N

N
N

HAL

open science

Design of Dynamic Algorithms via Primal-Dual Method

Sayan Bhattacharya, Monika Henzinger, Giuseppe F Italiano

» To cite this version:

Sayan Bhattacharya, Monika Henzinger, Giuseppe F Italiano. Design of Dynamic Algorithms via
Primal-Dual Method. ICALP 2018 - International Colloquium on Automata, Languages, and Pro-

gramming, Jul 2015, Kyoto, Japan. pp.206-218, 10.1007/978-3-662-47672-7_17 . hal-01964700

HAL Id: hal-01964700
https://inria.hal.science/hal-01964700
Submitted on 23 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-01964700
https://hal.archives-ouvertes.fr

arxiv:1604.05337v1 [cs.DS] 18 Apr 2016

Design of Dynamic Algorithms via Primal-Dual Method

Sayan Bhattacharya Monika Henzinger Giuseppe F. Italiario
August 27, 2018

Abstract

We develop a dynamic version of the primal-dual method fainogation problems, and apply
it to obtain the following results. (1) For the dynamic setser problem, we maintain a®(f?)-
approximately optimal solution i®(f - log(m + n)) amortized update time, whefeis the maximum
“frequency” of an element; is the number of sets, amd is the maximum number of elements in the uni-
verse at any pointin time. (2) For the dynarbimatching problem, we maintain & 1)-approximately
optimal solution inO(log® n) amortized update time, whereis the number of nodes in the graph.

1 Introduction

The primal-dual method lies at the heart of the design ofrélyns for combinatorial optimization prob-
lems. The basic idea, contained in the “Hungarian Methad], [was extended and formalized by Dantzig
et al. [6] as a general framework for linear programming, and thugdae applicable to a large variety
of problems. Few decades later, Bar-Yehuda etZlwfere the first to apply the primal-dual method to
the design of approximation algorithms. Subsequentlg, plradigm was applied to obtain approximation
algorithms for a wide collection of NP-hard problem®[11]. When the primal-dual method is applied to
approximation algorithms, an approximate solution to ttabfem and a feasible solution to the dual of an
LP relaxation are constructed simultaneously, and theopeence guarantee is proved by comparing the
values of both solutions. The primal-dual method was alsergled to online problems§]. Here, the input

is revealed only in parts, and an online algorithm is reguiterespond to each new input upon its arrival
(without being able to see the future). The algorithm'’s perfance is compared against the benchmark of
an optimal omniscient algorithm that can view the entirautrgequence in advance.

In this paper, we focus on dynamic algorithms for optimizatproblems. In the dynamic setting, the
input of a problem is being changed via a sequence of updatelsafter each update one is interested in
maintaining the solution to the problem much faster thaomgauting it from scratch. We remark that the
dynamic and the online setting are completely differenthedynamic scenario one is concerned more with
guaranteeing fast (worst-case or amortized) update tiatherrthan comparing the algorithms’ performance
against optimal offline algorithms. As a main contributidiihds paper, we develop a dynamic version of the
primal-dual method, thus opening up a completely new aregpplfication of the primal-dual paradigm to

*A preliminary version of this paper appeared in ICALP’ 20T8ack A).

fThe Institute of Mathematical Sciences, Chennai, IndiaaiErbsayan@imsc.res.in

*Faculty of Computer Science, University of Vienna, Austianail: monika.henzinger@univie.ac.at. The researotiitegto
this work has received funding from the European Union’ssév Framework Programme (FP7/2007-2013) under grant angnet
number 317532 and from the European Research Council umel&uropean Union’s Seventh Framework Programme (FP7/2007
2013)/ERC grant agreement number 340506.

§Universita di Roma “Tor Vergata”, Italy. E-mail: giusepjteliano@uniroma2.it. Partially supported by MIUR, thalian
Ministry of Education, University and Research, under @bAMANDA (Algorithmics for MAssive and Networked DAta).

http://arxiv.org/abs/1604.05337v1

the design of dynamic algorithms. With some careful inggbtir recent algorithms for dynamic matching
and dynamic vertex coved] can be reinterpreted in this new framework. In this papes, show how
to apply the new dynamic primal-dual framework to the degifjtwo other optimization problems: the
dynamic set-cover and the dynandignatching. Before proceeding any further, we formally definese
problems.

Definition 1.1 (Set-Cover) We are given a univerdd of at mostm elements, and a collectia$i of n sets
S C U. Each setS € S has a (polynomially bounded by) “cost” ¢s > 0. The goal is to select a
subsetS’ C S such that each elementénis covered by some sste S” and the total cosd g s c(S) is
minimized.

Definition 1.2 (Dynamic Set-Cover)Consider a dynamic version of the problem specified in Defimit. 1,
where the collectiows, the costdcs}, S € S, the upper boung on the maximum frequenayax, <, |{S €

S :u € S}, and the upper boungh on the maximum size of the univetgeemain fixed. The univerge,
on the other hand, keeps changing dynamically. In the bauynnve haveé/ = (). At each time-step, either
an element: is inserted into the univerdé and we get to know which setsdhcontainu, or some element
is deleted from the universe. The goal is to maintain an ayprately optimal solution to the set-cover
problem in this dynamic setting.

Definition 1.3 (b-Matching) We are given an input grapty’ = (V, E') with |V| = n nodes, where each
nodev € V has a capacity:, € {1,...,n}. Ab-matching is a subsdf’ C F of edges such that each node
v has at most, edges incident to it ir’. The goal is to select thiematching of maximum cardinality.

Definition 1.4 (Dynamic b-Matching) Consider a dynamic version of the problem specified in Defini-
tion 1.3, where the node sdt and the capacitiedc,},v € V remain fixed. The edge sét, on the
other hand, keeps changing dynamically. In the beginnirgghaveFE = (). At each time-step, either a new
edge is inserted into the graph or some existing edge isatkfedbm the graph. The goal is to maintain an
approximately optimal solution to tiiematching problem in this dynamic setting.

As stated in b, 19], the set-cover problem has played a pivotal role both f@reximation and for
online algorithms, and thus it seems a natural problem tgidenin our dynamic setting. Our definition
of dynamic set-cover is inspired by the standard formutatid the online set-cover problens][where
the elements arrive online. There exists algorithms foinenset cover that achieve a competitive ratio of
O(lognlogm) [5], and it is also known that this bound is asymptotically tiptb)].

Our Techniques. Roughly speaking, our dynamic version of the primal-duathud works as follows.
We start with a feasible primal solution and an infeasiblaldolution for the problem at hand. Next, we
consider the following process: gradually increase allgtimal variables at the same rate, and whenever
a primal constraint becomes tight, stop the growth of allghenal variables involved in that constraint,
and update accordingly the corresponding dual variables phimal growth process is used to define a
suitable data structure based on a hierarchical partiddevel in this partition is a set of the dual variables
whose corresponding primal constraints became (appragiydight at the same time-instant. To solve the
dynamic problem, we maintain the data structure, the heareal partition and the corresponding primal-
dual solution dynamically using a simple greedy procedufais is sufficient for solving the dynamic
set-cover problem. For the dynamtienatching problem, we need some additional ideas. We fitsage
fractional solution to the problem using the previous téghe. To obtain an integral solution, we perform
randomized rounding on the fractional solution in a dynasstting. This is done by sampling the edges
with probabilities that are determined by the fractiondlison.

Our Results. Our new dynamic primal-dual framework yields efficient dyma algorithms for both the
dynamic set-cover problem and the dynamvimatching problem. In particular, for the dynamic set-aove
problem we maintain &(f2)-approximately optimal solution i®(f - log(m + n)) amortized update time
(see Theoren3.2in Section3). On the other hand, for the dynantiematching problem, we maintain a
O(1)-approximation inO(log® n) amortized time per update (see Theorér@in Section4). Further, we
can show that an edge insertion/deletion in the input graphgverage, leads 10 (log? n) changes in the
set of matched edges maintained by our algorithm.

Related Work. The design of dynamic algorithms is one of the classic areabeaoretical computer
science with a countless number of applications. Dynan@plyalgorithms have received special attention,
and there have been many efficient algorithms for severahmjam graph problems, including dynamic
connectivity, minimum spanning trees, transitive closst®rtest paths and matching problems (see, e.g.,
the survey in T]). The b-matching problem contains as a special case matchinggmablifor which many
dynamic algorithms are knowr3[4, 12, 17, 18]. Unfortunately, none of the results on dynamic matching
extends to the dynamiematching problem. To the best of our knowledge, no previegslt was known
for dynamic set-cover problem.

In the static setting, a simple greedy algorithm for the ceeter problem givesD(logn) approxi-
mation [L3], whereas a primal-dual algorithm givesapproximation 2]. Both the algorithms run in
O(f - (m + n))-time. On the other hand, there exists some constant(0 such that obtaining alog n-
approximation to the set cover problem in polynomial timd wmply P = NP [8]. Similarly, under the
Unique-Games conjecture, one cannot obtain a better fhapproximation to the set cover problem in
polynomial time [L4].

For the maximunmb-matching problem, the best known exact algorithm run®imn log n)-time [9]
in the static setting, where (resp. m) is the number of nodes (resp. edges) in the graph. Very tlgcen
Ahn and Guha[] presented another static algorithm that run®im - poly(§—!, log n))-time and returns
a(1+ J)-approximation for maximum-matching, for anyy > 0.

Roadmap for the rest of the paper. We first define a problem called “fractional hypergrapmatching”
(see Definitionsl.5and1.6). In Section2, we show how to maintain a fractional hypergrapmatching
in a dynamic setting. In Sectid® we use our result from Sectidhto design a dynamic algorithm for set
cover. Finally, in Sectiod we present our result for dynambematching.

Definition 1.5 (Fractional Hypergraplh-Matching) We are given an input hypergragh = (V, E) with
|V| = n nodes andt mostn > |E| edges. LeE, C E denote the set of edges incident upon a nodel/,
and letV, = {v € V : e € &,} denote the set of nodes an edge F is incident upon. Let, > 0 denote
the “capacity” of a nodev € V, and lety > 1 denote the “multiplicity” of an edge. We assume that the
and thec, values are polynomially bounded by Our goal is to assign a “weight’z(e) € [0, u] to each
edgee € F in such away that (@) ... z(e) < ¢, for all nodesv € V, and (b) the sum of the weights of
all the edges is maximized.

