w(e) denote the total weight a nodev ∈ V receives from the

edges incident to it. We also define the notationWv(i). It gives the total weight the nodev would receive
from the edges incident to it,if the nodev itself were to go to theith level. Thus, we haveWv = Wv(ℓ(v)).

6

Since the weight of an edgee in the hierarchical partition is given byw(e) = µ · β−ℓ(e), we derive the
following equations for all nodesv ∈ V .

Wv =
∑

e∈Ev

µ · β−ℓ(e). (15)

Wv(i) =
∑

e∈Ev

µ · β−max(ℓ(e),i) ∀i ∈ {0, . . . , L}. (16)

Lemma 2.8. An (α, β)-partition satisfies the following conditions for all nodesv ∈ V .

Wv(L) ≤ cmin/α (17)

Wv(L) ≤ · · · ≤Wv(i) ≤ · · · ≤Wv(0) (18)

Wv(i) ≤ β ·Wv(i+ 1) ∀i ∈ {0, . . . , L− 1}. (19)

Proof. Fix any(α, β)-partition and any nodev ∈ V . We prove the first part of the lemma as follows.

Wv(L) =
∑

e∈Ev

µ · β−max(ℓ(e),L) =
∑

e∈Ev

µ · β−L ≤ mµ · β−L ≤ mµ · β− logβ(mµα/cmin) = cmin/α.

We now fix any leveli ∈ {0, . . . , L− 1} and show that the(α, β)-partition satisfies equation18.

Wv(i+ 1) =
∑

e∈Ev

µ · β−max(ℓ(e),i+1) ≤
∑

e∈Ev

µ · β−max(ℓ(e),i) = Wv(i).

Finally, we prove equation19.

Wv(i) =
∑

e∈Ev

µ · β−max(ℓ(e),i) = µ · β ·
∑

e∈Ev

β−1−max(ℓ(e),i)

≤ µ · β ·
∑

e∈Ev

β−max(ℓ(e),i+1) = β ·Wv(i+ 1)

Fix any nodev ∈ V , and focus on the value ofWv(i) as we go down from the highest leveli = L to the
lowest leveli = 0. Lemma2.8states thatWv(i) ≤ cmin/α wheni = L, thatWv(i) keeps increasing as we
go down the levels one after another, and thatWv(i) increases by at most a factor ofβ between consecutive
levels.

We will maintain a specific type of(α, β)-partition, where each node is assigned to a level in a way that
satisfies the following Invariant2.9. This invariant is a relaxation of the bounds on

∑

e∈Ev
x(e) for every

nodev stated in Claim2.6.

Invariant 2.9. Definec∗v = cv/(fαβ). For every nodev ∈ V \ V0, it holds thatc∗v ≤ Wv ≤ fαβ · c∗v and
for every nodev ∈ V0 it holds thatWv ≤ fαβ · c∗v.

Theorem 2.10.Consider an(α, β)-partition that satisfies Invariant2.9. The edge-weights{w(e)}, e ∈ E,
give an(fαβ)-maximal solution to LP (1).

Proof. By Invariant2.9, we haveWv ≤ (fαβ) · c∗v = cv for every nodev ∈ V . Next, note thatw(e) ≤ µ
for every edgee ∈ E. Thus, the weights{w(e)}, e ∈ E, define a feasible solution to LP (1).

We claim that for every edgee ∈ E with w(e) < µ, there is some nodev ∈ Ve for which Wv ≥
cv/(fαβ). This will imply that the weights{w(e)}, e ∈ E, form an(fαβ)-maximal feasible solution to the
primal LP.

To prove the claim, consider any edgee ∈ E with w(e) < µ. Sincew(e) = µβ−ℓ(e), this implies that
ℓ(e) > 0. Let v ∈ argmaxu∈Ve {ℓ(u)}. Note thatℓ(e) = ℓ(v). This implies thatℓ(v) > 0. Hence, by
Invariant2.9, we haveWv ≥ c∗v = cv/(fαβ). This concludes the proof of the theorem.

7

2.3 The algorithm: Handling the insertion/deletion of an edge.

We now show how to maintain an(α, β)-partition under edge insertions and deletions. A node is called
dirty if it violates Invariant2.9, andcleanotherwise. At the beginning of the algorithm the edge-setE is
empty, and, thus, every node is initially clean and at level zero. Now consider the time instant just prior to
thetth update. By induction hypothesis, at this instant every nodeis clean. Then thetth update takes place,
which inserts (resp. deletes) an edgee in E with weightw(e) = µβ−ℓ(e). This increases (resp. decreases)
the weights{Wv}, v ∈ Ve. Due to this change, the nodesv ∈ Ve might become dirty. To recover from this,
we call the subroutine in Figure2, which works as follows

01. WHILE there exists a dirty nodev
02. IF Wv > fαβc∗v, THEN

// If true, then by equation17, we haveℓ(v) < L.
03. Increment the level ofv by settingℓ(v)← ℓ(v) + 1.
04. ELSE IF (Wv < c∗v andℓ(v) > 0), THEN

05. Decrement the level ofv by settingℓ(v)← ℓ(v)− 1.

Figure 2: RECOVER().

Consider any nodev ∈ V and suppose thatWv > fαβc∗v = cv ≥ cmin. In this event, the algorithm
increments the level of the node. sinceα > 1, equation17 implies thatWv(L) < Wv(ℓ(v)) and, hence, we
haveL > ℓ(v). In other words, when the procedure described in Figure2 decides to increment the level of
a dirty nodev (Step 02), we know for sure that the current level ofv is strictly less thanL (the highest level
in the(α, β)-partition).

Next, consider an edgee ∈ Ev. If we changeℓ(v), then this may change the weightw(e), and this in
turn may change the weights{Wz}, z ∈ Ve. Thus, a single iteration of the WHILE loop in Figure2 may lead
to some clean nodes becoming dirty, and some other dirty nodes becoming clean. If and when the WHILE

loop terminates, however, we are guaranteed that every nodeis clean and that Invariant2.9holds.

2.4 Data structures.

We now describe the relevant data structures that will be used by our algorithm.

• We maintain for each nodev ∈ V :

– A counter LEVEL[v] to keep track of the current level ofv. Thus, we set LEVEL[v]← ℓ(v).

– A counter WEIGHT[v] to keep track of the weight ofv. Thus, we set WEIGHT[v]←Wv.

– For every leveli > LEVEL[v], we store the set of edgesEv(i) in the form of a doubly linked list
INCIDENT-EDGESv[i]. For every leveli ≤ LEVEL[v], the list INCIDENT-EDGESv[i] is empty.

– For level i = LEVEL[v], we store the set of edgesEv(0, i) in the form of a doubly linked list
INCIDENT-EDGESv[0, i]. For every leveli 6= LEVEL[v], the list INCIDENT-EDGESv[0, i] is
empty.

• When the graph gets updated due to an edge insertion/deletion, we may discover that a node violates
Invariant2.9. Recall that such a node is calleddirty, and we store the set of such nodes as a doubly
linked list DIRTY-NODES. For every nodev ∈ V , we maintain a bit STATUS[v] ∈ {dirty, clean}
that indicates if the node is dirty or not. Every dirty node stores a pointer to its position in the list
DIRTY-NODES.

8

• The collection of linked lists
⋃L

i=0 {INCIDENT-EDGESv[0, i], INCIDENT-EDGESv[i]} is denoted by
the phrase“incidence lists ofv” . For every edgee ∈ E, we maintain a counter LEVEL[e] to keep track
of ℓ(e). Furthermore, for every edgee ∈ E, we maintain|Ve| bidirectional pointers corresponding
to the nodes inVe. The pointer corresponding to a nodev ∈ Ve points to the position ofe in the
incidence lists ofv. Using these pointers, we can update the incidence lists of the relevant nodes when
the edgee is inserted into (resp. deleted from) the graph, or when somenodev ∈ Ve increases (resp.
decreases) its level by one.

2.5 Bounding the amortized update time.

We devote this section to the proof of the following theorem.

Theorem 2.11.Fix anyǫ ∈ (0, 1), α = 1+1/f +3ǫ andβ = 1+ ǫ. Starting from an empty graph, we can
maintain an(α, β) partition in G satisfying Invariant2.9 in O(f log(m+ n)/ǫ2) amortized update time.

The main idea is as follows. After an edge insertion or deletion the data structure can be updated in
timeO(1), plus the time to adjust the levels of the nodes, i.e., the time for procedure RECOVER. To bound
the latter quantity we note that each time the level of an edgee ∈ E changes, we have to update at mostf
lists (one corresponding to each nodev ∈ Ve). Hence, the time taken to update the lists is given byf · δl,
whereδl is the number of times the procedure in Figure2 changes the level of an edge. Below, we show
thatδl ≤ t · O(L/ǫ) = t · O(log(m + n)/ǫ2) after t edge insertions/deletions inG starting from an empty
graph. This gives the requiredO(fδl/t) = O(f log(m+ n)/ǫ2) bound on the amortized update time.

