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Abstract
A generalised degenerate string (GD string) Ŝ is a sequence of n sets of strings of total size N ,
where the ith set contains strings of the same length ki but this length can vary between different
sets. We denote the sum of these lengths k0, k1, . . . , kn−1 by W . This type of uncertain sequence
can represent, for example, a gapless multiple sequence alignment of width W in a compact form.
Our first result in this paper is an O(N+M)-time algorithm for deciding whether the intersection
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of two GD strings of total sizes N and M , respectively, over an integer alphabet, is non-empty.
This result is based on a combinatorial result of independent interest: although the intersection
of two GD strings can be exponential in the total size of the two strings, it can be represented in
only linear space. A similar result can be obtained by employing an automata-based approach
but its cost is alphabet-dependent. We then apply our string comparison algorithm to compute
palindromes in GD strings. We present an O(min{W,n2}N)-time algorithm for computing all
palindromes in Ŝ. Furthermore, we show a similar conditional lower bound for computing max-
imal palindromes in Ŝ. Finally, proof-of-concept experimental results are presented using real
protein datasets.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases degenerate strings, generalised degenerate strings, elastic-degenerate
strings, string comparison, palindromes

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.21

1 Introduction

A degenerate string (or indeterminate string) over an alphabet Σ is a sequence of subsets of
Σ. A great deal of research has been conducted on degenerate strings (see [1, 11, 20, 29, 32]
and references therein). These types of uncertain sequences have been used extensively for
flexible modelling of DNA sequences known as IUPAC-encoded DNA sequences [23].

In [19], the authors introduced a more general definition of degenerate strings: an elastic-
degenerate string (ED string) S̃ over Σ is a sequence of subsets of Σ∗ (see also network
expressions [28]) with the aim of representing multiple genomic sequences [10]. That is, any
set of S̃ does not contain, in general, only letters; a set may also contain strings, including the
empty string. In a few recent papers on this notion, the authors provided several algorithms
for pattern matching; specifically, for finding all exact [17] and approximate [8] occurrences
of a standard string pattern in an ED text.

We introduce here another special type of uncertain sequence called generalised degenerate
string; this can be viewed as an extension of degenerate strings or as a restricted variant of
ED strings. Formally, a generalised degenerate string (GD string) Ŝ over Σ is a sequence
of n sets of strings over Σ of total size N , where the ith set contains strings of the same
length ki > 0 but this length can vary between different sets. We denote the sum of these
lengths k0, k1, . . . , kn−1 by W . Thus a GD string can be used to represent a gapless multiple
sequence alignment (MSA) of fixed width, that is, for example, a high-scoring local alignment
of multiple sequences, in a compact form; see Figure 1. This type of alignment is used for
finding functional sequence elements [14]. For instance, searching for palindromic motifs in
these type of alignments is an important problem since many transcription factors bind as
homodimers to palindromes [26]. Specifically, a set of virus species can be clustered using
high-scoring MSA to obtain subsets of viruses that have a common hairpin structure [27].

Our motivation for this paper comes from finding palindromes in these types of uncertain
sequences. Let us start off with standard strings. A palindrome is a sequence that reads the
same from left to right and from right to left. Detection of palindromic factors in texts is a
classical and well-studied problem in algorithms on strings and combinatorics on words with
a lot of variants arising out of different practical scenarios. In molecular biology, for instance,
palindromic sequences are extensively studied: they are often distributed around promoters,
introns, and untranslated regions, playing important roles in gene regulation and other cell
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CA--AGCTCTATCTCGTA--TT
C---AGCCGAAGCTCGTATATT
CATCAAGTCAACGCAG----TT

(a) Multiple sequence alignment.

AGCTCTATCTCG
AGCCGAAGCTCG
AAGTCAACGCAG

(b) Local gapless alignment.

Ŝ = {A} ·
{

GC

AG

}
·


TCT

CGA

TCA

 · {A
}
·


TCTC

GCTC

CGCA

 · {G
}

(c) GD string obtained from the local gapless alignment.