Definition 1.6 (Dynamic Fractional HypergrapitMatching) Consider a dynamic version of the problem
specified in Definitiorl.5 where the node-sét, the capacities(c,},v € V, the upper bound on the
maximum frequencyax.cg | V.|, and the upper boung: on the maximum number of edges remain fixed.
The edge-sel’, on the other hand, keeps changing dynamically. In the Inéggp we haver = (). At each
time-step, either an edge is inserted into the graph or areddgleleted from the graph. The goal is to
maintain an approximately optimal solution to the problamihis dynamic setting.

2 Maintaining a Fractional Hypergraph b-Matching in a Dynamic Setting

2.1 Preliminaries

We first define a linear program for fractional hypergrapmatching (Definitionl.5). Next, we define the
concept of a A-maximal” solution of this LP (Definitior2.1) and prove the approximation guarantee for
such a solution (Theore12). Our main result is summarized in Theor@n3and Corollary2.4.

Below, we write a linear program for a fractional hypergragmatching.

Primal LP: ~ Maximize) x(e) (1)
ecl
subject to: Z z(e) < ¢ Yv e V. 2
6681/
0<z(e)<p Vec E. (3)
Dual LP: Minimize Z ey y(v) + Z w-z(e) 4
veV eck

subjectto: z(e) + Z y(v) >1 Ve € E. (5)

UEV@
y(v),z(e) >0 VveV,eeE. (6)

We next define the concept of a-maximal” solution.

Definition 2.1. A feasible solution to LP1j is A-maximal (for\ > 1) iff for every edgee € E with
x(e) < u, there is some node € V. such thaty " .. z(e') > ¢, /A

Theorem 2.2. Let f > max.cp |V,| be an upper bound on the maximum possible “frequency” of ayeed
Let OPT be the optimal objective value of LB.(Any A-maximal solution to LP1) has an objective value
that is at least OPT(Af + 1).

Proof. Let {z*(e)} be aA-maximal solution to the primal LP. Construct a dual solut{g’*(v), z*(e) }, as
follows. For everyv € V, sety*(v) = 1if }_ .o x*(e) > ¢,/A, andy*(v) = 0 otherwise. For every
e € E, setz*(e) = 1if 2*(e) = pandz*(e) = 0 otherwise.

Consider the dual constraint corresponding to any edge E. Since the primal solutiodz*(e)} is
A-maximal, eitherz*(e) = p or there is some’ € V. for which y*(v') = 1. In the former case we have
z*(e) = 1, whereas in the latter case we hay¢v’) = 1. Hence, the dual constraint under consideration is
satisfied. This shows that the valugs (v), z*(e) }, constitute a feasible dual solution. Next, we infer that:

ch ~y*(v) + Z,u - 2" (e)

veV eck
= Z Cy + Z H (7)
veV:y*(v)=1 ecE:z*(e)=1
< Z A Z z*(e) + Z z*(e) (8)
veViy*(v)=1 ec&y e€E:z*(e)=1
< DAY o)+ Y at(e)
veV e€&y eckE
<)\-f-Zx*(e)—i-Zw*(e) 9)
eck eck
= (Af+1):) o (o)
ecly

Equation7 holds sincey*(v) € {0,1} for all v € V andz*(e) € {0,1} for all e € E. Equation8 holds
sincey*(v) = 1onlyif >~ o x*(e) > c,/), and sincer*(e) = pforalle € £ with 2*(e) = 1. Equation9
holds since each edge can be incident upon at rhosides.

Thus, we have constructed a feasible dual solution whosetNg is at most) f +1)-times the objective
of the A-maximal primal solution. The theorem now follows from wehlality. O

Our main result is summarized below. For the rest of Se@jome focus on proving Theorefh3.

Theorem 2.3. We can maintain 41 + 1 + ef)-maximal solution to the dynamic fractional hypergraph
b-matching problem i (f - log(m + n)/e®) amortized update time.

Corollary 2.4. We can maintain arO(f?)-approximate solution to the dynamic hypergrapimatching
problem inO(f log(m + n)/e?) amortized update time.

Proof. Follows from Theoren?.2and Theoren?.3. O

2.2 The @, §)-partition and its properties.

For the time being, we restrict ourselves to the staticregttinspired by the primal-dual method for set-
cover, we consider the following algorithm for the fractbiypergraptb-matching problem.

e Consider an initial primal solution with(e) < 0 for all e € E, and defineF" < E.
e WHILE there is some primal constraint that is not tight:

— Keep increasing the primal variabl¢s(e)},e € F, uniformly at the same rate till some pri-
mal constraint becomes tight. At that instant, “freeze”tial primal variables involved in that
constraint and delete them from the $&tand set the corresponding dual variable to one.

In Figurel, we define a variant of the above procedure that happens tasier ¢0 maintain in a dynamic
setting. The main idea is to discretize the continuous drognawth process. Defineyi, = min,cy ¢y,
and without any loss of generality, assume that, > 0. Fix two parametersy, 5 > 1, and definel =

[og(mpor/camin)]-
Claim 2.5. If we setz(e) < p - L for all e € E, then we get a feasible primal solution.

Proof. Clearly, z(e) < pu for all e € E. Now, consider any node € V. We have) .. z(e) =
&) - B <8l - BE<m-pu-B7F <m-p- (cmin/(mpa)) = cmin/a < ¢, Hence, all the primal
constraints are satisfied. O

01. Setr(e) + p-p~Lforalle € E, and define = ¢, /(fapB) forallv € V.
02. SetVp « {veV:) g z(e) >cy},andEyL < U,ey, o
03. FORi=L-—-1tol:

04. Setr(e) « a(e) - Bforalle € E\Ur_;,, Ei.
05. Setl; « {v VAU Vit Soce, 2(e) > c:}.
06. Sett; — Uyey, Eo-

07. Setly + V\ Ur_y Vi, andEy < U,ey, Eo-
08. Setx(e) < z(e) - fforalle € Ey.

Figure 1: DISCRETE-PRIMAL-DUAL().

Our new algorithm is described in Figute We initialize our primal solution by setting(e) <+ u3~"
for every edge: € F, as per Clain2.5. We call a node nearly-tightif its corresponding primal constraint
is tight within a factor off o3, andslackotherwise. Furthermore, we call an edgaarly-tightif it is incident
upon some nearly tight node, asthckotherwise. Let’;, C V andE;, C E respectively denote the sets of
nearly tight nodes and edges, immediately after the itraadbn step. The algorithm then performs— 1
iterations.

At iterationi € {L — 1,...,1}, the algorithm increases the weighte) of every slack edge by a
factor of 5. Since the total weight received by every slack nod&om its incident edges) never exceeds
¢v/(faB), this weight-increase step does not violate any primal tcaim. The algorithm then defindg
(resp.E;) to be the set of new nodes (resp. edges) that become niggntydtie to this weight-increase step.

Finally, the algorithm definesj (resp. L) to be the set of nodes (resp. edges) that are slack at the end
of iterationi = 1. It terminates after increasing the weight of every edggjrby a factor ofg3.

When the algorithm terminates, it is easy to check tha) = p - 5~ for every edge: € E;, i €
{0,...,L}. We also have; <> .. z(e) < - c for every nodey € UL, Vi, andy_ .o xz(e) < B-c;
for every nodev € V;. Furthermore, at the end of the algorithm, every edgeF \ Ej is nearly-tight, and
every edge: € E, has weightz(e) = u. We, therefore, reach the following conclusion.

Claim 2.6. The algorithm described in Figuré returns an(f«/)-maximal solution to the fractional hy-
pergraphb-matching problem with the additional property thet < > .. xz(e) < - ¢ for every node

v e Up_y Vi andY, ¢ z(e) < B - ¢ for every nodes € Vj.

Our goal is to make a variant of the procedure in Figlineork in a dynamic setting. Towards this
end, we introduce the concept of &m, 5)-partition (see Definitior2.7) satisfying a certain invariant (see
Invariant2.9). The reader is encouraged to notice the similarities batvikis construct and the output of
the procedure in Figurg.

Definition 2.7. An («, §)-partition of the graphG partitions its node-seV” into subsetd ... Vy, where
L = [logg(mpa/cmin)] @anda, 8 > 1. Fori € {0,..., L}, we identify the subsét; as thei'" “level”
of this partition, and calli the level /(v) of a nodev. We also define the level of each edge E as
((e) = max,cy, {£(v)}, and assign a “weight'w(e) = - 7 to the edge.

Given an(a, 3)-partition, let,(i) C &, denote the set of edges incidentitehat are in the' level,
and let&, (i, j) C &, denote the set of edges incidenttahose levels are in the rangie .

Ev(i)={ee€& :lle)=1i} YveV;ie{0,...,L} (10)
J

E(i.j) = J&(k) Yo eViijed{o,...,L},i <. (11)
k=1

Similarly, we define the notation®, and D, (i, j).

Dv = ’51)’ (12)
Dy (i) = |€y(i)] (13)
Dy(i, 3) = [€u(4, 7)) (14)

Given an(a, 3)-partition, letiW, = > .. w(e) denote the total weight a nodec V' receives from the
edges incident to it. We also define the notatid(i). It gives the total weight the nodewould receive
from the edges incident to if,the nodev itself were to go to thé’ level Thus, we havé?, = W, (£(v)).

Since the weight of an edgein the hierarchical partition is given by(e) = p - B~ we derive the
following equations for all nodes € V.

Wy =Y p-p1. (15)
6681/

= p- gD i e {o,... L}, (16)

ecéy

Lemma 2.8. An (a, 3)-partition satisfies the following conditions for all nodes V.

WU(L) < Cmin/a (17)
Wy(L) <o < Wy(i) < -+ < W,(0) (18)
Wy(i) <p-Wy(i+1) Vie{0,...,L —1}. (19)

Proof. Fix any («, B)—partition and any node € V. We prove the first part of the lemma as follows.