Hence, to complete the proof of Theorem2.11, we need to give an amortized bound onthe number of
times we have to change the level (or, equivalently, the weight) of an already existing edge. During a single
iteration of the WHILE loop in Figure2, this number is exactlyDv(0, i) when nodev goes from leveli to
level i+ 1, and at mostDv(0, i) when nodev goes from leveli to leveli− 1.

Specifically, we devote the rest of this section to the proof of Theorem2.12, which implies that on
average we change the weights ofO(L/ǫ) = O(log(m+ n)/ǫ2) edges per update inG.

Theorem 2.12.Setα← 1+1/f+3ǫ andβ ← 1+ǫ. In the beginning, whenG is an empty graph, initialize
a counterCOUNT ← 0. Subsequently, each time we change the weight of an already existing edge in the
hierarchical partition, setCOUNT ← COUNT + 1. ThenCOUNT = O(tL/ǫ) just after we handle thetth

update inG.

Recall that the level of an edgee is defined asℓ(e) = maxv∈Ve(ℓ(v)). Consider the following thought
experiment. We have abank account, and initially, when there are no edges in the graph, the bankaccount
has a balance of zero dollars. For each subsequent edge insertion/deletion, at most3L/ǫ dollars are deposited
to the bank account; and every time our algorithm changes thelevel of an already existing edge, one dollar is
withdrawn from it. We show that the bank account never runs out of money, and this implies that COUNT =
O(tL/ǫ) aftert edge insertions/deletions starting from an empty graph.

Let B denote the total amount of money (or potential) in the bank account at the present moment. We
keep track ofB by distributing anǫ-fraction of it among the nodes and the current set of edges inthe graph.

B = (1/ǫ) ·

(

∑

e∈E

Φ(e) +
∑

v∈V

Ψ(v)

)

(20)

In the above equation, the amount of money (or potential) associated with an edgee ∈ E is given by
Φ(e), and the amount of money (or potential) associated with a nodev ∈ V is given byΨ(v). At every point
in time, the potentials{Φ(e),Ψ(v)} will be determined by two invariants. But, before stating the invariants,
we need to define the concepts of “active” and “passive” nodes.

9

Definition 2.13. Consider any nodev ∈ V . In the beginning, there is no edge incident upon the nodev,
and we initialize a counterκv ← 0. Subsequently, whenever an edge-insertion occurs in the graph, if the
inserted edge is incident uponv, then we setκv ← κv+1. At any given time-step, we say that a nodev ∈ V
is activeif µκv ≥ cv andpassiveotherwise.

It is easy to check that if a node is active at time-stept, then it will remain active at every time-step
t′ > t. A further interesting consequence of the above definition is that a passive node is always at level
zero, as shown in the lemma below.

Lemma 2.14. At any given time-step, if a nodev ∈ V is passive, then we haveℓ(v) = 0.

Proof. We prove this by induction. Letℓ(t)(v) andκ(t)v respectively denote the level of the nodev and the

value of the counterκv at time-stept. Further, letW (t)
v denote the value ofWv at time-stept. Initially,

at time-stept = 0, the graph is empty, we haveW (0)
v = 0, and henceℓ(0)(v) = 0. Now, by induction

hypothesis, suppose that at time-stept the nodev is passive andℓ(t)(v) = 0, and, furthermore, suppose that
the nodev remains passive at time-step(t + 1). Given this hypothesis, we claim thatℓ(t+1)(v) = 0. The
lemma will follow if we can prove the claim.

To prove the claim, note that since the nodev is passive at time-step(t + 1), we haveκ(t+1)
v µ < cv =

fαβc∗v. Since the nodev has at mostκ(t+1)
v edges incident to it at time-step(t+1), and since each of these

edges has weight at mostµ, we haveW (t+1)
v ≤ κ

(t+1)
v µ < fαβc∗v. Now, recall Figure2. Sinceℓ(t)(v) = 0

and sinceW (t+1)
v < fαβc∗v, the nodev can never become dirty during the execution of the procedurein

Figure2 after the edge insertion/deletion that occurs at time-step(t+ 1). Thus, the nodev will not change
its level, and we will haveℓ(t+1)(v) = 0. This concludes the proof.

We are now ready to state the invariants that define edge and node potentials.

Invariant 2.15. For every edgee ∈ E, we have:

Φ(e) = (1 + ǫ) · (L− ℓ(e))

Invariant 2.16. Recall Definition2.13. For every nodev ∈ V , we have:

Ψ(v) =

{

(

βℓ(v)+1/(fµ(β − 1))
)

·max (0, fα · c∗v −Wv) if v is active;

(β/(f(β − 1)) · κv otherwise.

When the algorithm starts, the graph has zero edges, and all the nodesv ∈ V are passive and at level
0 with Wv = 0 andκv = 0 < cv/µ. At that moment, Invariant2.16setsΨ(v) = 0 for all nodesv ∈ V .
Consequently, equation20 implies thatB = 0. Theorem2.12, therefore, will follow if we can prove the
next two lemmas. Their proofs appear in Section2.6and Section2.7respectively.

Lemma 2.17.Consider the insertion (resp. deletion) of an edgee in E. It creates (resp. destroys) the weight
w(e) = µ · β−ℓ(e), creates (resp. destroys) the potentialΦ(e), and changes the potentials{Ψ(v)}, v ∈ Ve.
Due to these changes, the total potentialB increases by at most3L/ǫ.

Lemma 2.18. During every single iteration of theWHILE loop in Figure2, the total increase inCOUNT is
no more than the net decrease in the potentialB.

10

2.6 Proof of Lemma2.17.

Edge-insertion. Suppose that an edgee is inserted into the graph at time-stept. Then the potentialΦ(e) is
created and gets a value of at most(1 + ǫ)L units. Now, fix any nodev ∈ Ve, and consider three possible
cases.

Case 1.The nodev was passive at time-step(t− 1) and remains passive at time-stept. In this case, due to
the edge-insertion, the potentialΨ(v) increases byβ/(f(β − 1)).

Case 2.The nodev was passive at time-step(t− 1) and becomes active at time-stept. In this case, we must

have:cv − µ ≤ µκ
(t−1)
v < cv ≤ µκ

(t)
v . By Invariant2.16, just before the insertion of the edgee we had:

Ψ(v) = {β/(fµ(β − 1))} · µκ(t−1)
v

≥ {β/(fµ(β − 1))} · (cv − µ) (21)

Since the nodev was passive at time-step(t − 1), by Lemma2.14we infer thatℓ(t−1)(v) = 0. Hence, by
Invariant2.16, just after the insertion of the edgee we get:

Ψ(v) = {β/(fµ(β − 1))} ·max (0, fα · c∗v −Wv)

≤ {β/(fµ(β − 1))} · (fαc∗v)

≤ {β/(fµ(β − 1))} · cv (22)

By equations21, 22, the potentialΨ(v) increases by at most{β/(fµ(β − 1))} · (cv − (cv − µ)) =
{β/(f(β − 1))}.

Case 3.The nodev was active at time-step(t−1). In this case, clearly the nodev remains active at time-step
t, the weightWv increases, and hence the potentialΨ(v) can only decrease.

From the above discussion, we conclude that the potentialΨ(v) increases by at mostβ/(f(β−1)) for every
nodev ∈ Ve. Since|Ve| ≤ f , this accounts for a net increase of at mostf · β/(f(β − 1)) = β/(β − 1) =
β/ǫ ≤ L/ǫ. Finally, recall that the potentialΦ(e) is created and gets a value of at most(1 + ǫ)L ≤ 2L/ǫ
units. Thus, the net increase in the potentialB is at mostL/ǫ+ 2L/ǫ = 3L/ǫ.

Edge-deletion. If an edgee is deleted fromE, then the potentialΦ(e) is destroyed. The weightWv of
each nodev ∈ Ve decreases by at mostµ · β−ℓ(v). Furthermore, no passive node becomes active due to
this edge-deletion, and, in particular, the counterκv remains unchanged for every nodev ∈ V . Hence, each
of the potentials{Ψ(v)}, v ∈ Ve, increases by at mostβℓ(v)+1/(fµ(β − 1)) · µβ−ℓ(v) = β/(f(β − 1)) =
((1+ 1/ǫ)/f) ≤ 2L/(ǫf). The potentials of the remaining nodes and edges do not change. Since|Ve| ≤ f ,
by equation20, the net increase inB is at most2L/ǫ ≤ 3L/ǫ.

2.7 Proof of Lemma2.18.

Throughout this section, fix a single iteration of the WHILE loop in Figure2 and suppose that it changes
the level of a dirty nodev by one unit. We use the superscript0 (resp. 1) on a symbol to denote its state
at the time instant immediately prior to (resp. after) that specific iteration of the WHILE loop. Further, we
preface a symbol withδ to denote the net decrease in its value due to that iteration.For example, consider
the potentialB. We haveB = B0 immediately before the iteration begins, andB = B1 immediately after
iteration ends. We also haveδB = B0 − B1.