Figure 1 A GD string representing a gapless multiple sequence alignment.

processes (e.g. see [4]). In particular these are strings of the form XX̄R, also known as
complemented palindromes, occurring in single-stranded DNA or, more commonly, in RNA,
where X is a string and X̄R is the reverse complement of X. In DNA, C-G are complements
and A-T are complements; in RNA, C-G are complements and A-U are complements.

A string X = X[0]X[1] . . . X[n− 1] is said to have an initial palindrome of length k if its
prefix of length k is a palindrome. Manacher first discovered an on-line algorithm that finds all
initial palindromes in a string [25]. Later Apostolico et al observed that the algorithm given
by Manacher is able to find all maximal palindromic factors in the string in O(n) time [6].
Gusfield gave an off-line linear-time algorithm to find all maximal palindromes in a string
and also discussed the relation between biological sequences and gapped palindromes [18].

For uncertain sequences, we first need to have an algorithm for efficient string comparison,
where automata provide the following baseline. Let X̂ and Ŷ be two GD (or two ED)
strings of total sizes N and M , respectively. We first build the non-deterministic finite
automaton (NFA) A of X̂ and the NFA B of Ŷ in time O(N +M). We then construct the
product NFA C such that L(C) = L(A)∩L(B) in time O(NM). The non-emptiness decision
problem, namely, checking if L(C) 6= ∅, is decidable in time linear in the size of C, using
breadth-first search (BFS). Hence the comparison of X̂ and Ŷ can be done in time O(NM).
It is known that if there existed faster methods for obtaining the automata intersection, then
significant improvements would be implied to many long standing open problems [24]. Hence
an immediate reduction to the problem of NFA intersection does not particularly help. For
GD strings we show at the beginning of Section 3 that we can build an ad-hoc deterministic
finite automaton (DFA) for X̂ and Ŷ , so that the intersection can be performed efficiently,
but this simple solution cannot achieve O(N +M) time as its cost is alphabet-dependent.

Our Contribution. Our first result in this paper is an O(N+M)-time algorithm for deciding
whether the intersection of two GD strings of sizes N and M , respectively, over an integer
alphabet is non-empty. This result is based on a combinatorial result of independent interest:
although the intersection of two GD strings can be exponential in the total size of the two
strings, it can be represented in only linear space. An automata model of computation can
also be employed to obtain these results but we present here an efficient implementation
in the standard word RAM model with word size w = Ω(log(N +M)) that works also for
integer alphabets. We then apply our string comparison tool to compute palindromes in GD
strings. We present an O(min{W,n2}N)-time algorithm for computing all palindromes in Ŝ.
Furthermore, we show a non-trivial Ω(n2|Σ|) lower bound under the Strong Exponential Time
Hypothesis [21, 22] for computing all maximal palindromes. Note that there exists an infinite
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21:4 Degenerate String Comparison and Applications

family of GD strings over an integer alphabet of size |Σ| = Θ(N) on which our algorithm
requires time O(n2N) thus matching the conditional lower bound. Finally, proof-of-concept
experimental results are presented using real protein datasets; specifically, on applying our
tools to find the location of palindromes in immunoglobulins genes of the human V regions.

2 Preliminaries

An alphabet Σ is a non-empty finite set of letters of size σ = |Σ|. A string X on an alphabet
Σ is a sequence of elements of Σ. The set of all strings on an alphabet Σ, including the empty
string ε of length 0, is denoted by Σ∗. For any string X, we denote by X[i . . . j] the substring
or factor of X that starts at position i and ends at position j. In particular, X[0 . . . j] is
the prefix of X that ends at position j, and X[i . . . |X| − 1] is the suffix of X that starts at
position i, where |X| denotes the length of X. The suffix tree of X (generalised suffix tree
for a set of strings) is a compact trie representing all suffixes of X. We denote the reversal
of X by string XR, i.e. XR = X[|X| − 1]X[|X| − 2] . . . X[0].