Z pe B max(l(e), L Z pe B L < mp - 3 L< mu - B3~ log(mpuct/min) — = Cmin/ .
ecEy ecéy

We now fix any level € {0,...,L — 1} and show that théx, 3)-partition satisfies equatiol8.
W Z—|- 1 Z [IB—max(Z(e),i+1) < Z e IB—max(Z(e g) WU(Z)

e€e&y ee&y
Finally, we prove equatiof9.

(i) = Z 1B max(£(e),i) _ 0B Z B—l—max(é(e),i)
e€&y e€&y

<p-pe Yy gy = 5w (i 1)

6681/
O

Fix any nodev € V, and focus on the value &%, (i) as we go down from the highest leve: L to the
lowest leveli = 0. Lemma2.8 states thatV, (i) < cmin/a Wheni = L, thatW, (i) keeps increasing as we
go down the levels one after another, and () increases by at most a factor @between consecutive
levels.

We will maintain a specific type dix, 5)-partition, where each node is assigned to a level in a way tha
satisfies the following Invariar?.9. This invariant is a relaxation of the bounds pi,. . x(e) for every
nodew stated in Clain2.6.

Invariant 2.9. Definec) = ¢,/(faf). For every node € V' \ V;, it holds thatc};, < W, < faf - ¢} and
for every node € Vj it holds thatWW,, < fag - c}.

Theorem 2.10. Consider an(«a, 3)-partition that satisfies Invarian?.9. The edge-weightSw(e)},e € E,
give an(fa3)-maximal solution to LPX).

Proof. By Invariant2.9, we haveW, < (fap) - ¢ = ¢, for every nodev € V. Next, note thaiv(e) < p
for every edge: € E. Thus, the weight$w(e)}, e € E, define a feasible solution to LR)(

We claim that for every edge € E with w(e) < u, there is some node € V, for which W, >
cv/(faB). This will imply that the weightw(e)}, e € E, form an(fa3)-maximal feasible solution to the
primal LP.

To prove the claim, consider any edge E with w(e) < p. Sincew(e) = pA~4*), this implies that
l(e) > 0. Letv € argmaxy,ey, {¢(u)}. Note thatl/(e) = ¢(v). This implies thaté() > 0. Hence, by
Invariant2.9, we havelV,, > ¢ = ¢, /(faf3). This concludes the proof of the theorem. O

2.3 The algorithm: Handling the insertion/deletion of an edje.

We now show how to maintain afay, 5)-partition under edge insertions and deletions. A node lieata
dirty if it violates Invariant2.9, andcleanotherwise. At the beginning of the algorithm the edge{ses
empty, and, thus, every node is initially clean and at leeebz Now consider the time instant just prior to
thet* update. By induction hypothesis, at this instant every risdéean. Then th¢” update takes place,
which inserts (resp. deletes) an edge E with weightw(e) = u3~/(¢). This increases (resp. decreases)
the weights{W, },v € V.. Due to this change, the nodesc V. might become dirty. To recover from this,
we call the subroutine in Figui® which works as follows

01. WHILE there exists a dirty node
02. IFW, > fafBc;, THEN

Il If true, then by equatio 7, we have/(v) < L.
03. Increment the level af by settingl(v) < ¢(v) + 1.
04. HESEIF(W, < ¢ and{(v) > 0), THEN
05. Decrement the level efby settingl(v) < ¢(v) — 1.

Figure 2: RECOVER().

Consider any node € V and suppose thalV, > fafc; = ¢, > cmin. In this event, the algorithm
increments the level of the node. singe> 1, equationl?7 implies thatiW, (L) < W, (¢(v)) and, hence, we
haveL > /(v). In other words, when the procedure described in Figuiecides to increment the level of
a dirty nodev (Step 02), we know for sure that the current level éé strictly less tharl. (the highest level
in the (o, 5)-partition).

Next, consider an edge € &,. If we change/(v), then this may change the weighte), and this in
turn may change the weighf3V’. }, z € V.. Thus, a single iteration of the MILE loop in Figure2 may lead
to some clean nodes becoming dirty, and some other dirtysnbdeoming clean. If and when theRNE
loop terminates, however, we are guaranteed that everyiaaiisan and that Invariai2.9 holds.

2.4 Data structures.

We now describe the relevant data structures that will bd bgeour algorithm.

o \We maintain for each nodec V:

— A counter LEVEL [v] to keep track of the current level of Thus, we set EVEL[v] < £(v).
— A counter WEIGHT([v] to keep track of the weight af. Thus, we set WIGHT[v] <— W,,.

— For every level > LEVEL[v], we store the set of edgé€s(7) in the form of a doubly linked list
INCIDENT-EDGES, [i]. For every level < LEVEL[v], the list INCIDENT-EDGES,[i] is empty.

— For leveli = LEVEL[v], we store the set of edgeés(0,) in the form of a doubly linked list
INCIDENT-EDGES, [0,7]. For every leveli # LEVEL[v], the list INCIDENT-EDGES,[0,] is
empty.

e When the graph gets updated due to an edge insertion/dglet@may discover that a node violates
Invariant2.9. Recall that such a node is callddty, and we store the set of such nodes as a doubly
linked list DIRTY-NODES. For every noder € V, we maintain a bit $aTus[v] € {dirty, clean}
that indicates if the node is dirty or not. Every dirty noderes a pointer to its position in the list
DIRTY-NODES.

e The collection of linked IistsUiL:0 {INCIDENT-EDGES, [0, i], INCIDENT-EDGES, [i]} is denoted by
the phraséincidence lists ofv” . For every edge € E, we maintain a counterVveL [e] to keep track
of /(e). Furthermore, for every edgec E, we maintain|),| bidirectional pointers corresponding
to the nodes V.. The pointer corresponding to a nodes V. points to the position oé in the
incidence lists ob. Using these pointers, we can update the incidence listeeaklevant nodes when
the edge: is inserted into (resp. deleted from) the graph, or when somdev € V, increases (resp.
decreases) its level by one.

2.5 Bounding the amortized update time.
We devote this section to the proof of the following theorem.

Theorem 2.11.Fix anye € (0,1), « = 1+ 1/f + 3e and 8 = 1 + e. Starting from an empty graph, we can
maintain an(«, 8) partition in G satisfying Invarian2.9in O(f log(m + n)/e?) amortized update time.

The main idea is as follows. After an edge insertion or defethe data structure can be updated in
time O(1), plus the time to adjust the levels of the nodes, i.e., the fion procedure RECOVER. To bound
the latter quantity we note that each time the level of an edgeF’ changes, we have to update at mgpst
lists (one corresponding to each nade V.). Hence, the time taken to update the lists is giverybyy,
whered; is the number of times the procedure in Fig@rehanges the level of an edge. Below, we show
thatd; < t-O(L/e) =t - O(log(m + n)/e?) aftert edge insertions/deletions @ starting from an empty
graph. This gives the requirgd(fd;/t) = O(f log(m + n)/e?) bound on the amortized update time.

Hence, to complete the proof of Theorétril, we need to give an amortized bound the number of
times we have to change the level (or, equivalently, theiwedf an already existing edg®uring a single
iteration of the WHILE loop in Figur&, this number is exactly), (0, i) when nodev goes from level to
leveli + 1, and at mosD, (0, 7) when nodev goes from levet to leveli — 1.

Specifically, we devote the rest of this section to the prdofteeorem?2.12, which implies that on
average we change the weightsfL /¢) = O(log(m + n)/€*) edges per update i@.

Theorem 2.12.Seta «+— 1+ 1/f+3eandf < 1+e. In the beginning, whe@' is an empty graph, initialize
a counterCoOUNT <« 0. Subsequently, each time we change the weight of an alreastyng edge in the
hierarchical partition, SetCOUNT ¢+~ COUNT + 1. ThenCOUNT = O(tL/e¢) just after we handle the”
update inG.

Recall that the level of an edge's defined ag(e) = max,cy, (¢(v)). Consider the following thought
experiment. We have lsaank accountand initially, when there are no edges in the graph, the laaokunt
has a balance of zero dollars. For each subsequent edgion&kgietion, at mosiL /e dollars are deposited
to the bank account; and every time our algorithm changelevieof an already existing edge, one dollar is
withdrawn from it. We show that the bank account never ruriobmoney, and this implies that@NT =
O(tL/e) aftert edge insertions/deletions starting from an empty graph.

Let B denote the total amount of money (or potential) in the bardoact at the present moment. We
keep track of3 by distributing are-fraction of it among the nodes and the current set of edgd=igraph.

B=(1/e) - (Z De) + \I'(v)> (20)

eceE veV

In the above equation, the amount of money (or potentiaaated with an edge € F is given by
®(e), and the amount of money (or potential) associated with @ nael V' is given byW¥ (v). At every point
in time, the potential§®(e), ¥ (v)} will be determined by two invariants. But, before stating thvariants,
we need to define the concepts of “active” and “passive” nodes

9

Definition 2.13. Consider any node < V. In the beginning, there is no edge incident upon the ngde
and we initialize a countek, < 0. Subsequently, whenever an edge-insertion occurs in ggghgif the
inserted edge is incident upenthen we set, < x, + 1. Atany given time-step, we say that a nede V'

is activeif ux, > ¢, andpassiveotherwise.

It is easy to check that if a node is active at time-stethen it will remain active at every time-step
t' > t. A further interesting consequence of the above definitsothat a passive node is always at level
zero, as shown in the lemma below.

Lemma 2.14. At any given time-step, if a nodec V' is passive, then we havév) = 0.

Proof. We prove this by induction. Let®) (v) and m(f) respectively denote the level of the nodand the
value of the counter, at time-stept. Further, IetWQSt) denote the value ofiV, at time-stept. Initially,

at time-stept = 0, the graph is empty, we ha\WQEO) = 0, and hencd(o)(v) = 0. Now, by induction
hypothesis, suppose that at time-stebe nodev is passive and®) (v) = 0, and, furthermore, suppose that
the nodev remains passive at time-stép+ 1). Given this hypothesis, we claim thét*! (v) = 0. The
lemma will follow if we can prove the claim.