A change in the level of nodev does not affect the potentials of the edgese ∈ E \ Ev. This observation,
coupled with equation20, gives us the following guarantee.

11

δB = (1/ǫ) ·



δΨ(v) +
∑

e∈Ev

δΦ(e) +
∑

u∈V \{v}

δΨ(u)



 (23)

Remark. Since the nodev is changing its level, it must be active. Hence, by Invariant2.16, we must have
Ψ(v) = βℓ(v)+1/(fµ(β−1)) ·max(0, fαc∗v−Wv). We will use this observation multiple times throughout
the rest of this section.

We divide the proof of Lemma2.18 into two possible cases, depending upon whether the concerned
iteration of the WHILE loop increments or decrements the level ofv. The main approach to the proof
remains the same in each case. We first give an upper bound on the increase in COUNT due to the iteration.
Next, we separately lower bound each of the following quantities: δΨ(v), δΦ(e) for all e ∈ Ev, andδΨ(u)
for all u ∈ V \ {v}. Finally, applying equation23, we derive thatδB is sufficiently large to pay for the
increase in COUNT.

Remark. Note thatℓ0(u) = ℓ1(u) for all nodesu ∈ V \ {v}, andE0u = E1u for all nodesu ∈ V . Thus, we
will use the symbolsℓ(u) andEu without any ambiguity for all such nodes.

Case 1: The level of the nodev increases fromk to (k + 1).

Claim 2.19. We haveℓ0(e) = k andℓ1(e) = k + 1 for every edgee ∈ E0v (0, k).

Proof. Consider edgee ∈ E0v (0, k). Sincee ∈ E0v (0, k), we haveℓ0(e) ≤ k. Sinceℓ0(v) = k ande ∈ Ev,
we must haveℓ0(e) = k. Finally, sinceℓ1(u) = ℓ0(u) for all nodesu ∈ V \ {v}, we conclude that
ℓ1(e) = ℓ1(v) = k + 1.

Claim 2.20. We haveℓ0(e) = ℓ1(e) for every edgee ∈ E0v (k + 1, L).

Proof. Consider any edgee ∈ E0v (k + 1, L). Sinceℓ0(e) ≥ k + 1 andℓ0(v) = k, there must be some node
u ∈ V \ {v} such thatℓ0(u) ≥ k + 1, e ∈ Eu andℓ0(e) = ℓ0(u). Sinceℓ1(u) = ℓ0(u) ≥ k + 1 and
ℓ1(v) = k + 1, we infer thatℓ1(e) = ℓ1(u) = ℓ0(e).

Claim 2.21. We haveCOUNT1 − COUNT0 = D0
v(0, k).

Proof. When the nodev changes its level fromk to (k + 1), this only affects the levels of those edges that
are at levelk or below.

Claim 2.22. We haveδΨ(v) = 0.

Proof. Since the nodev increases its level fromk to (k + 1), Step 02 (Figure2) guarantees thatW 0
v =

W 0
v (k) > fαβ · c∗v. Next, from Lemma2.8we infer thatW 1

v = W 0
v (k+1) ≥ β−1 ·W 0

v (k) > fαc∗v. Since
bothW 0

v ,W
1
v > fαc∗v, we get:Ψ0(v) = Ψ1(v) = 0. It follows thatδΨ(v) = Ψ0(v)−Ψ1(v) = 0.

Claim 2.23. For every edgee ∈ Ev, we have:

δΦ(e) =

{

(1 + ǫ) if e ∈ E0v (0, k);

0 if e ∈ E0v (k + 1, L).

Proof. If e ∈ E0v (0, k), then we haveℓ0(e) = k and ℓ1(e) = k + 1 (see Claim2.19). Hence, we have
Φ0(e) = (1+ǫ) ·(L−k) andΦ1(e) = (1+ǫ) ·(L−k−1). It follows thatδΦ(e) = Φ0(e)−Φ1(e) = (1+ǫ).

In contrast, ife ∈ E0v (k + 1, L), then Claim2.20implies thatℓ0(e) = ℓ1(e) = l (say). Accordingly, we
haveΦ0(e) = Φ1(e) = (1 + ǫ) · (L− l). Hence, we getδΦ(e) = Φ0(e)− Φ1(e) = 0.

12

Claim 2.24. For every nodeu ∈ V \ {v}, we have:

δΨ(u) ≥ −(1/f) · |Eu ∩ E
0
v (0, k)|

Proof. Consider any nodeu ∈ V \ {v}. If the nodeu is passive, then we haveδΨ(u) = 0, and the claim is
trivially true. Thus, for the rest of the proof we assume thatthe nodeu is active.

Clearly, we haveℓ0(e) = ℓ1(e) for each edgee ∈ Eu \ Ev. Hence, we getδw(e) = 0 for each edge
Eu \ Ev. Next, by Claim2.20, we haveℓ0(e) = ℓ1(e) for each edgee ∈ Eu ∩ E0v (k + 1, L). Thus, we get
δw(e) = 0 for each edgee ∈ Eu ∩ E0v (k + 1, L). We therefore conclude that:

δWu =
∑

e∈Eu\Ev

δw(e) +
∑

e∈Eu∩E0
v (k+1,L)

δw(e) +
∑

e∈Eu∩E0
v (0,k)

δw(e)

=
∑

e∈Eu∩E0
v (0,k)

δw(e)

= |Eu ∩ E
0
v (0, k)| · µ · (β

−k − β−(k+1))

= |Eu ∩ E
0
v (0, k)| · µ · (β − 1)/βk+1

Using this observation, we infer that:

δΨ(u) ≥ −
(

βℓ(u)+1/(fµ(β − 1))
)

· δWu

= −
(

βℓ(u)+1/(fµ(β − 1))
)

· |Eu ∩ E
0
v (0, k)| · µ · (β − 1)/βk+1

≥ −βℓ(u)−k · (1/f) · |Eu ∩ E
0
v (0, k)|

≥ −(1/f) · |Eu ∩ E
0
v (0, k)| (24)

Equation24holds since either|Eu∩E0v (0, k)| = 0, or there is an edgee ∈ Eu∩E0v (0, k). In the former case,
equation24 is trivially true. In the latter case, by Claim2.19we haveℓ0(e) = k, and sinceℓ0(e) ≥ ℓ(u),
we infer thatℓ(u) ≤ k andβℓ(u)−k ≤ 1.

Claim 2.25. We have:
∑

u∈V \{v}

δΨ(u) ≥ −D0
v(0, k)

Proof. We have:

∑

u∈V \{v}

δΨ(u) =
∑

u∈V \{v}:Eu∩E0
v (0,k)6=∅

δΨ(u) (25)

≥
∑

u∈V \{v}:Eu∩E0
v (0,k)6=∅

−(1/f) · |Eu ∩ E
0
v (0, k)| (26)

≥
∑

e∈E0
v (0,k)

f · (−1/f) (27)

= −D0
v(0, k)

Equations25and26follow from Claim2.24. Equation27follows from a simple counting argument and the
fact that the maximum frequency of an edge isf .

13

From Claims2.22, 2.23, 2.25and equation23, we derive the following bound.

δB = (1/ǫ) ·



δΨ(v) +
∑

e∈Ev

δΦ(e) +
∑

u∈V \{v}

δΨ(u)





≥ (1/ǫ) ·
(

0 + (1 + ǫ) ·D0
v(0, k) −D0

v(0, k)
)

= D0
v(0, k)

Thus, Claim2.21implies that the net decrease in the potentialB in no less than the increase in COUNT.
This proves Lemma2.18for Case 1.

Case 2: The level of the nodev decreases fromk to k − 1.

Claim 2.26. For every edgee ∈ E0v (0, k), we haveℓ0(e) = k andw0(e) = µβ−k.

Proof. Consider any edgee ∈ E0v (0, k). Using the same argument as in the proof of Claim2.19, we can
show thatℓ0(e) = k. Sinceℓ0(e) = k, we must havew0(e) = µβ−k.

The next claim bounds the degreeD0
v(0, k) of nodev, which we then use in the following claim to bound

the increase in COUNT.

Claim 2.27. We haveW 0
v = W 0

v (k) < c∗v , and, furthermore,D0
v(0, k) ≤ βkc∗v/µ.

Proof. Since the nodev decreases its level fromk to (k−1), Step 04 (Figure2) ensures thatW 0
v = W 0

v (k) <
c∗v. Claim2.26implies thatw0(e) = µβ−k for all e ∈ E0v (0, k). We conclude that:

c∗v > W 0
v ≥

∑

e∈E0
v (0,k)

w0(e) = µβ−k ·D0
v(0, k).

Thus, we getD0
v(0, k) ≤ c∗vβ

k/µ.

Claim 2.28. We haveCOUNT1 − COUNT0 ≤ c∗vβ
k/µ.

Proof. The nodev decreases its level fromk to k − 1. Due to this event, the level of an edge changes only
if it belongs toE0v (0, k). Thus, we have COUNT1 − COUNT0 ≤ D0

v(0, k) ≤ c∗vβ
k/µ.