A string P is said to be a palindrome if and only if P = PR. If factor X[i . . . j],
0 ≤ i ≤ j ≤ n− 1, of string X of length n is a palindrome, then i+j

2 is the center of X[i . . . j]
in X and j−i+1

2 is the radius of X[i . . . j]. In other words, a palindrome is a string that reads
the same forward and backward, i.e. a string P is a palindrome if P = Y aY R where Y is a
string, Y R is the reversal of Y and a is either a single letter or the empty string. Moreover,
X[i . . . j] is called a palindromic factor of X. It is said to be a maximal palindrome if there
is no other palindrome in X with center i+j

2 and larger radius. Hence X has exactly 2n− 1
maximal palindromes. A maximal palindrome P of X can be encoded as a pair (c, r), where
c is the center of P in X and r is the radius of P .

I Definition 1. A generalised degenerate string (GD string) Ŝ = Ŝ[0]Ŝ[1] . . . Ŝ[n − 1] of
length n over an alphabet Σ is a finite sequence of n degenerate letters. Every degenerate
letter Ŝ[i] of width ki > 0, denoted also by w(Ŝ[i]), is a finite non-empty set of strings
Ŝ[i][j] ∈ Σki , with 0 ≤ j < |Ŝ[i]|. For any GD string Ŝ, we denote by Ŝ[i] . . . Ŝ[j] the GD
substring of Ŝ that starts at position i and ends at position j.

I Definition 2. The total size N and total width W , denoted also by w(Ŝ), of a GD string
Ŝ are respectively defined as N =

∑n−1
i=0 |Ŝ[i]| × ki and W =

∑n−1
i=0 ki.

In this work, we generally consider GD strings over an integer alphabet of size σ = NO(1).

I Example 3. The GD string Ŝ of Figure 1(c) has length n = 6, size N = 28, and W = 12.

I Definition 4. Given two degenerate letters X̂ and Ŷ , their Cartesian concatenation is

X̂ ⊗ Ŷ = {xy | x ∈ X̂, y ∈ Ŷ }.

When Ŷ = ∅ (resp. X̂ = ∅) we set X̂ ⊗ Ŷ = X̂ (resp. = Ŷ ). Notice that ⊗ is associative.

I Definition 5. Consider a GD string Ŝ of length n. The language of Ŝ is

L(Ŝ) = Ŝ[0]⊗ Ŝ[1]⊗ · · · ⊗ Ŝ[n− 1].

Given two GD strings R̂ and Ŝ of equal total width the intersection of their languages is
defined by L(R̂) ∩ L(Ŝ).

I Definition 6. Let X̂ = {xi ∈ Σk } and Ŷ = { yj ∈ Σh } be two degenerate letters on
alphabet Σ. Further let us assume without loss of generality that Ŷ is the set that contains
the shorter strings (i.e. h ≤ k). We define the chop of X̂ and Ŷ and the active suffixes of X̂
and Ŷ as follows:
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chopX̂,Ŷ = { yj ∈ Ŷ | yj matches a prefix of xi ∈ X̂ }
activeX̂,Ŷ = {xi[h . . . k − 1] | xi[0 . . . h− 1] ∈ chopX̂,Ŷ }

Let w(chopX̂,Ŷ ) = min{w(X̂), w(Ŷ )}. When activeX̂,Ŷ = {ε}, we set activeX̂,Ŷ = ∅. We
then have that activeX̂,Ŷ = ∅ either if h = k or if there is no match between any of the
strings in Ŷ and the prefix of a string in X̂; i.e. chopX̂,Ŷ = ∅.

I Example 7. Consider the following degenerate letters X̂ and Ŷ where w(Ŷ ) < w(X̂). The
underlined strings in letter Ŷ are prefixes of strings in letter X̂, hence they are in chopX̂,Ŷ .
The suffixes of such strings in X̂ are the active suffixes in activeX̂,Ŷ .