To prove the claim, note that since the nadis passive at time-ste + 1), we havem(fﬂ)p < ¢y =
fapc;. Since the node has at mosm(f“) edges incident to it at time-stép+ 1), and since each of these
edges has weight at mgst we havve“) < I<L1()t+1),u < fapc;. Now, recall Figure2. Since/® (v)=0
and sinceW5t+1) < fapc, the nodev can never become dirty during the execution of the proceufure
Figure?2 after the edge insertion/deletion that occurs at time-gtep1). Thus, the node will not change
its level, and we will have**1) (v) = 0. This concludes the proof. O

We are now ready to state the invariants that define edge atelpuientials.
Invariant 2.15. For every edge € E, we have:
®(e) = (L+¢€)- (L —L(e))
Invariant 2.16. Recall Definition2.13 For every node € V, we have:
B(o) = {(5f<v>+1/(fﬂ(5 —1))) -max (0, foa- ¢t —W,) ifvis active
(B/(f(B—1)) - Ky otherwise.

When the algorithm starts, the graph has zero edges, anteallddes € V' are passive and at level
0 with W, = 0 andk, = 0 < ¢,/p. At that moment, Invarian2.16setsW(v) = 0 for all nodesv € V.
Consequently, equatio?O implies that3 = 0. Theorem2.12 therefore, will follow if we can prove the
next two lemmas. Their proofs appear in Secttofand Sectior?.7 respectively.

Lemma 2.17. Consider the insertion (resp. deletion) of an edge E. It creates (resp. destroys) the weight
w(e) = pu - B4, creates (resp. destroys) the potentigle), and changes the potentiaf@ (v)},v € V..
Due to these changes, the total potenffahcreases by at most /.

Lemma 2.18. During every single iteration of th&/HILE loop in Figure2, the total increase ItCOUNT is
no more than the net decrease in the poteral

10

2.6 Proof of LemmaZ2.17.

Edge-insertion. Suppose that an edgds inserted into the graph at time-stepThen the potentiab(e) is
created and gets a value of at mOstt €) L units. Now, fix any node € V., and consider three possible
cases.

Case 1.The nodev was passive at time-stép— 1) and remains passive at time-stepn this case, due to
the edge-insertion, the potent#i(v) increases bys/(f(5 —1)).

Case 2.The nodev was passive at time-stép— 1) and becomes active at time-stepn this case, we must
have:c, — u < ;mff_l) <y < ,um(,t). By Invariant2.16 just before the insertion of the edgeve had:

U(v) = {B/(fu(B—1)} psli™
> {B/(fu(B—=1))}(co — 1) (21)

Since the node was passive at time-stép — 1), by Lemma2.14we infer that¢“~Y) (v) = 0. Hence, by
Invariant2.16 just after the insertion of the edgeve get:

{B8/(fu(6 = 1))} - max (0, for- ¢, = W)
{8/(fu(6 =1))} - (facy)
{B/(fu(B=1))} - ey (22)

By equations21, 22, the potential¥(v) increases by at mosts/(fu(5 — 1))} - (cy — (v — 1)) =
{8/(f(8—1))}.

Case 3.The nodev was active at time-stef—1). In this case, clearly the noderemains active at time-step
t, the weightlW,, increases, and hence the poteniidb) can only decrease.

U(v)

<
<

From the above discussion, we conclude that the potehtia) increases by at mo§l;/ (f(B—1)) for every
nodev € V.. Since|V,| < f, this accounts for a net increase of at mpsts/(f (5 — 1)) = /(8 —1) =
B/e < L/e. Finally, recall that the potentiab(e) is created and gets a value of at most- €)L < 2L /e
units. Thus, the net increase in the potenfias at mostL /e + 2L /e = 3L /e.

Edge-deletion. If an edgee is deleted fromF, then the potentiad(e) is destroyed. The weight/, of
each nodev € V, decreases by at mogt- 3~¢(). Furthermore, no passive node becomes active due to
this edge-deletion, and, in particular, the countgremains unchanged for every node V. Hence, each

of the potentials{ ¥ (v)},v € V., increases by at mogt’*1 /(fu(B — 1)) - up~™ = g/(f(8 — 1)) =
((1+1/e)/f) <2L/(ef). The potentials of the remaining nodes and edges do not eh&mgce V.| < f,

by equatior20, the net increase if§ is at mos2L /e < 3L /e.

2.7 Proof of LemmaZ2.18

Throughout this section, fix a single iteration of thedWe loop in Figure2 and suppose that it changes
the level of a dirty node by one unit. We use the superscripfresp. 1) on a symbol to denote its state
at the time instant immediately prior to (resp. after) thagafic iteration of the WILE loop. Further, we
preface a symbol witki to denote the net decrease in its value due to that iteraionexample, consider
the potential3. We have3 = B° immediately before the iteration begins, aid= B! immediately after
iteration ends. We also hav# = B° — B!.

A change in the level of node does not affect the potentials of the edges £\ £,. This observation,
coupled with equatio0, gives us the following guarantee.

11

ey uweV\{v}

5B = (1/e) - (5@(1;) +Y se(e)+ Y 5\1’(u)) (23)

Remark. Since the node is changing its level, it must be active. Hence, by Invariad, we must have
U(v) = O/ (fu(B —1))-max(0, fact — W,). We will use this observation multiple times throughout
the rest of this section.

We divide the proof of Lemma&.18into two possible cases, depending upon whether the caetern
iteration of the WHILE loop increments or decrements the levelvof The main approach to the proof
remains the same in each case. We first give an upper boune anctiease in GUNT due to the iteration.
Next, we separately lower bound each of the following quistio¥ (v), 0@ (e) for all e € &,, ando V¥ (u)
forallu € V' \ {v}. Finally, applying equatior23, we derive thav 3 is sufficiently large to pay for the
increase in OUNT.

Remark. Note that/®(u) = ¢! (u) for all nodesu € V \ {v}, and&? = &} for all nodesu € V. Thus, we
will use the symbolg€(«) and&, without any ambiguity for all such nodes.

Case 1: The level of the node increases fromk to (k + 1).

Claim 2.19. We have’®(e) = k and ¢! (e) = k + 1 for every edge € £2(0, k).

Proof. Consider edge € £)(0, k). Sincee € £2(0, k), we havel’(e) < k. Since/’(v) = k ande € &,,
we must have’(e) = k. Finally, since/!(u) = ¢°(u) for all nodesu € V \ {v}, we conclude that
e) = (v) =k + 1. O
Claim 2.20. We have® (e) = ¢!(e) for every edge € £0(k + 1, L).

Proof. Consider any edge € £°(k + 1, L). Since’(e) > k + 1 and/®(v) = k, there must be some node

u € V\ {v}such that®(u) > k+ 1, e € & and®(e) = °(u). Sincel*(u) = (u) > k+ 1 and
(Y (v) = k + 1, we infer that!!(e) = ¢1(u) = (°(e). O

Claim 2.21. We haveCouNT! — CounT® = DY(0, k).

Proof. When the node changes its level from to (k + 1), this only affects the levels of those edges that
are at levek or below. O

Claim 2.22. We have)¥ (v) = 0.

Proof. Since the node increases its level fronk to (k + 1), Step 02 (Figure?) guarantees that’? =
WO(k) > faB-ct. Next, from Lemma.8we infer thatW,! = WO(k+1) > g~1 - WOI(k) > fact. Since
bothW? W} > fack, we get:¥°(v) = ¥l(v) = 0. It follows thaté ¥ (v) = ¥0(v) — Ul(v) = 0. O

Claim 2.23. For every edge € &,, we have:

50 (c) = (1+¢€) ifeec&l0,k);
o ife e &9(k+1,L).

Proof. If e € £2(0,k), then we have(e) = k and/!(e) = k + 1 (see Claim2.19. Hence, we have

®e) = (1+¢€)-(L—k)and®!(e) = (1+¢)-(L—k—1). It follows thati®(e) = ®°(e) —d!(e) = (1+¢).
In contrast, ife € £Y(k + 1, L), then Claim2.20implies that/®(e) = ¢!(e) = I (say). Accordingly, we

have®’(e) = ®!(e) = (1 +¢) - (L —1). Hence, we gei®(e) = ®%(e) — ®'(e) = 0. O

12

Claim 2.24. For every node: € V' \ {v}, we have:
00 (u) = —(1/f) - |€a N EX(0, k)

Proof. Consider any node € V' \ {v}. If the nodeu is passive, then we havel (u) = 0, and the claim is
trivially true. Thus, for the rest of the proof we assume thatnodeu is active.

Clearly, we have’’ (e) = ¢'(e) for each edge € &, \ &,. Hence, we getw(e) = 0 for each edge
E. \ & Next, by Claim2.20, we havel’(e) = ¢!(e) for each edge € &, N EY(k + 1, L). Thus, we get
dw(e) = 0 for each edge € &, N EY(k + 1, L). We therefore conclude that:

oW, = Z dw(e) + Z dw(e) + Z dw(e)

ecEu\Ey e€E,NEY (k+1,L) e€ELNEY(0,k)
= Z ow(e)

e€&ELNEY(0,k)
= |€.NE0,K)
= |€.NENO,K)

(B8 = pmHY)

-
|- (B =)/B'“*1

"‘;"‘;

Using this observation, we infer that:

o) = = (B/(f(B-1))) - oW,
= — (B (8= 1)) - €N EXO. R - - (8= 1)/64
> (/) - €N €0,)
> —(1/f)- 1€, NENO, k)] (24)

Equation24 holds since eithel€, NEY(0, k)| = 0, or there is an edge < £, N EY(0, k). In the former case,
equation24 is trivially true. In the latter case, by Claili19we havel’(e) = k, and since’’(e) > £(u),
we infer that/(u) < k andg‘—F < 1. O

Claim 2.25. We have:

> 6T(u) = —DY(0, k)

ueV\{v}
Proof. We have:
> 6U(u) = > S (u) (25)
ueV\{v} ueV\{v}:£.NEJ(0,k)#D

> > —(1/f) - 1€a N EY(0, k)] (26)
wEV\{v}:E4,NEY(0,k)AD

> N -y (27)
ec€9(0,k)

= —DY%0,k)

Equation25 and26 follow from Claim 2.24 Equation27 follows from a simple counting argument and the
fact that the maximum frequency of an edg¢'is O

13

From Claims2.22, 2.23 2.25and equatior23, we derive the following bound.