Claim 2.29. For all u ∈ V \ {v}, we haveδΨ(u) ≥ 0.

Proof. Fix any nodeu ∈ V \ {v}. If the nodeu is passive, then we haveδΨ(u) = 0, and the claim is
trivially true. Thus, for the rest of the proof we assume thatthe nodeu is active.

If Eu ∩ E0v (0, k) = ∅, then we haveW 0
u = W 1

u , and hence,δΨ(u) = 0. Else we haveEu ∩ E0v (0, k) 6= ∅.
In this case, as the level of the nodev decreases fromk to k − 1, we infer thatw0(e) ≤ w1(e) for all
e ∈ Eu ∩ E

0
v (0, k), and, accordingly, we getW 0

u ≤ W 1
u . This implies thatΨ0(u) ≥ Ψ1(u). Thus, we have

δΨ(u) = Ψ0(u)−Ψ1(u) ≥ 0.

We now partition the edge-setEv into two subsets,X andY , according to the level of the other endpoint.

X =

{

e ∈ Ev : max
u∈Ve\{v}

{ℓ(u)} < k

}

andY = Ev \X.

14

Claim 2.30. For every edgee ∈ Ev, we have:

δΦ(e) =

{

0 if e ∈ Y ;

−(1 + ǫ) if e ∈ X.

Proof. Fix any edgee ∈ Ev. We consider two possible scenarios.

1. We havee ∈ Y . As the level of the nodev decreases fromk to k − 1, we infer thatℓ0(e) = ℓ1(e),
and accordingly,Φ0(e) = Φ1(e). Hence, we getδΦ(e) = Φ0(e) − Φ1(e) = 0.

2. We havee ∈ X. Since the level of nodev decreases fromk to k − 1, we infer thatℓ0(e) = k and
ℓ1(e) = k− 1, and accordingly,Φ0(e) = (1+ ǫ) · (L− k) andΦ1(e) = (1+ ǫ) · (L− k+1). Hence,
we getδΦ(e) = Φ0(e)− Φ1(e) = −(1 + ǫ).

This concludes the proof of the Claim.

Next, we partitionW 0
v into two parts:x andy. The first part denotes the contributions towardsW 0

v by
the edgese ∈ X, while the second part denotes the contribution towardsW 0

v by the edgese ∈ Y . Note that
X ⊆ E0v (0, k), which implies thatx =

∑

e∈X w0(e) = µβ−k · |X|. Thus, we get the following equations.

W 0
v = x+ y < c∗v (28)

x = µβ−k · |X| (29)

y =
∑

e∈Y

w0(e) (30)

Equation28 holds due to Claim2.27.

Claim 2.31. We have
∑

e∈Ev
δΦ(e) = −(1 + ǫ) · x · βk/µ.

Proof. Claim 2.30 implies that
∑

e∈Ev
δΦ(e) = −(1 + ǫ) · |X|. Applying equation29, we infer that

|X| = x · βk/µ.

Claim 2.32. We have:

δΨ(v) = (fαc∗v − x− y) ·
βk+1

fµ(β − 1)
−max (0, fαc∗v − βx− y) ·

βk

fµ(β − 1)
.

Proof. Equation28 states thatW 0
v = x+ y < c∗v. Sinceℓ0(v) = k, we get:

Ψ0(v) = (fαc∗v − x− y) ·
βk+1

fµ(β − 1)
(31)

As the nodev decreases its level fromk to k − 1, we have:

w1(e) =

{

β · w0(e) if e ∈ X;

w0(e) if u ∈ Y

Accordingly, we haveW 1
v = β · x+ y, which implies the following equation.

Ψ1(v) = max(0, fαc∗v − βx− y) ·
βk

fµ(β − 1)
(32)

SinceδΨ(v) = Ψ0(v)−Ψ1(v), the Claim follows from equations31 and32.

15

We now consider two possible scenarios depending upon the value of (fαc∗v − βx − y). We show that in
each caseδB ≥ c∗vβ

k/µ. This, along with Claim2.28, implies thatδB ≥ COUNT1 − COUNT0. This proves
Lemma2.18for Case 2.

1. Suppose that(fαc∗v − βx− y) < 0. From Claims2.29, 2.31, 2.32and equation23, we derive:

ǫ · δB =
∑

u∈V \{v}

δΨ(u) +
∑

e∈Ev

δΦ(e) + Ψ(v)

≥ −(1 + ǫ) · x ·
βk

µ
+ (fαc∗v − x− y) ·

βk+1

fµ(β − 1)

≥ −(1 + ǫ) · c∗v ·
βk

µ
+ (fα− 1)c∗v ·

βk+1

fµ(β − 1)
(33)

=
c∗vβ

k

µ

{

−(1 + ǫ) + (α− 1/f) ·
β

(β − 1)

}

=
c∗vβ

k

µ

{

−(1 + ǫ) + (1 + 3ǫ) ·
(1 + ǫ)

ǫ

}

(34)

≥ ǫ · c∗v ·
βk

µ

Equation33 follows from equation28. Equation34 holds sinceα = 1 + 1/f + 3ǫ andβ = 1 + ǫ.

2. Suppose that(fαc∗v − βx− y) ≥ 0. From Claims2.29, 2.31, 2.32and equation23, we derive:

ǫ · δB =
∑

u∈V \{v}

δΨ(u) +
∑

e∈Ev

δΦ(u, v) + Ψ(v)

≥ −(1 + ǫ) · x ·
βk

µ
+ (fαc∗v − x− y) ·

βk+1

fµ(β − 1)
− (fαc∗v − βx− y) ·

βk

fµ(β − 1)

=
βk

µ(β − 1)
·
{

(fαc∗v − x− y) ·
β

f
− (fαc∗v − βx− y) ·

1

f
− (1 + ǫ) · x · (β − 1)

}

=
βk

µ(β − 1)
·
{

αc∗vβ − αc∗v −
(βx+ βy − βx− y)

f
− (1 + ǫ) · x · (β − 1)

}

=
βk

µ(β − 1)
·
{

αc∗v · (β − 1)−
y(β − 1)

f
− (1 + ǫ) · x · (β − 1)

}

=
βk

µ
·
{

αc∗v −
y

f
− (1 + ǫ) · x

}

≥
βk

µ
·
{

αc∗v − β(y + x)
}

(35)

≥
βk

µ
· (α− β) · c∗v (36)

≥ ǫ · c∗v ·
βk

µ
(37)

Equation35 holds sinceβ = 1 + ǫ andf ≥ 1. Equation36 follows from Equation28. Equation37
holds sinceα = 1 + 1/f + 3ǫ andβ = 1 + ǫ.

16

3 Maintaining a Set-Cover in a Dynamic Setting

We first show the link between the fractional hypergraphb-matching and set-cover.

Lemma 3.1. The dual LP (4) is an LP-relaxation of the set-cover problem (Definition1.1).

Proof. Given an instance of the set-cover problem, we create an instance of the hypergraphb-matching
problem as follows. For each elementu ∈ U create an edgee(u) ∈ E, and for each setS ∈ S, create a
nodev(S) ∈ V with costcv(S) = cS . Ensure that an elementu belongs to a setS iff e(u) ∈ Ev(S). Finally,
setµ = maxv∈V cv + 1.

Sinceµ > maxv∈V cv , it can be shown that an optimal solution to the dual LP (4) will set z(e) = 0 for
every edgee ∈ E. Thus, we can remove the variables{z(e)} from the constraints and the objective function
of LP (4) to get a new LP with the same optimal objective value. This new LP is an LP-relaxation for the
set-cover problem.

We now present the main result of this section.

Theorem 3.2. We can maintain an(f2+ f + ǫf2)-approximately optimal solution to the dynamic set cover
problem inO(f · log(m+ n)/ǫ2) amortized update time.

Proof. We map the set cover instance to a fractional hypergraphb-matching instance as in the proof of
Lemma3.1. By Theorem2.3, in O(f log(m + n)/ǫ2) amortized update time, we can maintain a feasible
solution{x∗(e)} to LP (1) that isλ-maximal, whereλ = f + 1 + ǫf .

Consider a collection of setsS∗ = {S ∈ S :
∑

e∈Ev(S)
x∗(e) ≥ cv(S)/λ}. Since we can maintain the

fractional solution{x∗(e)} in O(f log(m+n)/ǫ2) amortized update time, we can also maintainS∗ without
incurring any additional overhead in the update time. Now, using complementary slackness conditions, we
can show that each elemente ∈ U is covered by someS ∈ S∗, and the sum

∑

S∈S∗ cS is at most(λf)-times
the size of the primal solution{x∗(e)}. The corollary follows from LP duality.