X̂ =


TCCTA

ATCGA

TCCAC

CATTA

 Ŷ =


GCA

CAT

TCC

 chopX̂,Ŷ =
{

CAT

TCC

}
activeX̂,Ŷ =

{
TA

AC

}

I Definition 8. Let R̂ and Ŝ be two GD strings of length r and s, respectively. R̂[0] . . . R̂[i]
is the prefix of R̂ that ends at position i. It is called proper if i 6= r − 1. We say that
R̂[0] . . . R̂[i] is synchronized with Ŝ[0] . . . Ŝ[j] if w(R̂[0] . . . R̂[i]) = w(Ŝ[0] . . . Ŝ[j]). We call
these the shortest synchronized prefixes of R̂ and Ŝ, respectively, when ∀ i′ < i, j′ < j

w(R̂[0] . . . R̂[i′]) 6= w(Ŝ[0] . . . Ŝ[j′]).

3 GD String Comparison

In this section, we consider the fundamental problem of GD string comparison. Let R̂ and
Ŝ be of total size N and M , respectively. We provide an O(N +M)-time algorithm in the
standard word RAM model with word size w = Ω(log(N +M)) that works also for integer
alphabets.

Before presenting our efficient implementation, we observe that there is the following
simple algorithm based on DFAs. Each degenerate letter of R̂ and Ŝ can be represented by
a trie, where its leaves are collapsed to a single one. For every two consecutive degenerate
letters, the collapsed leaves of the former trie coincide with the root of the latter trie. An
acyclic DFA is obtained in this way, as illustrated in Appendix A. We can perform the
comparison of R̂ and Ŝ by intersecting their corresponding DFAs using BFS on their product
DFA. The trivial upper bound on the number of reachable states is O(NM), but this can
be improved to O(N +M) by exploiting the structure of the two input DFAs. Each state
in such a DFA has a unique level: the common length of paths from the initial state; and
this structure is inherited by the product DFA. In other words, a level-i state in the product
DFA corresponds to a pair of level-i states in the input DFAs. Observe that a level-i state
in one DFA is uniquely represented by the label of the path from the root of its trie, and
for a fixed DFA and level, these labels have uniform lengths. Considering the two states
composing a reachable state in the product DFA, it is easy to see that the shorter label must
be a suffix of the longer label. Hence, the state in the DFA with longer labels at level i
uniquely determines the state in the DFA with shorter labels at level i. Consequently, the
number of reachable level-i states in the product DFA is bounded by the number of level-i
states in the input DFAs, and the size is O(N +M).

We observe that the cost of implementing the above ideas has an extra logarithmic factor
due to state branching and, moreover, GD string comparisons require to build the DFAs
each time. We show how to obtain O(N +M) time for integer alphabets, without creating
DFAs. We show that, even if the size of L(R̂) ∩ L(Ŝ) can be exponential in the total sizes of
R̂ and Ŝ (Fact 9), the problem of GD string comparison, i.e. deciding whether L(R̂) ∩ L(Ŝ)
is non-empty, can be solved in time linear with respect to the sum of the total sizes of the
two GD strings (Theorem 17) and is thus of independent interest.

WABI 2018



21:6 Degenerate String Comparison and Applications

I Fact 9. Given two GD strings R̂ and Ŝ, L(Ŝ) ∩ L(R̂) can have size exponential in the
total sizes of R̂ and Ŝ.

We next show when it is possible to factorize L(R̂)∩L(Ŝ) into a Cartesian concatenation.

I Lemma 10. Consider two GD strings Ŝ = Ŝ′Ŝ′′ and R̂ = R̂′R̂′′ such that w(Ŝ) = w(R̂).
If Ŝ′ is synchronized with R̂′, then L(R̂) ∩ L(Ŝ) = (L(R̂′) ∩ L(Ŝ′))⊗ (L(R̂′′) ∩ L(Ŝ′′)).