6B = (1/e)- (v)+ > () + Y 5@@))
ec&y ueV\{v}
> (1/€) - (0+ (1 +€) - DY(0,k) — DY(0,k))

= DY0,k)
Thus, Claim2.21implies that the net decrease in the poterffiagh no less than the increase iroOGONT.
This proves Lemma.18for Case 1.
Case 2: The level of the node decreases fromk to & — 1.
Claim 2.26. For every edge < £9(0, k), we havel®(e) = k andw®(e) = pups=*.

Proof. Consider any edge € £°(0, k). Using the same argument as in the proof of Clairh9, we can
show that’’(e) = k. Since/’(e) = k, we must haveu’(e) = us=*. O

The next claim bounds the degr&¥(0, k) of nodev, which we then use in the following claim to bound
the increase in GUNT.

Claim 2.27. We havaV? = W2(k) < ¢!, and, furthermoreD?(0, k) < B¢ /p.

Proof Since the node decreases its level fromto (k—1), Step 04 (Figure) ensures that’? = W2 (k) <
ct. Claim2.26implies thatw® (e) = pp~* for all e € £9(0, k). We conclude that:

a>W)> Y we)=ps™F DY, k).
ec&9(0,k)

Thus, we getD%(0, k) < ¢ 8%/ p. O
Claim 2.28. We haveCOUNT! — CounT’ < ¢ 3% /.

Proof. The nodev decreases its level fromto & — 1. Due to this event, the level of an edge changes only
if it belongs to£2(0, k). Thus, we have GUNT! — CounT® < DY(0, %) < ;6% /. O

Claim 2.29. For all uw € V' \ {v}, we have)¥ (u) > 0.

Proof. Fix any nodeu € V' \ {v}. If the nodeu is passive, then we havel(u) = 0, and the claim is
trivially true. Thus, for the rest of the proof we assume thatnodeu is active.

If £,n&%0,k) = 0, then we havéV? = W}, and henced¥ (u) = 0. Else we haves, N £2(0, k) # 0.
In this case, as the level of the nodedecreases fromk to & — 1, we infer thatw®(e) < w!(e) for all
e € & NEY0,k), and, accordingly, we gé¥’? < Wl This implies thatl®(u) > W' (u). Thus, we have
U (u) = UO(u) — Wl(u) > 0. O

We now partition the edge-sét into two subsetsX andY’, according to the level of the other endpoint.

X = {ee&,: max {l(u)} < k‘} andY =&, \ X.
ueVe\{v}

14

Claim 2.30. For every edge € &,, we have:
if Y
5P(e) = 0 I eet;
—(14+¢ IifeeX.
Proof. Fix any edge: € &,. We consider two possible scenarios.

1. We havee € Y. As the level of the node decreases fromh to k& — 1, we infer thatt®(e) = ¢1(e),
and accordingly®®(e) = ®!(e). Hence, we gei®(e) = ®°(e) — ®!(e) = 0.

2. We havee € X. Since the level of node decreases from to k — 1, we infer that/®(e) = k and
¢*(e) = k —1, and accordingly®®(e) = (1 +¢) - (L — k) and®!(e) = (1 +¢)- (L — k+1). Hence,
we gets®(e) = () — dl(e) = —(1 +¢).

This concludes the proof of the Claim. O

Next, we partition/¥’? into two parts:z andy. The first part denotes the contributions towavd$ by
the edges € X, while the second part denotes the contribution tow#¥isby the edges < Y. Note that
X C £Y(0, k), which implies thatr = Y~ . v w’(e) = pB7" - | X|. Thus, we get the following equations.

Wl=z+y<c (28)

z=pB~" X (29)

y=> w'le) (30)
ecY

Equation28 holds due to Clain2.27.
Claim 2.31. We have) .. 6®(e) = —(1 +¢) -z - B /.

Proof. Claim 2.30implies that)_ .. d®(e) = —(1 + ¢€) - [X|. Applying equation29, we infer that
[X|=x-5%/p. O
Claim 2.32. We have:
gt gk
0¥ (v) = (fac, —z—y)- Ta(Bo1) e (0, fac, — Bz —y) - THE=1)
Proof. Equation28 states thatV? = = + y < ¢}. Sincet®(v) = k, we get:
V() = (fac; — o - y) - @
! fu(B-1)
As the nodey decreases its level fromto k£ — 1, we have:
~wl(e) ifeeX;
wie) = {Zo(e)(| ifueY
Accordingly, we havéV! = 3 - = + y, which implies the following equation.
Ul(v) = max(0, fact, — Bz —y) - 57]6 (32)
fu(B—1)
Sinces ¥ (v) = ¥O(v) — l(v), the Claim follows from equation31 and32. O

15

We now consider two possible scenarios depending upon the @&(fac}, — Sz — y). We show that in
each caséB > ¢ 8% /u. This, along with Clain®.28 implies thaty3 > CouNT! — CouNT’. This proves
Lemmaz2.18for Case 2.

1. Suppose thatfac;, — Sz —y) < 0. From Claims2.29, 2.31, 2.32and equatior23, we derive:

€08 = > sU(u)+ > iP(e) + U(v)

ueV\{v} ec&y
> —(1+e)-x-%k+(faci—w—y)-%
> 49 Lt fa-ng 0 (33)
> —(1+e€-c ——I— R)]
_aBt p
- Sr{rurare-un giy)
. ka{ (146 + 1+3)—(1+6)} (34)
1 €
> e'cf,
m

Equation33 follows from equatior28. Equation34 holds sincex =1+ 1/f + 3eandf =1 + e.

2. Suppose thatfact — Sz —y) > 0. From Claims2.29, 2.31, 2.32and equatior23, we derive:

e-6B= > 0U(u)+ Y 0®(u,v)+ ¥(v)

ueV\{v} ec&,
k
:M(Bﬂ_l)-{(facj,—x_y)~?—(facz—ﬁx—y).%_(l+e)'x'(ﬁ_l)}
i — _
:ﬁ-{aciﬂ—acz_(ﬂw-kﬁyf Bz y)—(1+€)'ﬂj-(ﬁ—1)}
k J—
:M(ﬁﬂ—l).{acz’(ﬂ_1)_M—(1+6)'x.(ﬁ_1)}
:%k {O‘C:—%—(l+e)-:p}
51@
27 {acy = By +2)} (35)
2%’“,(@_) % (36)
Ee'cz.ﬂ—k an
I

Equation35 holds since3 = 1 + e and f > 1. Equation36 follows from Equation28. Equation37
holds sincex =1+ 1/f +3candf =1 +e.

16

3 Maintaining a Set-Cover in a Dynamic Setting

We first show the link between the fractional hypergraghatching and set-cover.
Lemma 3.1. The dual LP 4) is an LP-relaxation of the set-cover problem (Definitibd).

Proof. Given an instance of the set-cover problem, we create aanostof the hypergrapbrmatching
problem as follows. For each elementc U/ create an edge(u) € E, and for each se$ € S, create a
nodeuv(S) € V with coste,g) = cs. Ensure that an elementbelongs to a sef iff e(u) € £,(g). Finally,
sety = max,ey ¢y + 1.

Sincep > max,cy ¢y, it can be shown that an optimal solution to the dual £Pwill set z(e) = 0 for
every edge € E. Thus, we can remove the variablege)} from the constraints and the objective function
of LP (4) to get a new LP with the same optimal objective value. Thig b€ is an LP-relaxation for the
set-cover problem. O

We now present the main result of this section.

Theorem 3.2. We can maintain aff? + f + ¢ f?)-approximately optimal solution to the dynamic set cover
problem inO(f - log(m + n)/e?) amortized update time.

Proof. We map the set cover instance to a fractional hypergiaptatching instance as in the proof of
Lemma3.L By Theorem2.3, in O(f log(m + n)/e?) amortized update time, we can maintain a feasible
solution{z*(e)} to LP (1) that isA\-maximal, where\ = f + 1 + ¢f.

Consider a collection of set$* = {S € S : Zeegu(s) r*(e) > cy(s)/A}. Since we can maintain the

fractional solution{z*(e)} in O(f log(m +n)/e?) amortized update time, we can also maintsinwithout
incurring any additional overhead in the update time. N@ing complementary slackness conditions, we
can show that each element U/ is covered by som§ € S*, and the sun) _ ;.. cs is at most(\ f)-times
the size of the primal solutiofiz*(e) }. The corollary follows from LP duality. O

4 Maintaining a b-Matching in a Dynamic Setting

We will present a dynamic algorithm for maintaining @1)-approximation to the maximummatching
(see Definitionsl.3, 1.4). Our main result is summarized in Theoreh8 We use the following ap-
proach. First, we note that the fractiordamatching problem is a special case of the fractional hypgiy
b-matching problem (see Definitioh5) with f = 2 (for each edge is incident upon exactly two nodes).
Hence, by Theorem®.2and2.3, we can maintain &(f2) = O(1) approximate “fractional” solution to the
maximumb-matching problem irO(f log(m + n)) = O(log n) amortized update time. Next, we perform
randomized rounding on this fractional solution in the dyi@asetting, whereby we select each edge in the
solution with some probability that is determined by itcfranal value. This leads to Theorefi8.

Notations. Let G = (V, E) be the input graph to the-matching problem. Given any subset of edges
E' C Fandany node € V, let N(v, E') = {u € V : (u,v) € E'} denote the set of neighbors of
v with respect to the edge-sét, and let de¢u, E’) = [N (v, E’)|. Next, consider any “weight” function
w : E' — R* that assigns a weight/(e) to every edges € E’. For every nodey € V, we define
Wy =3 uen,p) w(u,v). Finally, for every subset of edgds C E, we definew(E') = 3- . g wle).