4 Maintaining a b-Matching in a Dynamic Setting

We will present a dynamic algorithm for maintaining anO(1)-approximation to the maximumb-matching
(see Definitions1.3, 1.4). Our main result is summarized in Theorem4.8. We use the following ap-
proach. First, we note that the fractionalb-matching problem is a special case of the fractional hypergraph
b-matching problem (see Definition1.5) with f = 2 (for each edge is incident upon exactly two nodes).
Hence, by Theorems2.2and2.3, we can maintain aO(f2) = O(1) approximate “fractional” solution to the
maximumb-matching problem inO(f log(m + n)) = O(log n) amortized update time. Next, we perform
randomized rounding on this fractional solution in the dynamic setting, whereby we select each edge in the
solution with some probability that is determined by its fractional value. This leads to Theorem4.8.

Notations. Let G = (V,E) be the input graph to theb-matching problem. Given any subset of edges
E′ ⊆ E and any nodev ∈ V , let N (v,E′) = {u ∈ V : (u, v) ∈ E′} denote the set of neighbors of
v with respect to the edge-setE′, and let deg(v,E′) = |N (v,E′)|. Next, consider any “weight” function
w : E′ → R

+ that assigns a weightw(e) to every edgee ∈ E′. For every nodev ∈ V , we define
Wv =

∑

u∈N (v,E)w(u, v). Finally, for every subset of edgesE′ ⊆ E, we definew(E′) =
∑

e∈E′ w(e).

Recall that in theb-matching problem, we are given an “input graph”G = (V,E) with |V | = n nodes,
where each nodev ∈ V has a “capacity”cv ∈ {1, . . . , n}. We want to select a subsetE′ ⊆ E of edges of
maximum size such that each nodev has at mostcv edges incident to it inE′. We will also be interested in
“fractional” b-matchings. In the fractionalb-matching problem, we want to assign a weightw(e) ∈ [0, 1] to

17

every edgee ∈ E such that
∑

u∈N (v,E)w(u, v) ≤ cv for every nodev ∈ V , and the sum of the edge-weights
w(E) is maximized. In the dynamic version of these problems, the node-setV remains fixed, and at each
time-step the edge-setE gets updated due to an edge insertion or deletion. We now showhow to efficiently
maintain anO(1)-approximate fractionalb-matching in the dynamic setting.

Theorem 4.1. Fix a constantǫ ∈ (0, 1/4), and letλ = 4, andγ = 1 + 4ǫ. In O(log n) amortized update
time, we can maintain a fractionalb-matchingw : E → [0, 1] in G = (V,E) such that:

Wv ≤ cv/γ for all nodesv ∈ V. (38)

w(u, v) = 1 for each edge(u, v) ∈ E with Wu,Wv < cv/λ. (39)

Further, the size of the optimalb-matching inG isO(1) times the sum
∑

e∈E w(e).

Proof. Note that the fractionalb-matching problem is a special case of fractional hypergraph b-matching
whereµ = 1, m = n2, andf = 2.

We scale down the capacity of each nodev ∈ V by a factor ofγ, by definingc̃v = cv/γ for all v ∈ V .
Next, we apply Theorem2.3 on the input simple graphG = (V,E) with µ = 1, m = n2, f = 2, and the
reduced capacities{c̃v}, v ∈ V . Let {w(e)}, e ∈ E, be the resulting(f + 1 + ǫf)-maximal matching (see
Definition 2.1). Sinceǫ < 1/3 andf = 2, we haveλ ≥ f + 1 + ǫf . Sinceǫ is a constant, the amortized
update time for maintaining the fractionalb-matching becomesO(f · log(m+ n)/ǫ2) = O(log n). Finally,
by Theorem2.2, the fractionalb-matching{w(e)} is an(λf + 1) = 9-approximate optimalb-matching in
G in the presence of the reduced capacities{c̃v}. But scaling down the capacities reduces the objective of
LP (1) by at most a factor ofγ. Hence, the size of the optimalb-matching inG is at most9γ = O(1) times
the sum

∑

e∈E w(e). This concludes the proof.

Setλ = 4, γ = 1 + 4ǫ andǫ ∈ (0, 1/4) for the rest of this section. We will show how to dynamically
convert the fractionalb-matching{w(e)} from Theorem4.1into an integralb-matching, by losing a constant
factor in the approximation ratio. The main idea is to randomly sample the edgese ∈ E based on theirw(e)
values. But, first we introduce the following notations.

Say that a nodev ∈ V is “nearly-tight” if Wv ≥ cv/λ and “slack” otherwise. LetT denote the set of
all nearly-tight nodes. We also partition of the node-setV into two subsets:B ⊆ V andS = V \B. Each
nodev ∈ B is called “big” and has deg(v,E) ≥ c log n, for some large constantc > 1. Each nodev ∈ S is
called “small” and has deg(v,E) < c log n. DefineEB = {(u, v) ∈ E : eitheru ∈ B or v ∈ B} to be the
subset of edges with at least one endpoint inB, and letES = {(u, v) ∈ E : eitheru ∈ S or v ∈ S} be the
subset of edges with at least one endpoint inS. We define the subgraphsGB = (V,EB) andGS = (V,ES).

Observation 4.2. We haveN (v,E) = N (v,EB) for all big nodesv ∈ B, andN (u,E) = N (u,ES) for
all small nodesu ∈ S.

Overview of our approach. Our algorithm maintains the following structures.

• A fractionalb-matching as per Theorem4.1.

• A random subsetHB ⊆ EB, and a weight functionwB : HB → [0, 1] in the subgraphGB(H) =
(V,HB), as per Definition4.3.

• A random subsetHS ⊆ ES , and a weight functionwS : HS → [0, 1] in the subgraphGS(H) =
(V,HS), as per Definition4.4.

• A maximalb-matchingMS ⊆ HS in the subgraphGS(H), that is, for every edge(u, v) ∈ HS \MS ,
there is a nodeq ∈ {u, v} such that deg(q,MS) = cq.

18

• The set of edgesE∗ = {e ∈ E : w(e) = 1}.

The rest of this section is organized as follows. In Lemmas4.5(resp. Lemma4.6), we prove some properties
of the random setHB (resp. HS) and the weight functionwB (resp. wS). In Lemma4.7, we show that
the edge-setsHB,HS ,MS andE∗ can be maintained in a dynamic setting inO(log3 n) amortized update
time. In Theorem4.8, we prove our main result, by showing that one of the edge-sets HB,MS , E

∗ is an
O(1)-approximation to the optimalb-matching with high probability.

The proofs of Lemmas4.5, 4.6and4.7appear in Sections4.2, 4.3and4.4respectively.

Definition 4.3. The random setHB ⊆ EB and the weight functionwB : HB → [0, 1] are defined so as to
fulfill the following conditions.

With probability one, we have deg(v,HB) ≤ cv for every small nodev ∈ S. (40)

Pr[e ∈ HB] = w(e) for every edgee ∈ EB . (41)

∀v ∈ B, the events{[(u, v) ∈ HB]}, u ∈ N (v,EB), are mutually independent. (42)

For each edgee ∈ HB, we havewB(e) = 1 (43)

We defineZB(e) ∈ {0, 1} to be an indicator random variable that is set to one ife ∈ HB and zero otherwise.

Definition 4.4. The random setHS ⊆ ES and the weight functionwS : HS → [0, 1] are defined so as to
fulfill the following conditions.

Pr[e ∈ HS] = pe = min(1, w(e) · (cλ log n/ǫ)) ∀e ∈ ES . (44)

The events{[e ∈ HS]}, e ∈ ES , are mutually independent. (45)

For each edgee ∈ HS,we havewS(e) =

{

w(e) if pe ≥ 1;

ǫ/(cλ log n) if pe < 1.
(46)

We defineZS(e) ∈ {0, 1} to be an indicator random variable that is set to one ife ∈ HS and zero otherwise.

Lemma 4.5. For every nodev ∈ V , defineWB
v =

∑

u∈N (v,HB) w
B(u, v). Then the following conditions

hold with high probability.

• For every nodev ∈ V , we haveWB
v ≤ cv.

• For every nodev ∈ B ∩ T , we haveWB
v ≥ (1− ǫ) · (cv/λ).

Lemma 4.6. For every nodev ∈ V , defineW S
v =

∑

u∈N (v,HS)
wS(u, v). The following conditions hold

with high probability.

• For each nodev ∈ V , we haveW S
v ≤ cv.

• For each nodev ∈ S, we have deg(v,HS) = O(log2 n).

• For each nodev ∈ S ∩ T , we haveW S
v ≥ (1− ǫ) · (cv/λ).

Lemma 4.7. With high probability, we can maintain the random sets of edgesHB andHS , a maximalb-
matchingMS in the random subgraphGS(H) = (V,HS), and the set of edgesE∗ in O(log3 n)-amortized
update time.

Theorem 4.8. With high probability, we can maintain aO(1)-approximateb-matching in the input graph
G = (V,E) in O(log3 n) amortized update time.