Proof. It is clear that L(Ŝ)∩L(R̂) ⊇ (L(R̂′)∩L(Ŝ′))⊗ (L(Ŝ′′)∩L(R̂′′)). Indeed, consider a
string x ∈ L(R̂′)∩L(Ŝ′) and a string y ∈ L(Ŝ′′)∩L(R̂′′): then, by the definition of Cartesian
concatenation, xy ∈ L(R̂′)⊗ L(R̂′′) = L(R̂) and xy ∈ L(Ŝ′)⊗ L(Ŝ′′) = L(Ŝ).
We now prove the opposite inclusion. Consider a string z ∈ L(Ŝ) ∩ L(R̂). By definition,
z = x0x1 . . . xr−1 = y0y1 . . . ys−1, with xi ∈ R̂[i], yj ∈ Ŝ[j],∀ 0 ≤ i ≤ r − 1,∀ 0 ≤ j ≤ s− 1.
Let R̂′ = R̂[0] . . . R̂[i], Ŝ′ = Ŝ[0] . . . Ŝ[j]. Assume by contradiction that z /∈ (L(R̂′)∩L(Ŝ′))⊗
(L(Ŝ′′) ∩ L(R̂′′)): without loss of generality, x0 . . . xi /∈ L(Ŝ′). Since L(Ŝ′)⊗ L(Ŝ′′) = L(Ŝ),
it follows that z = x0x1 . . . xr−1 /∈ L(Ŝ) =⇒ z /∈ L(Ŝ) ∩ L(R̂), that is a contradiction. J

By applying Lemma 10 wherever R̂ and Ŝ have synchronized prefixes, we are then left
with the problem of intersecting GD strings with no synchronized proper prefixes. We now
define an alternative decomposition within such strings (see also Example 12).

I Definition 11. Let R̂ and Ŝ be two GD strings of length r and s, respectively, with no
synchronized proper prefixes. We define

c-chain(R̂, Ŝ) = max
q
{0 ≤ q ≤ r + s− 2 | chopq 6= ∅},

where chopi denotes the set chopÂi,B̂i
, and (Â0, B̂0), (Â1, B̂1), . . . , (Âq, B̂q), pos(Âi),pos(B̂i)

are recursively defined as follows:

Â0 = R̂[0], B̂0 = Ŝ[0], and pos(Â0) = pos(B̂0) = 0. For 0 < i ≤ r + s− 2, if chopi−1 6= ∅,

Âi =
{
R̂[pos(Âi−1) + 1] and pos(Âi) = pos(Âi−1) + 1 if w(chopi−1) = w(Âi−1)
activeÂi−1,B̂i−1

and pos(Âi) = pos(Âi−1) otherwise

B̂i =
{
Ŝ[pos(B̂i−1) + 1] and pos(B̂i) = pos(B̂i−1) + 1 if w(chopi−1) = w(B̂i−1)
activeÂi−1,B̂i−1

and pos(B̂i) = pos(B̂i−1) otherwise

The generation of pairs (Âi, B̂i) stops at i=q either if q=r+s−2, or when chopq+1 = ∅,
in which case R̂ and Ŝ only match until (Âq, B̂q). Intuitively, Âi (respectively, B̂i) represents
suffixes of the current position of R̂ (respectively, of Ŝ), while pos(B̂i) (respectively, pos(Âi))
tells which position of R̂ (respectively, Ŝ) we are chopping.

I Example 12 (Definition 11). Consider the following GD strings R̂ and Ŝ with no synchron-
ized proper prefixes: chop0 is the first red set from the left, chop1 is the first blue one, chop2
is the second red one, etc. The c-chain(R̂, Ŝ) terminates when q = 7.

R̂ =



C G C A C

A G C C G

A A G T C︸︷︷︸
Â2︸ ︷︷ ︸

Â1︸ ︷︷ ︸
Â0


·



A A T

T A G︸︷︷︸
Â5︸ ︷︷ ︸
Â4︸ ︷︷ ︸
Â3


·



C T C G

G C A G

C T C A︸︷︷︸
Â7︸ ︷︷ ︸

Â6


Ŝ =

{
A︸︷︷︸
B̂0

}
·


GC

AG︸︷︷︸
B̂1

·


T C T

C G A

T C A︸︷︷︸
B̂3︸ ︷︷ ︸

B̂2


·
{

A︸︷︷︸
B̂4

}
·



T C T C

G C T C

C G C A︸︷︷︸
B̂6︸ ︷︷ ︸
B̂5


·
{

G︸︷︷︸
B̂7

}
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I Definition 13. Let R̂ and Ŝ be two GD strings of length r and s, respectively, with
w(R̂) = w(Ŝ) and no synchronized proper prefixes. We define GR̂,Ŝ as a directed acyclic
graph with a structure of up to r + s− 1 levels, each node being a set of strings, as follows,
where we assume without loss of generality that w(R̂[0]) > w(Ŝ[0]):
Level k = 0: consists of a single node:

n0 = {x ∈ R̂[0] |x = y0 . . . yq0with yj ∈ chopj ∀j : 0 ≤ j ≤ q0}, where q0 is the index of
the rightmost chop containing suffixes of R̂[0].

Level k > 0: consists of ` = |chopqk−1
| nodes. Assuming without loss of generality that level

k−1 has been built with suffixes of R̂[pos(Âqk−1)], level k contains suffixes of a position
of Ŝ. Let c0, . . . , c`−1 denote the elements of chopqk−1

. Then, for 0 ≤ i≤ `−1, the i-th
node of level k is:
ni={yqk−1+1 . . . yqk

| ciyqk−1+1 . . . yqk
∈B̂qk−1with yj ∈chopj ∀j : qk−1+1 ≤ j≤qk}, where

qk is the index of the rightmost chop containing suffixes of Ŝ[pos(B̂qk−1)].
Every string in level k − 1 whose suffix is ci is the source of an edge having the whole
node ni as a sink.

We define paths(GR̂,Ŝ) as the set of strings spelled by a path in GR̂,Ŝ that starts at n0 and
ends at the last level.

Note that the size of GR̂,Ŝ is at most linear in the sum of the sizes of R̂ and Ŝ, as the
nodes contain strings either in R̂ or in Ŝ with no duplications, and each node has out-degree
equal to the number of strings it contains.

I Example 14 (Definition 13). GR̂,Ŝ for the GD strings R̂, Ŝ of Example 12 is:

q0 = 2 and the strings in level 0 belong to (chop0 ⊗ chop1 ⊗ chop2) ∩ R̂[0]. Level 1 contains
suffixes of strings in B̂2 (and of strings in B̂3 as chop3 = {A, T} and indeed q1 = 3), level 2
suffixes of strings in Â3 (as q2 = 5), level 3 suffixes of strings in B̂5 (q3 = 6), level 4 suffixes
of strings in Â6 (q4 = 7). The three paths from level 0 to level 4 correspond to the three
strings in L(R̂) ∩ L(Ŝ): AGCCGAATCTCG, AAGTCAATCTCG, AAGTCTAGCTCG.

Let Gk
R̂,Ŝ

be GR̂,Ŝ truncated at level k, and let |Gk
R̂,Ŝ
| be the length of the strings it

spells. Let Lk(Ŝ) denote the set of prefixes of length |Gk
R̂,Ŝ
| of L(Ŝ).

I Lemma 15. Let R̂, Ŝ be two GD strings with w(R̂) = w(Ŝ) = W and no synchronized
proper prefixes. Then Lk(Ŝ) ∩ Lk(R̂) = paths(Gk

R̂,Ŝ
) for all levels k of GR̂,Ŝ such that

Lk(Ŝ) ∩ Lk(R̂) 6= ∅.

Proof. Again, let us assume without loss of generality that w(R̂[0]) > w(Ŝ[0]). We prove
the result by induction on k.
[Level k = 0] By construction, n0 contains strings in R̂[0] ∩ (chop0⊗· · ·⊗chopq0), which
have length |G0

R̂,Ŝ
|, and are also in Ŝ[0], and hence belong to both L0(Ŝ) and L0(R̂).
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[Level k > 0] By inductive hypothesis, we have that Lk−1(Ŝ) ∩ Lk−1(R̂) = paths(Gk−1
R̂,Ŝ