Recall that in thé-matching problem, we are given an “input gragh"= (V, E') with |V'| = n nodes,
where each node € V has a “capacity’c, € {1,...,n}. We want to select a subset C F of edges of
maximum size such that each nodlas at most, edges incident to it ir2’. We will also be interested in
“fractional” b-matchings. In the fractionatmatching problem, we want to assign a weigtit) < [0, 1] to

17

every edge € E such thaEueN(mE) w(u,v) < ¢, forevery nodev € V, and the sum of the edge-weights
w(FE) is maximized. In the dynamic version of these problems, thidersetl” remains fixed, and at each
time-step the edge-sét gets updated due to an edge insertion or deletion. We now kbhawto efficiently
maintain anO(1)-approximate fractional-matching in the dynamic setting.

Theorem 4.1. Fix a constant € (0,1/4), and let\ = 4, andy = 1 + 4e. In O(log n) amortized update
time, we can maintain a fractionatmatchingw : £ — [0,1] in G = (V, E)) such that:

W, < ¢, /~ for all nodesv € V. (38)
w(u,v) = 1 for each edgdu,v) € E with W, W, < ¢, /. (39)

Further, the size of the optimatmatching inG is O(1) times the sum__, w(e).

Proof. Note that the fractionab-matching problem is a special case of fractional hypeltgiamatching
wherey =1, m = n?, andf = 2.

We scale down the capacity of each nade V by a factor ofy, by definingé, = ¢, /v forallv € V.
Next, we apply Theorer@.3 on the input simple grapt¥ = (V, E) with 1 = 1, m = n?, f = 2, and the
reduced capacitief’, },v € V. Let{w(e)},e € E, be the resultind f + 1 + ¢f)-maximal matching (see
Definition 2.1). Sincee < 1/3 andf = 2, we haveX > f + 1 + ¢f. Sincee is a constant, the amortized
update time for maintaining the fractionaimatching become®(f - log(m + n) /%) = O(logn). Finally,
by Theorem2.2, the fractionalb-matching{w(e)} is an(\f + 1) = 9-approximate optimal-matching in
G in the presence of the reduced capacifigs}. But scaling down the capacities reduces the objective of
LP (1) by at most a factor of. Hence, the size of the optim&imatching inG is at mos9y = O(1) times
the sum)_ . w(e). This concludes the proof. O

SetA = 4, v = 1+ 4e ande € (0,1/4) for the rest of this section. We will show how to dynamically
convert the fractional-matching{w(e)} from Theoremd.linto an integrab-matching, by losing a constant
factor in the approximation ratio. The main idea is to ranjjosample the edgesc< E based on theiw(e)
values. But, first we introduce the following notations.

Say that a node € V is “nearly-tight” if W,, > ¢, /X and “slack” otherwise. LeT’ denote the set of
all nearly-tight nodes. We also partition of the nodelgento two subsetsB C V andS = V' \ B. Each
nodev € B is called “big” and has ddg, E') > clogn, for some large constant> 1. Each node € S'is
called “small” and has dég, E) < clogn. DefineEp = {(u,v) € E : eitheru € B orv € B} to be the
subset of edges with at least one endpoinBirand letEs = {(u,v) € E : eitheru € Sorv € S} be the
subset of edges with at least one endpoirfi.iWe define the subgrapliss = (V, Ep) andGg = (V, Es).

Observation 4.2. We haveN (v, E) = N (v, E) for all big nodesv € B, and N (u, E) = N (u, Eg) for
all small nodes: € S.

Overview of our approach. Our algorithm maintains the following structures.
e A fractional b-matching as per Theorefhl

e Arandom subset/z C Eg, and a weight function® : Hg — [0,1] in the subgraplG(H) =
(V, Hp), as per Definitior#.3,

e A random subsetis C Eg, and a weight functionv® : Hg — [0,1] in the subgraptGs(H) =
(V, Hg), as per Definitior#.4.

e A maximalb-matchingMs C Hg in the subgraplizs(H), that is, for every edgéu, v) € Hg \ Mg,
there is a node € {u, v} such that de@, Ms) = ¢,.

18

e The set of edges™* = {e € E : w(e) = 1}.

The rest of this section is organized as follows. In Lemehagresp. Lemmad.6), we prove some properties
of the random seH (resp. Hs) and the weight functionv” (resp. w®). In Lemma4.7, we show that
the edge-setél 3, Hg, Mg and E* can be maintained in a dynamic settingtrilog® n) amortized update
time. In Theorem4.8, we prove our main result, by showing that one of the edgefet Mg, E* is an
O(1)-approximation to the optima&tmatching with high probability.

The proofs of Lemma4.5, 4.6 and4.7 appear in Sectioné.2, 4.3and4.4respectively.

Definition 4.3. The random setlz C Ep and the weight functiom” : Hg — [0, 1] are defined so as to
fulfill the following conditions.

With probability one, we have deg Hg) < ¢, for every small node € S. (40)
Prle € Hp] = w(e) for every edge € Ep. (41)

Vv € B, the event{[(u,v) € Hp|},u € N (v, Eg), are mutually independent. (42)
For each edge € Hp, we havew®(e) = 1 (43)

We defindZz(e) € {0, 1} to be an indicator random variable that is set to one & Hp and zero otherwise.

Definition 4.4. The random sefls C Eg and the weight functiom® : Hg — [0,1] are defined so as to
fulfill the following conditions.

Prle € Hg] = p. = min(1l,w(e) - (cAlogn/e)) Ve € Es. (44)
The event§[e € Hgl}, e € Eg, are mutually independent. (45)
w(e) if pe > 1;

. (46)
e/(c\logn) ifp. < 1.

For each edge € Hg, we havew® (e) = {

We defineZs(e) € {0, 1} to be an indicator random variable that is set to one # Hg and zero otherwise.

Lemma 4.5. For every nodev € V, defineW? = D ueN (v, Hp) w? (u,v). Then the following conditions
hold with high probability.

e For every nodey € V, we havve < ¢y
e Forevery node € BNT, we haveV? > (1 —¢) - (c, /).

Lemma 4.6. For every nodev € V, definelV;? = ZueN(mHS) w®(u,v). The following conditions hold
with high probability.

e For each nodes € V, we haveV® < c,.
e For each nodes € S, we have deg, Hs) = O(log?n).
e Foreach nodey € SNT, we haveVy > (1 —¢) - (¢, /A).

Lemma 4.7. With high probability, we can maintain the random sets ofesdz and Hg, a maximalb-
matchingMs in the random subgraptirs(H) = (V, Hg), and the set of edges* in O(log® n)-amortized
update time.

Theorem 4.8. With high probability, we can maintain @(1)-approximateb-matching in the input graph
G = (V, E) in O(log® n) amortized update time.

19

4.1 Proof of Theorem4.8

We maintain the random sets of edgég and Hg, a maximalb-matchingM in the subgraptGs(H) =
(V, Hg), and the set of edgeB* = {¢ € E : w(e) = 1} as per Lemma.7. This requiresO(log® n)
amortized update time with high probability. The theorert feilow from Theorem4.1, Lemma4.9 and
Lemma4.1l

Lemma 4.9. With high probability, each of the edge-séfs;, Mg and E* is a valid b--matching inG.

Proof. Sincew®(e) = 1 for every edge: € Hp (see Definitior4.3), Lemmad4.5implies that the edge-set
Hp is ab-matching inG with high probability.

Next, by definition, the edge-séfs is ab-matching inGs(H) = (V, Hg). SinceHg C E, the edge-set
Mg is also a-matching inG.

Finally, sincew : E — |0, 1] is a fractionalb-matching inG, the set of edge&™* is also a-matching in
G. O

Lemma 4.10. We havew(E*) + 3 g Wo + > pcsnr Wo > w(E).

Proof. Consider any edge:,v) € E. If u ¢ T andv ¢ T', then by equatiol9, we must havéu, v) € E*.
In contrast, if there is some nodee {u,v} such thatr € T, then we must have either € BN T or
reSNT.

In other words, every edge:, v) satisfies this property: Eithér, v) € E*, or itis incident upon some
node inB N T, or itis incident upon some nodeN 7'. Thus, each edgec E contributes at leasb(e) to
the sumw(E*) + >, cgnr Wo + 2 esnr Wo. The lemma follows. O

Lemma 4.11. We havew(E) < O(1) - max(|E*|, |Hg|, | Ms|) with high probability.
Proof. Note thatw(E*) = |E*|. We consider three possible cases, based on Lefnia
Case 1w(E*) > (1/3) - w(E). In this case, clearly(E) < 3 - max(|E*|,|Hp|, |Ms|).

Case 2.} cpnr Wo > (1/3) - w(E). In this case, we condition on the event under which Lerdnsa
holds. Thus, we get:

wE) < Y3 We< Y 3, < Y BN(1—e) W]
veBNT veBNT veBNT
< BMI=e)- Y 2-wP(e)=(6M/(1—¢)) - |Hp|
ecHp

Case 3.> gy Wo > (1/3) - w(E). In this case, we condition on the event under which Lerdnga
holds. Thus, we get:

wB) < D3 We< Y 36 < Y BNA-e) W
veSNT veSNT veSNT
< BMI=e) > 2w (e) = (6M/(1 €)Y we)
e€Hg ecHg

< 120/ -) - [Ms].

The last inequality holds sinde/s is a maximab-matching inGs(H) = (V, Hg), and since every maximal
b-matching is a2-approximation to the maximum fractionaimatching (this follows from LP duality).
Accordingly, we havey, . ;. w(e) < 2-|Ms]. O

Since), e are constants, this concludes the proof of Theofesn

20

4.2 Proof of Lemma4.5
Lemma 4.12. With high probability, we hav&/? > (1 — ¢) - (c,/)) for every nodey € BN T.

Proof. Fix any nodev € BN T. Note that\ (v, Eg) = N (v, E), W, > ¢,/A, ande, > cA\logn/e.
Linearity of expectation, in conjunction with equationg, 43 and Observatiord.2 imply that we have
E[WUB] = ZUEN(U,EB) E[ZB(U>U)] = EUEN(U,EB) w(u7v) = ZUEN(U,E) w(u7v) =W, 2 CU/>\ 2
clogn/e. Thus, applying Chernoff bound, we infer tHa{IW.”] > (1 — ¢) - (c,/)) with high probability.
The lemma follows if we take a union bound over all nodes BN T. O

Lemma 4.13. With high probability, we havé/? < ¢, for every node € V.