19

4.1 Proof of Theorem4.8

We maintain the random sets of edgesHB andHS , a maximalb-matchingMS in the subgraphGS(H) =
(V,HS), and the set of edgesE∗ = {e ∈ E : w(e) = 1} as per Lemma4.7. This requiresO(log3 n)
amortized update time with high probability. The theorem will follow from Theorem4.1, Lemma4.9 and
Lemma4.11.

Lemma 4.9. With high probability, each of the edge-setsHB,MS andE∗ is a validb-matching inG.

Proof. SincewB(e) = 1 for every edgee ∈ HB (see Definition4.3), Lemma4.5 implies that the edge-set
HB is ab-matching inG with high probability.

Next, by definition, the edge-setMS is ab-matching inGS(H) = (V,HS). SinceHS ⊆ E, the edge-set
MS is also ab-matching inG.

Finally, sincew : E → [0, 1] is a fractionalb-matching inG, the set of edgesE∗ is also ab-matching in
G.

Lemma 4.10. We havew(E∗) +
∑

v∈B∩T Wv +
∑

v∈S∩T Wv ≥ w(E).

Proof. Consider any edge(u, v) ∈ E. If u /∈ T andv /∈ T , then by equation39, we must have(u, v) ∈ E∗.
In contrast, if there is some nodex ∈ {u, v} such thatx ∈ T , then we must have eitherx ∈ B ∩ T or
x ∈ S ∩ T .

In other words, every edge(u, v) satisfies this property: Either(u, v) ∈ E∗, or it is incident upon some
node inB ∩ T , or it is incident upon some nodeS ∩ T . Thus, each edgee ∈ E contributes at leastw(e) to
the sumw(E∗) +

∑

v∈B∩T Wv +
∑

v∈S∩T Wv. The lemma follows.

Lemma 4.11. We havew(E) ≤ O(1) ·max(|E∗|, |HB |, |MS |) with high probability.

Proof. Note thatw(E∗) = |E∗|. We consider three possible cases, based on Lemma4.10.

Case 1.w(E∗) ≥ (1/3) · w(E). In this case, clearlyw(E) ≤ 3 ·max(|E∗|, |HB |, |MS |).

Case 2.
∑

v∈B∩T Wv ≥ (1/3) · w(E). In this case, we condition on the event under which Lemma4.5
holds. Thus, we get:

w(E) ≤
∑

v∈B∩T

3 ·Wv ≤
∑

v∈B∩T

3 · cv ≤
∑

v∈B∩T

(3λ/(1 − ǫ)) ·WB
v

≤ (3λ/(1 − ǫ)) ·
∑

e∈HB

2 · wB(e) = (6λ/(1 − ǫ)) · |HB|

Case 3.
∑

v∈S∩T Wv ≥ (1/3) · w(E). In this case, we condition on the event under which Lemma4.6
holds. Thus, we get:

w(E) ≤
∑

v∈S∩T

3 ·Wv ≤
∑

v∈S∩T

3 · cv ≤
∑

v∈S∩T

(3λ/(1 − ǫ)) ·W S
v

≤ (3λ/(1 − ǫ)) ·
∑

e∈HS

2 · wS(e) = (6λ/(1 − ǫ)) ·
∑

e∈HS

wS(e)

≤ (12λ/(1 − ǫ)) · |MS |.

The last inequality holds sinceMS is a maximalb-matching inGS(H) = (V,HS), and since every maximal
b-matching is a2-approximation to the maximum fractionalb-matching (this follows from LP duality).
Accordingly, we have

∑

e∈HS
wS(e) ≤ 2 · |MS |.

Sinceλ, ǫ are constants, this concludes the proof of Theorem4.8.

20

4.2 Proof of Lemma4.5

Lemma 4.12. With high probability, we haveWB
v ≥ (1− ǫ) · (cv/λ) for every nodev ∈ B ∩ T .

Proof. Fix any nodev ∈ B ∩ T . Note thatN (v,EB) = N (v,E), Wv ≥ cv/λ, andcv ≥ cλ log n/ǫ.
Linearity of expectation, in conjunction with equations41, 43 and Observation4.2 imply that we have
E[WB

v] =
∑

u∈N (v,EB)E[ZB(u, v)] =
∑

u∈N (v,EB) w(u, v) =
∑

u∈N (v,E)w(u, v) = Wv ≥ cv/λ ≥

c log n/ǫ. Thus, applying Chernoff bound, we infer thatE[WB
v] ≥ (1 − ǫ) · (cv/λ) with high probability.

The lemma follows if we take a union bound over all nodesv ∈ B ∩ T .

Lemma 4.13. With high probability, we haveWB
v ≤ cv for every nodev ∈ V .

Proof. Consider any nodev ∈ V . If v ∈ S, then we haveWB
v ≤ cv with probability one (see equa-

tions40, 43).
For the rest of the proof, suppose thatv ∈ B. Applying an argument similar to the one used in the proof

of Lemma4.12, we infer thatE[WB
v] = Wv ≤ cv/γ. The last inequality holds due to equation38. Since

γ > (1 + ǫ) andcv ≥ cλ log n/ǫ, applying Chernoff bound we derive thatWB
v ≤ cv with high probability.

Thus, for each nodev ∈ V , we haveWB
v ≤ cv with high probability. The lemma now follows if we

take a union bound over all nodesv ∈ B.

Lemma4.5now follows from Lemmas4.12and4.13.

4.3 Proof of Lemma4.6

4.3.1 High Level Overview

In order to highlight the main idea, we assume thatpe < 1 for every edgee ∈ ES . First, consider any
small nodev ∈ S. SinceN (v,ES) = N (v,E), from equations38, 44, 46 and linearity of expectation,
we infer thatE[deg(v,HS)] = (cλ log n/ǫ) · Wv ≤ (cλ log n/ǫ) · (cv/(1 + ǫ)). Sincecv ∈ [1, c log n],
from equation45 and Chernoff bound we infer that deg(v,HS) ≤ (cλ log n/ǫ) · cv = O(log2 n) with high
probability. Next, note thatW S

v = deg(v,HS) · (ǫ/(cλ log n)). Hence, we also getW S
v ≤ cv with high

probability. Next, suppose thatv ∈ S ∩ T . In this case, we haveE[deg(v,HS)] = (cλ log n/ǫ) ·Wv ≥
(cλ log n/ǫ) · (cv/λ). Again, since this expectation is sufficiently large, applying Chernoff bound we get
deg(v,HS) ≥ (cλ log n/ǫ) · (1 − ǫ) · (cv/λ) with high probability. It follows thatW S

v = (ǫ/(cλ log n)) ·
deg(v,HS) ≥ (1− ǫ) · (cv/λ) with high probability.

Finally, applying a similar argument we can show that for every big nodev ∈ B, we haveW S
v ≤ cv

with high probability.

4.3.2 Full Details

For every nodev ∈ V , we partition the node-setN (v,ES) into two subsets –X(v) andY (v) – as defined
below.

X(v) = {u ∈ N (v,ES) : p(u,v) = 1} (47)

Y (v) = {u ∈ N (v,ES) : p(u,v) < 1} (48)

Next, for every nodev ∈ V , we define:

δX(v) =
∑

u∈X(v)

w(u, v) (49)

δY (v) =
∑

u∈Y (v)

w(u, v) (50)

21

SinceN (v,ES) ⊆ N (v,E) for every nodev ∈ V , by equation38we have:
∑

u∈N (v,ES)

w(u, v) = δX(v) + δY (v) ≤ cv/γ (51)

SinceX(v) ⊆ N (v,ES) andwS(u, v) = w(u, v) for every nodeu ∈ X(v), we get:
∑

u∈X(v)

wS(u, v) = δX(v). (52)

Lemma 4.14. For every nodev ∈ V , if δY (v) ≤ ǫ/λ, then with high probability, we have:

|Y (v) ∩ N (v,HS)| ≤ (1 + ǫ) · c log n; and
∑

u∈Y (v)∩N (v,HS)

wS(u, v) ≤ 2ǫ/λ.

Proof. Recall that for every nodeu ∈ Y (v), we have definedZS(u, v) ∈ {0, 1} to be an indicator random
variable that is set to one if(u, v) ∈ HS and zero otherwise. Clearly, we haveE[ZS(u, v)] = (cλ log n/ǫ) ·
w(u, v) for all u ∈ Y (v). Applying linearity of expectation, we get:

E [|Y (v) ∩ N (v,HS)|] = E





∑

u∈Y (v)

ZS(u, v)



 = (cλ log n/ǫ) ·
∑

u∈Y (v)

w(u, v)

= (cλ log n/ǫ) · δY (v) ≤ c log n.

SinceE [|Y (v) ∩ N (v,HS)|] ≤ c log n, applying Chernoff bound we infer that|Y (v) ∩ N (v,HS)| ≤
(1 + ǫ)c log n with high probability.