Proof. Consider any node < V. If v € S, then we havéV? < ¢, with probability one (see equa-
tions 40, 43).

For the rest of the proof, suppose that B. Applying an argument similar to the one used in the proof
of Lemma4.12 we infer thatE[W.?] = W, < ¢,/v. The last inequality holds due to equati& Since
v > (1+¢€) andc, > cAlogn/e, applying Chernoff bound we derive thidt? < ¢, with high probability.

Thus, for each node € V, we havelV? < ¢, with high probability. The lemma now follows if we
take a union bound over all nodess B. O

Lemma4.5now follows from Lemmagl.12and4.13

4.3 Proof of Lemma4.6
4.3.1 High Level Overview

In order to highlight the main idea, we assume that< 1 for every edge: € FEg. First, consider any
small nodev € S. SinceN (v, Es) = N (v, E), from equations38, 44, 46 and linearity of expectation,
we infer thatE[dedv, Hg)] = (cAlogn/e) - W, < (cAlogn/e) - (¢, /(1 + €)). Sincee, € [1,clogn],
from equation45 and Chernoff bound we infer that deg Hs) < (cAlogn/e) - ¢, = O(log® n) with high
probability. Next, note thatVy = degv, Hs) - (¢/(cA\logn)). Hence, we also gét/;’ < c, with high
probability. Next, suppose thate S N T. In this case, we havE[deqv, Hg)|] = (cAlogn/e) - W, >
(cAlogn/e) - (¢, /). Again, since this expectation is sufficiently large, appdyChernoff bound we get
deqv, Hg) > (cAlogn/e) - (1 — ¢€) - (c,/A) with high probability. It follows thaiV? = (e/(cAlogn)) -
dequ, Hg) > (1 —€) - (¢,/A) with high probability.

Finally, applying a similar argument we can show that forrg\gig nodev € B, we havelV,? < ¢,
with high probability.

4.3.2 Full Details

For every node € V, we partition the node-sét'(v, Es) into two subsets X (v) andY (v) — as defined
below.

X(U) = {u € N(U>ES) FPupw) = 1} (47)
Y(U) = {u € N(U>ES) * Pluw) < 1} (48)
Next, for every node € V', we define:
ox(v) = Z w(u,v) (49)
ueX(v)
Sy(v) = Y w(u,v) (50)
ueY (v)

21

SinceN (v, Es) € N (v, E) for every nodev € V, by equatiorB8we have:

ST w(uv) =0x(0) + 0y (v) < ey (51)
ueN (v,Es)

SinceX (v) € N(v, Es) andw? (u,v) = w(u,v) for every node: € X (v), we get:

Z w (u,v) = dx (v). (52)

ueX (v)

Lemma 4.14. For every nodes € V, if 0y (v) < €/, then with high probability, we have:
Y(v) NN (v, Hs)| <

Z w(u,v) < 2/

u€Y (v)NN (v,Hg)

Proof. Recall that for every node € Y (v), we have defineds(u,v) € {0,1} to be an indicator random
variable that is set to one (i;,v) € Hg and zero otherwise. Clearly, we hali¢Zs (u,v)] = (cAlogn/e) -
w(u,v) forallu € Y (v). Applying linearity of expectation, we get:

E[Y(v)ﬂN(v,HS)]E[Z Zs(u,v)] = (cAlogn/e) - Z w(u,v)

ueY (v) u€Y (v)
= (cAlogn/e) - oy (v) < clogn.

SinceE [|Y (v) NN (v, Hg)|] < clogn, applying Chernoff bound we infer that (v) N N (v, Hs)| <
(1 + €)clog n with high probability.

Finally, note that each node € Y (v) N N (v, Hs) hasw®(u,v) = ¢/(cAlogn). This implies that
D_ueY (v) W (v, H) w¥(u,v) = ¢/(cAlogn) - |Y (v) N Hg|. Since|Y (v) N Hg| < (1 + €)clog n with high
probability, we getzzuey(v)mN(v,Hs) w(u,v) < (14+€)e/A < 2¢/ with high probability. This concludes
the proof of the lemma. O

Lemma 4.15. For every node € V, if §y (v) > €/, then with high probability, we have:

(cAlogn/e) - ((Sly—i(—ve)) <|Y(v)NN(v,Eg)| < (cAlogn/e) - (1 + €)dy (v); and
Oy (v)
GTrgs 2 vy 1+9iv).

ueY (vV)NN (v,Hg)

Proof. Let n = E[|Y (v) N N (v, Hg)|]. Applying an argument as in the proof of Lemmd4 we get:
w = (c\logn/e) - dy (v) > clogn. Hence, applying Chernoff bound, we infer that(1 +¢) < |Y(v) N
N (v, Hg)| < (1 + €)p with high probability. This proves the first part of the lemma

To prove the second part of the lemma, we simply note that) &sel proof of Lemmat.14, we have

Y uey (W (u,g) W (u,v) = (¢/(eAlogn)) - Y (v) NN (v, Hs)|. O
Lemma 4.16. For every node € V, we have de, Hg) = O ((log n/e) - ¢,,) with high probability.

Proof. Fix any nodev € V. Note thatX (v) C N (v, Hg) andw(u,v) = w*(u,v) > €/(cAlogn) for every
nodeu € X (v). By equatiorb2, we have)_ . v, w® (u,v) = §x (v) for every nodey € V. Thus, we get:

[X (v)] < (cAlogn/e) - dx(v) = O ((logn/e) - 5x(v)) (53)

22

Lemmas4.14and4.15imply that with high probability, we have:
Y (v) N Hg| < max (clogn,(cA\logn/e)(1+ €)dy(v))

= O((logn/e) - oy (v)) (54)
Since de@u, Hs) = | X (v)| + |Y (v) N N (v, Hg)|, the lemma follows if we add equatios8 and54, and
recall thatd x (v) + dy (v) < ¢, (See equatioBl). O

Lemma 4.17. For every node € V, we havelV? < ¢, with high probability.
Proof. Lemmas4.14and4.15imply that with high probability, we have:
Z w® (u,v) < max (2¢/\, (1 + €)dy (v)) (55)
u€Y (v)NN (v,Hg)
Since the node-sét (v, Hg) is partitioned intaX (v) andY (v) NN (v, Hg), we get:

wo = Z w? (u,v) + Z w? (u, v)

weX(v) u€Y (V)N (v,Hg)
< (146 by (v) + max(2e/A, (1 + &)y (v)) (56)
< (L4€) - (6x(v) + 8y (v) + 2¢/A
< (L6 (ew/7)+(26/A) ey (57)
< (149 (eo/y) + 26 (c)7) (58)
- (59)

Equation56 follows from equation$2 and55, and it holds with high probability. Equatidsv follows from
equation51 and the fact that, > 1. Equation58 holds sincey < A (see Theorerd.1). Equation59 holds
sincey > 1 + 3¢ (see Theorem.1). O

Lemma 4.18. For every node» € S N T, we haveVy > (1 —«¢) - (¢, /).

Proof. Fix any nodev € SN T. Sincev € S, we haveN (v, E) = N (v, Eg). Sincev € T, we have
Wo =3 ueN(v,Bs) WU, v) = cu/A. SINCEY. o vy pg) WU, v) = dx (v) + 0y (v), we get:

dx (v) + dy (v) > cu/A (60)
We also recall that by equatid® we have:
> wi(u,v) = dx(v) (61)
ueX(v)

We now consider two possible cases, based on the valée(of.

Case 1.We havedy (v) < ¢/A. Sincec, > 1, in this case, we hav@y (v) > ¢, /A — oy (v) > ¢, (1 —€)/A.
By equation61, we infer thatiV> > Duex () w(u,v) = 6x(v) > ¢, (1 — €)/A. This concludes the proof
of the lemma for Case 1.

Case 2. We havedy (v) > €/A. In this case, Lemmd.15implies that with high probability we have:
DueY ()W (v, Hs) w¥(u,v) > 8y (v)/(1 + €). Since the node-seY (v, Hg) is partitioned intoX (v) and
Y (v) NN (v, Hg), we get:

W)= 3w+ Y wS(e) 2 ox(m) + ay(w)/(1L+0)
ueX(v) u€Y (V)N (v,Hg)

> (0x(v) + 0y (v)/(A+€) = (co/A) - (1/(1+€)) =2 (1 =€) - (co/A)
This concludes the proof of the lemma for Case 2. O

Lemmad4.6follows from Lemmagt.16 4.17, 4.18 and the fact that, = O(logn) forallv € S.

23

4.4 Proof of Lemma4.7

We maintain the fractionatmatching{w(e)} as per Theorem.1 This requiresD(log n) amortized update
time, and starting from an empty graphedge insertions/deletions @ lead toO(tlog n) many changes
in the edge-weightgw(e)}. Thus, we can easily maintain the edge-Bét= {¢ € E : w(e) = 1} in
O(logn) amortized update time. Specifically, we store the edgd<3eds a doubly linked list. For every
edge(u,v) € E*, we maintain a pointer that points to the position(efv) in this linked list. For every
edge(u,v) € E\ E*, the corresponding pointer is set to NULL. An edgev) is inserted into/deleted from
the setE™ only when its weightw(e) is changed. Thus, maintaining the linked list #6f does not incur
any additional overhead in the update time.

Next, we show to maintain the edge-9ét by independently sampling each edge Es with proba-
bility p.. This probability is completely determined by the weighie). So we need to resample the edge
each time its weight changes. Thus, the amortized updageftinmaintainingH s is alsoO(log n). Similar
to the case of the edge-siBt, we store the edge-séis as a doubly linked list.

Next, we show how to maintain the maxintamatchingMs in Hg. Every edges € Hg has at least one
endpoint inS, and each node € S has de@v, Hs) = O(log?n) with high probability (see Lemma.6).
Exploiting this fact, for each node € B, we can maintain the set of its free (unmatched) neighbors
Fo(S) = {u € N(v,Hg) : uis unmatched i/s} in O(log® n) amortized time per update iH g, with
high probability. This is done as follows. Sincec B, the onus of maintaining the sé&t (.5) falls squarely
upon the nodes i (v, Hg) C S. Specifically, each small nodee S maintains a “status-bit” indicating if
it is free or not. Whenever a matched small nadehanges its status-bit, it communicates this information
to its neighbors iV (u, Hs) N B in O(dequ, Hs)) = O(log®n) time. Using the list{ F,(S)},v € B,
and the status-bits of the small nodes, after each edgdiorgdeletion inHg, we can update the maximal
b-matchingMs in O(log? n) worst case time, with high probability. Since each edgertis#deletion in
G, on average, leads 10(logn) edge insertions/deletions iHg, we spendD(log® n) amortized update
time, with high probability, for maintaining the matchiids.

Finally, we show how to maintain the sBtz. The edgesu,v) € Ep with both endpoints:,, v € B are
sampled independently with probability(u, v). This requiresD(log n) amortized update time. Next, each
small nodev € S randomly selects some neighbars N (v, Ep) and adds the corresponding edg¢esv)
to the setH s, ensuring thaPr[(u,v) € Hg] = w(u,v) for all u € N'(v, Eg) and that defy, Hg) < c,.
The random choices made by the different small nodes areathuindependent, which implies equatid@.
But, for a given node € S the random variable§Zz(u,v)}, v € N (v, Eg), are completely correlated.
They are determined as follows.

In the beginning, we pick a numbey, uniformly at random from the intervdD, 1), and, in a pre-
defined manner, label the set of big nodesias= {vi,...,vp}. Foreachi € {1,...,|B|}, we de-
fine a;(v) = w(v,v;) if v; € N(v,Ep) and zero otherwise. We also definig(v) = >'_; a;(v)
for eachi € {1,...,|B|} and set4y(v) = 0. At any given point in time, we defind/(v, Hg) =
{vi € B : A;_1(v) < k + n, < A;(v) for some nonnegative integér < ¢,}. Under this scheme,
for every nodev; € B, we havePr[v; € N(v,Hp)] = Aij(v) — Ai—1(v) = a;(v). Thus, we get
Prlv; € N (v, Hg)] = w(v,v;) for all v; € N (v, Eg), andPr[v; € N (v, Hg)] = 0 for all v; # N (v, Ep).
Also note that de@, Hp) < [>_,, cn(v,) w0, 0i)] < [Wy] < [er/(7)] < . Hence, equationd0, 41
are satisfied. We maintain the sufid;(v)}, i, and the sef\V (v, Hg) using a balanced binary tree data
structure, as described below.

We store the ordered sequence Bf numbersu; (v), ..., a g (v) in the leaves of a balanced binary tree
from left to right. Letz; denote the leaf node that stores the vali@). Further, at each internal nodeof
the balanced binary tree, we store the sim= »_, . 7, ai(v), whereT'(z) denotes the set of nodes in
the subtree rooted at This data structure can support the following operations.

INCREMENT(¢, §): This asks us to set;(v) < a;(v) + J, whered is any real number. To perform this

24

update, we first change the value stored at the leaf mpd&hen starting from the node;, we traverse up
to the root of the tree. At each internal nadén this path fromz; to the root, we sef, +— S, + J. The

S, values at every other internal node remains unchangede $iedree has depth(log n), the total time
required to update the data structure is &@Xbog n).

RETURN-INDEX(y): Given a numbef) < y < ¢,, this asks us to return an indeXif it exists) such
thatA;_1(v) <y < A;(v). We can answer this query i(log n) time by doing binary search. Specifically,
we perform the following operations. We initialize a counté<« 0 and start our binary search at the root
of the tree. At an intermediate stage of the binary searctgre@t some internal nodeand we know that
y < C+ S;. Letz(l) andz(r) respectively be the left and right child of Note thatS, = S,y + Sy()-

If y < C + Sy, then we move to the nodg/). Otherwise, we set’ < C + S,(;) and move to the node
x(r). We continue this process until we reach a leaf node, whiebsgis the required answer. The total
time taken by the procedure @(logn).

We use the above data structure to maintain the/séts Hg),v € S. Whenever the weight of an edge
(u,v), v € S, changes, we can update the A&, H) by making one call to the INCREMENT, §), and
¢y calls to RETURN-INDEXy), one for eachy = k + 1,, wherek < ¢, is a nonnegative integer. Since
¢, = O(log n), the total time required i®(log? n) per change in the edge-weigHis (¢)}.

Since each edge insertion/deletionGh on average, leads t1©(logn) changes in the edge-weights
{w(e)}, the overall amortized update time for maintaining the estgfd is O(log® n).

Similar to the edge-set&* and Hg, we store the edge-séip as a doubly linked list. Each edge
(u,v) € Hp maintains a pointer to its position in this list. Each edgev) € E'\ Hp sets the corresponding
pointer to NULL. It is easy to check that this does not incuy additional overhead in the update time. This
concludes the proof of the lemma.

5 Conclusion and Open Problems

In this paper, we introduced a dynamic version of the prichat method. Applying this framework, we
obtained the first nontrivial dynamic algorithms for the s@ter anch-matching problems. Specifically, we
presented a dynamic algorithm for set cover that maintai@¥ 2)-approximation inO(f - log(m + n))
update time, wher¢g is the maximum frequency of an element, is the number of sets and is the
number of elements. On the other hand, for thmatching problem, we presented a dynamic algorithm
that maintains a(1)-approximation inO(log® n) update time. Our work leaves several interesting open
guestions. We conclude the paper by stating a couple of swihems.

e Recall that in the static setting the set cover problem al®itmin(f,logn))-approximation in
O(f - (m + n))-time. Can we match this approximation guarantee in the miynaetting inO(f -
polylog(m + n)) update time? As a first step, it will be interesting to desigityaamic algorithm
for fractional hypergraph-matching that maintains@(f)-approximation and has an update time of

O(f - polylog(m + n)).

e Are there other well known problems (such as facility logatiSteiner tree etc.) that can be solved in
the dynamic setting using the primal-dual framework?

References

[1] K. J. Ahn and S. Guha. Near linear time approximation suée for uncapacitated and capacitated
b-matching problems in nonbipartite graphs. Aroceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portlandg@reUSA, January 5-7, 201f¢ages
239-258, 2014.

25

[2] R. Bar-Yehuda and S. Even. A linear time approximatiogoathm for the weighted vertex cover
problem. Journal of Algorithms2:198-203, 1981.

[3] S. Baswana, M. Gupta, and S. Sen. Fully dynamic maximdthmag in O(logn) update time. In
52nd IEEE Symposium on Foundations of Computer Scigages 383-392, 2011.

[4] S. Bhattacharya, M. Henzinger, and G. F. Italiano. Dmetarstic fully dynamic data structures for
vertex cover and matching. IRArocs. 26th Annual ACM-SIAM Symposium on Discrete Algorith
(SODA 2015)pages 785-804, 2015.

[5] N. Buchbinder and J. Naor. The design of competitive rmnklgorithms via a primal-dual approach.
Foundations and Trends in Theoretical Computer ScigB¢(2 3):93-263, 2009.

[6] G.B. Dantzig, L. R. Ford, and D. R. Fulkerson. A primaladlalgorithm for linear programs. In H. W.
Kuhn and A. W. Tucker, editord,inear Inequalities and Related Systermpages 171-181. Princeton
University Press, Princeton, NJ, 1956.

[7] D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic grapbaaithms. In M. J. Atallah and M. Blanton,
editors,Algorithms and Theory of Computation Handbook, 2nd Edjt\al. 1, pages 9.1-9.28. CRC
Press, 20009.

[8] U. Feige. A threshold of Im for approximating set covedournal of the ACM45:634—-652, 1998.

[9] H. N. Gabow. An efficient reduction technique for degramstrained subgraph and bidirected network
flow problems. InProceedings of the 15th Annual ACM Symposium on Theory opQtimgy, 25-27
April, 1983, Boston, Massachusetts, U$Ages 448-456, 1983.

[10] M. Goemans and D. P. Williamson. A general approxinratiechnique for constrained forest prob-
lems. SIAM J. Comput.24:296-317, 1992.

[11] M. X. Goemans and D. P. Williamson. The primal-dual noetlior approximation algorithms and its
application to network design problems. In D. S. Hochbauditog Approximation algorithms for
NP-hard problemspages 144-191. PWS Publishing Company, 1997.

[12] M. Gupta and R. Peng. Fully dynam(t + ¢)-approximate matchings. B4th IEEE Symposium on
Foundations of Computer Sciengages 548-557, 2013.

[13] D. S. Johnson. Approximation algorithms for combimetbproblems. Journal of Computer and
System Science8:256-278, 1974.

[14] S. Khotand O. Regev. Vertex cover might be hard to apprate to within2 — e. Journal of Computer
and System Sciencgest, 2008.

[15] S. Korman. On the Use of Randomization in the Online Set Cover Problé/aizmann Institute of
Science, 2004.

[16] H.W. Kuhn. The Hungarian method for the assignment jgmbNaval Research Logistics Quarterly
2:83-97, 1955.

[17] O. Neiman and S. Solomon. Simple deterministic algpong for fully dynamic maximal matching. In
45th ACM Symposium on Theory of Computipgges 745-754, 2013.

[18] K. Onak and R. Rubinfeld. Maintaining a large matchingla small vertex cover. 142nd ACM
Symposium on Theory of Computipgges 457-464, 2010.

[19] V. V. Vazirani. Approximation AlgorithmsSpringer-Verlag, New York, NY, USA, 2001.

26

	1 Introduction
	2 Maintaining a Fractional Hypergraph b-Matching in a Dynamic Setting
	2.1 Preliminaries
	2.2 The (,)-partition and its properties.
	2.3 The algorithm: Handling the insertion/deletion of an edge.
	2.4 Data structures.
	2.5 Bounding the amortized update time.
	2.6 Proof of Lemma ??.
	2.7 Proof of Lemma ??.

	3 Maintaining a Set-Cover in a Dynamic Setting
	4 Maintaining a b-Matching in a Dynamic Setting
	4.1 Proof of Theorem ??
	4.2 Proof of Lemma ??
	4.3 Proof of Lemma ??
	4.3.1 High Level Overview
	4.3.2 Full Details

	4.4 Proof of Lemma ??

	5 Conclusion and Open Problems