Finally, note that each nodeu ∈ Y (v) ∩ N (v,HS) haswS(u, v) = ǫ/(cλ log n). This implies that
∑

u∈Y (v)∩N (v,HS)
wS(u, v) = ǫ/(cλ log n) · |Y (v) ∩HS|. Since|Y (v) ∩HS| ≤ (1 + ǫ)c log n with high

probability, we get:
∑

u∈Y (v)∩N (v,HS)
wS(u, v) ≤ (1+ǫ)ǫ/λ ≤ 2ǫ/λ with high probability. This concludes

the proof of the lemma.

Lemma 4.15. For every nodev ∈ V , if δY (v) ≥ ǫ/λ, then with high probability, we have:

(cλ log n/ǫ) ·
δY (v)

(1 + ǫ)
≤ |Y (v) ∩ N (v,ES)| ≤ (cλ log n/ǫ) · (1 + ǫ)δY (v); and

δY (v)

(1 + ǫ)
≤

∑

u∈Y (v)∩N (v,HS)

wS(u, v) ≤ (1 + ǫ)δY (v).

Proof. Let µ = E[|Y (v) ∩ N (v,HS)|]. Applying an argument as in the proof of Lemma4.14, we get:
µ = (cλ log n/ǫ) · δY (v) ≥ c log n. Hence, applying Chernoff bound, we infer thatµ/(1 + ǫ) ≤ |Y (v) ∩
N (v,HS)| ≤ (1 + ǫ)µ with high probability. This proves the first part of the lemma.

To prove the second part of the lemma, we simply note that, as in the proof of Lemma4.14, we have
∑

u∈Y (v)∩N (v,HS)
wS(u, v) = (ǫ/(cλ log n)) · |Y (v) ∩ N (v,HS)|.

Lemma 4.16. For every nodev ∈ V , we have deg(v,HS) = O ((log n/ǫ) · cv) with high probability.

Proof. Fix any nodev ∈ V . Note thatX(v) ⊆ N (v,HS) andw(u, v) = wS(u, v) ≥ ǫ/(cλ log n) for every
nodeu ∈ X(v). By equation52, we have

∑

u∈X(v) w
S(u, v) = δX(v) for every nodev ∈ V . Thus, we get:

|X(v)| ≤ (cλ log n/ǫ) · δX(v) = O ((log n/ǫ) · δX(v)) (53)

22

Lemmas4.14and4.15imply that with high probability, we have:

|Y (v) ∩HS| ≤ max (c log n, (cλ log n/ǫ)(1 + ǫ)δY (v))

= O ((log n/ǫ) · δY (v)) (54)

Since deg(v,HS) = |X(v)| + |Y (v) ∩ N (v,HS)|, the lemma follows if we add equations53 and54, and
recall thatδX(v) + δY (v) ≤ cv (see equation51).

Lemma 4.17. For every nodev ∈ V , we haveW S
v ≤ cv with high probability.

Proof. Lemmas4.14and4.15imply that with high probability, we have:
∑

u∈Y (v)∩N (v,HS)

wS(u, v) ≤ max (2ǫ/λ, (1 + ǫ)δY (v)) (55)

Since the node-setN (v,HS) is partitioned intoX(v) andY (v) ∩ N (v,HS), we get:

W S
v =

∑

u∈X(v)

wS(u, v) +
∑

u∈Y (v)∩N (v,HS)

wS(u, v)

≤ (1 + ǫ) · δX(v) + max(2ǫ/λ, (1 + ǫ)δY (v)) (56)

≤ (1 + ǫ) · (δX(v) + δY (v)) + 2ǫ/λ

≤ (1 + ǫ) · (cv/γ) + (2ǫ/λ) · cv (57)

≤ (1 + ǫ) · (cv/γ) + 2ǫ · (cv/γ) (58)

≤ cv (59)

Equation56 follows from equations52and55, and it holds with high probability. Equation57 follows from
equation51 and the fact thatcv ≥ 1. Equation58 holds sinceγ < λ (see Theorem4.1). Equation59 holds
sinceγ > 1 + 3ǫ (see Theorem4.1).

Lemma 4.18. For every nodev ∈ S ∩ T , we haveW S
v ≥ (1− ǫ) · (cv/λ).

Proof. Fix any nodev ∈ S ∩ T . Sincev ∈ S, we haveN (v,E) = N (v,ES). Sincev ∈ T , we have
Wv =

∑

u∈N (v,ES)
w(u, v) ≥ cv/λ. Since

∑

u∈N (v,ES)
w(u, v) = δX(v) + δY (v), we get:

δX(v) + δY (v) ≥ cv/λ (60)

We also recall that by equation52 we have:
∑

u∈X(v)

wS(u, v) = δX(v) (61)

We now consider two possible cases, based on the value ofδY (v).

Case 1.We haveδY (v) ≤ ǫ/λ. Sincecv ≥ 1, in this case, we haveδX(v) ≥ cv/λ− δY (v) ≥ cv(1− ǫ)/λ.
By equation61, we infer thatW S

v ≥
∑

u∈X(v) w
S(u, v) = δX(v) ≥ cv(1− ǫ)/λ. This concludes the proof

of the lemma for Case 1.

Case 2. We haveδY (v) > ǫ/λ. In this case, Lemma4.15 implies that with high probability we have:
∑

u∈Y (v)∩N (v,HS)
wS(u, v) ≥ δY (v)/(1 + ǫ). Since the node-setN (v,HS) is partitioned intoX(v) and

Y (v) ∩ N (v,HS), we get:

W S(u, v) =
∑

u∈X(v)

wS(u, v) +
∑

u∈Y (v)∩N (v,HS)

wS(u, v) ≥ δX(v) + δY (v)/(1 + ǫ)

≥ (δX(v) + δY (v))/(1 + ǫ) ≥ (cv/λ) · (1/(1 + ǫ)) ≥ (1− ǫ) · (cv/λ)

This concludes the proof of the lemma for Case 2.

Lemma4.6 follows from Lemmas4.16, 4.17, 4.18, and the fact thatcv = O(log n) for all v ∈ S.

23

4.4 Proof of Lemma4.7

We maintain the fractionalb-matching{w(e)} as per Theorem4.1. This requiresO(log n) amortized update
time, and starting from an empty graph,t edge insertions/deletions inG lead toO(t log n) many changes
in the edge-weights{w(e)}. Thus, we can easily maintain the edge-setE∗ = {e ∈ E : w(e) = 1} in
O(log n) amortized update time. Specifically, we store the edge-setE∗ as a doubly linked list. For every
edge(u, v) ∈ E∗, we maintain a pointer that points to the position of(u, v) in this linked list. For every
edge(u, v) ∈ E \E∗, the corresponding pointer is set to NULL. An edge(u, v) is inserted into/deleted from
the setE∗ only when its weightw(e) is changed. Thus, maintaining the linked list forE∗ does not incur
any additional overhead in the update time.

Next, we show to maintain the edge-setHS by independently sampling each edgee ∈ ES with proba-
bility pe. This probability is completely determined by the weightw(e). So we need to resample the edge
each time its weight changes. Thus, the amortized update time for maintainingHS is alsoO(log n). Similar
to the case of the edge-setE∗, we store the edge-setHS as a doubly linked list.

Next, we show how to maintain the maximalb-matchingMS in HS . Every edgee ∈ HS has at least one
endpoint inS, and each nodev ∈ S has deg(v,HS) = O(log2 n) with high probability (see Lemma4.6).
Exploiting this fact, for each nodev ∈ B, we can maintain the set of its free (unmatched) neighbors
Fv(S) = {u ∈ N (v,HS) : u is unmatched inMS} in O(log2 n) amortized time per update inHS, with
high probability. This is done as follows. Sincev ∈ B, the onus of maintaining the setFv(S) falls squarely
upon the nodes inN (v,HS) ⊆ S. Specifically, each small nodeu ∈ S maintains a “status-bit” indicating if
it is free or not. Whenever a matched small nodeu changes its status-bit, it communicates this information
to its neighbors inN (u,HS) ∩ B in O(deg(u,HS)) = O(log2 n) time. Using the lists{Fv(S)}, v ∈ B,
and the status-bits of the small nodes, after each edge insertion/deletion inHS, we can update the maximal
b-matchingMS in O(log2 n) worst case time, with high probability. Since each edge insertion/deletion in
G, on average, leads toO(log n) edge insertions/deletions inHS, we spendO(log3 n) amortized update
time, with high probability, for maintaining the matchingMS .

Finally, we show how to maintain the setHB. The edges(u, v) ∈ EB with both endpointsu, v ∈ B are
sampled independently with probabilityw(u, v). This requiresO(log n) amortized update time. Next, each
small nodev ∈ S randomly selects some neighborsu ∈ N (v,EB) and adds the corresponding edges(u, v)
to the setHB, ensuring thatPr[(u, v) ∈ HB] = w(u, v) for all u ∈ N (v,EB) and that deg(v,HB) ≤ cv.
The random choices made by the different small nodes are mutually independent, which implies equation42.
But, for a given nodev ∈ S the random variables{ZB(u, v)}, u ∈ N (v,EB), are completely correlated.
They are determined as follows.

In the beginning, we pick a numberηv uniformly at random from the interval[0, 1), and, in a pre-
defined manner, label the set of big nodes asB = {v1, . . . , v|B|}. For eachi ∈ {1, . . . , |B|}, we de-

fine ai(v) = w(v, vi) if vi ∈ N (v,EB) and zero otherwise. We also defineAi(v) =
∑i

j=1 aj(v)
for eachi ∈ {1, . . . , |B|} and setA0(v) = 0. At any given point in time, we defineN (v,HB) =
{vi ∈ B : Ai−1(v) ≤ k + ηv < Ai(v) for some nonnegative integerk < cv}. Under this scheme,
for every nodevi ∈ B, we havePr[vi ∈ N (v,HB)] = Ai(v) − Ai−1(v) = ai(v). Thus, we get
Pr[vi ∈ N (v,HB)] = w(v, vi) for all vi ∈ N (v,EB), andPr[vi ∈ N (v,HB)] = 0 for all vi 6= N (v,EB).
Also note that deg(v,HB) ≤ ⌈

∑

vi∈N (v,EB) w(v, vi)⌉ ≤ ⌈Wv⌉ ≤ ⌈cv/(γ)⌉ ≤ cv . Hence, equations40, 41
are satisfied. We maintain the sums{Ai(v)}, i, and the setN (v,HB) using a balanced binary tree data
structure, as described below.

We store the ordered sequence of|B| numbersa1(v), . . . , a|B|(v) in the leaves of a balanced binary tree
from left to right. Letxi denote the leaf node that stores the valueai(v). Further, at each internal nodex of
the balanced binary tree, we store the sumSx =

∑

i:xi∈T (x) ai(v), whereT (x) denotes the set of nodes in
the subtree rooted atx. This data structure can support the following operations.

INCREMENT(i, δ): This asks us to setai(v)← ai(v) + δ, whereδ is any real number. To perform this

24

update, we first change the value stored at the leaf nodexi. Then starting from the nodexi, we traverse up
to the root of the tree. At each internal nodex in this path fromxi to the root, we setSx ← Sx + δ. The
Sx values at every other internal node remains unchanged. Since the tree has depthO(log n), the total time
required to update the data structure is alsoO(log n).

RETURN-INDEX(y): Given a number0 ≤ y < cv, this asks us to return an indexi (if it exists) such
thatAi−1(v) ≤ y < Ai(v). We can answer this query inO(log n) time by doing binary search. Specifically,
we perform the following operations. We initialize a counter C ← 0 and start our binary search at the root
of the tree. At an intermediate stage of the binary search, weare at some internal nodex and we know that
y < C + Sx. Let x(l) andx(r) respectively be the left and right child ofx. Note thatSx = Sx(l) + Sx(r).
If y < C + Sx(l), then we move to the nodex(l). Otherwise, we setC ← C + Sx(l) and move to the node
x(r). We continue this process until we reach a leaf node, which gives us the required answer. The total
time taken by the procedure isO(log n).

We use the above data structure to maintain the setsN (v,HB), v ∈ S. Whenever the weight of an edge
(u, v), v ∈ S, changes, we can update the setN (v,HB) by making one call to the INCREMENT(i, δ), and
cv calls to RETURN-INDEX(y), one for eachy = k + ηv, wherek < cv is a nonnegative integer. Since
cv = O(log n), the total time required isO(log2 n) per change in the edge-weights{w(e)}.

Since each edge insertion/deletion inG, on average, leads toO(log n) changes in the edge-weights
{w(e)}, the overall amortized update time for maintaining the edge-setHB isO(log3 n).

Similar to the edge-setsE∗ andHS , we store the edge-setHB as a doubly linked list. Each edge
(u, v) ∈ HB maintains a pointer to its position in this list. Each edge(u, v) ∈ E\HB sets the corresponding
pointer to NULL. It is easy to check that this does not incur any additional overhead in the update time. This
concludes the proof of the lemma.

5 Conclusion and Open Problems

In this paper, we introduced a dynamic version of the primal-dual method. Applying this framework, we
obtained the first nontrivial dynamic algorithms for the setcover andb-matching problems. Specifically, we
presented a dynamic algorithm for set cover that maintains aO(f2)-approximation inO(f · log(m + n))
update time, wheref is the maximum frequency of an element,m is the number of sets andn is the
number of elements. On the other hand, for theb-matching problem, we presented a dynamic algorithm
that maintains aO(1)-approximation inO(log3 n) update time. Our work leaves several interesting open
questions. We conclude the paper by stating a couple of such problems.

• Recall that in the static setting the set cover problem admits O(min(f, log n))-approximation in
O(f · (m + n))-time. Can we match this approximation guarantee in the dynamic setting inO(f ·
poly log(m + n)) update time? As a first step, it will be interesting to design adynamic algorithm
for fractional hypergraphb-matching that maintains aO(f)-approximation and has an update time of
O(f · poly log(m+ n)).

• Are there other well known problems (such as facility location, Steiner tree etc.) that can be solved in
the dynamic setting using the primal-dual framework?

References

[1] K. J. Ahn and S. Guha. Near linear time approximation schemes for uncapacitated and capacitated
b-matching problems in nonbipartite graphs. InProceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages
239–258, 2014.

25

[2] R. Bar-Yehuda and S. Even. A linear time approximation algorithm for the weighted vertex cover
problem.Journal of Algorithms, 2:198–203, 1981.

[3] S. Baswana, M. Gupta, and S. Sen. Fully dynamic maximal matching inO(log n) update time. In
52nd IEEE Symposium on Foundations of Computer Science, pages 383–392, 2011.

[4] S. Bhattacharya, M. Henzinger, and G. F. Italiano. Deterministic fully dynamic data structures for
vertex cover and matching. InProcs. 26th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2015), pages 785–804, 2015.

[5] N. Buchbinder and J. Naor. The design of competitive online algorithms via a primal-dual approach.
Foundations and Trends in Theoretical Computer Science, 3(2-3):93–263, 2009.

[6] G. B. Dantzig, L. R. Ford, and D. R. Fulkerson. A primal-dual algorithm for linear programs. In H. W.
Kuhn and A. W. Tucker, editors,Linear Inequalities and Related Systems, pages 171–181. Princeton
University Press, Princeton, NJ, 1956.

[7] D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic graph algorithms. In M. J. Atallah and M. Blanton,
editors,Algorithms and Theory of Computation Handbook, 2nd Edition, Vol. 1, pages 9.1–9.28. CRC
Press, 2009.

[8] U. Feige. A threshold of lnn for approximating set cover.Journal of the ACM, 45:634–652, 1998.

[9] H. N. Gabow. An efficient reduction technique for degree-constrained subgraph and bidirected network
flow problems. InProceedings of the 15th Annual ACM Symposium on Theory of Computing, 25-27
April, 1983, Boston, Massachusetts, USA, pages 448–456, 1983.

[10] M. Goemans and D. P. Williamson. A general approximation technique for constrained forest prob-
lems.SIAM J. Comput., 24:296–317, 1992.

[11] M. X. Goemans and D. P. Williamson. The primal-dual method for approximation algorithms and its
application to network design problems. In D. S. Hochbaum, editor, Approximation algorithms for
NP-hard problems, pages 144–191. PWS Publishing Company, 1997.

[12] M. Gupta and R. Peng. Fully dynamic(1 + ǫ)-approximate matchings. In54th IEEE Symposium on
Foundations of Computer Science, pages 548–557, 2013.

[13] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and
System Sciences, 9:256–278, 1974.

[14] S. Khot and O. Regev. Vertex cover might be hard to approximate to within2−ǫ. Journal of Computer
and System Sciences, 74, 2008.

[15] S. Korman. On the Use of Randomization in the Online Set Cover Problem. Weizmann Institute of
Science, 2004.

[16] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly,
2:83–97, 1955.

[17] O. Neiman and S. Solomon. Simple deterministic algorithms for fully dynamic maximal matching. In
45th ACM Symposium on Theory of Computing, pages 745–754, 2013.

[18] K. Onak and R. Rubinfeld. Maintaining a large matching and a small vertex cover. In42nd ACM
Symposium on Theory of Computing, pages 457–464, 2010.

[19] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, New York, NY, USA, 2001.

26

	1 Introduction
	2 Maintaining a Fractional Hypergraph b-Matching in a Dynamic Setting
	2.1 Preliminaries
	2.2 The (,)-partition and its properties.
	2.3 The algorithm: Handling the insertion/deletion of an edge.
	2.4 Data structures.
	2.5 Bounding the amortized update time.
	2.6 Proof of Lemma ??.
	2.7 Proof of Lemma ??.

	3 Maintaining a Set-Cover in a Dynamic Setting
	4 Maintaining a b-Matching in a Dynamic Setting
	4.1 Proof of Theorem ??
	4.2 Proof of Lemma ??
	4.3 Proof of Lemma ??
	4.3.1 High Level Overview
	4.3.2 Full Details

	4.4 Proof of Lemma ??

	5 Conclusion and Open Problems