):
suppose that Lk(Ŝ) ∩ Lk(R̂) 6= ∅, otherwise the graph ends at level k − 1. We first show
that paths(Gk

R̂,Ŝ
) ⊆ Lk(Ŝ)∩Lk(R̂): by Definition 13, any z ∈ paths(Gk

R̂,Ŝ
) can be written as

z = z′z′′ with z′ in paths(Gk−1
R̂,Ŝ

) and with z′′ that belongs to some node at level k of Gk
R̂,Ŝ

reached by an edge leaving a suffix of z′. By inductive hypothesis z′ ∈ Lk−1(Ŝ) ∩ Lk−1(R̂)
and, again by Definition 13, z′′ ∈ chopqk−1+1 ⊗ · · · ⊗ chopqk

; since Lk(Ŝ) ∩ Lk(R̂) 6= ∅ these
chops are not empty, their concatenation contains the suffix of length |Gk

R̂,Ŝ
| − |Gk−1

R̂,Ŝ
| of

strings in both Lk(R̂) and Lk(Ŝ), and hence z ∈ Lk(Ŝ) ∩ Lk(R̂).
We now show that Lk(Ŝ) ∩ Lk(R̂) ⊆ paths(Gk

R̂,Ŝ
): consider string u ∈ Lk(Ŝ) ∩ Lk(R̂)

that can be written as u = u′u′′ with u′ the prefix of u having length |Gk−1
R̂,Ŝ
| which then

belongs to Lk−1(Ŝ) ∩ Lk−1(R̂); then, by inductive hypothesis, u′ ∈ paths(Gk−1
R̂,Ŝ

) and, since
u ∈ Lk(Ŝ)∩Lk(R̂), then there is an edge linking a suffix of u′ at level k−1 with a node at level
k of Gk

R̂,Ŝ
containing a |Gk

R̂,Ŝ
| − |Gk−1

R̂,Ŝ
| long suffix u′′ of u, and hence u ∈ paths(Gk

R̂,Ŝ
). J

As a special case of Lemma 15, if L(Ŝ)∩L(R̂) 6= ∅, then GR̂,Ŝ is built up to the last level
and the following holds.

I Theorem 16. Let R̂, Ŝ be two GD strings having lengths, respectively, r and s, with
w(R̂)=w(Ŝ) and no synchronized proper prefixes. Then GR̂,Ŝ has exactly r + s− 1 levels,
and we have that L(Ŝ) ∩ L(R̂) = paths(GR̂,Ŝ).

GR̂,Ŝ is thus a linear-sized representation of the possibly exponential-sized (Fact 9) set
L(Ŝ) ∩ L(R̂).

We now show an O(N +M)-time algorithm for the standard word RAM model, denoted
by GDSC, that decides whether L(R̂) and L(Ŝ) share at least one string (returns 1)
or not (returns 0). GDSC starts with constructing the generalized suffix tree TR̂,Ŝ of
all the strings in R̂ and Ŝ. Then it scans R̂ and Ŝ starting with R̂[0] and Ŝ[0] storing
in chopR̂,Ŝ the latest chopi and in activeR̂,Ŝ the latest activeÂi,B̂i

using TR̂,Ŝ . For an
efficient implementation, suffixes in activeR̂,Ŝ are stored (e.g. for activeÂ0,B̂0

assuming that
w(R̂[0]) > w(Ŝ[0])) as index positions of R̂[0] and the starting position of the suffix as
activeR̂,Ŝ .suff. The next comparison is made between the corresponding suffixes of R̂[0] of
length w( ˆR[0])−activeR̂,Ŝ .suff and Ŝ[1], identifying first the minimum length of the two, and
proceeding with the same process. The comparison of letters can be: (i) between R̂[i] and
Ŝ[j]; or (ii) between the corresponding strings of activeR̂,Ŝ .index and R̂[i]; or (iii) between the
corresponding strings of activeR̂,Ŝ .index and Ŝ[j]. If the two GD strings have a synchronized
proper prefix, this will result in activeR̂,Ŝ = ∅ at positions i in R̂ and j in Ŝ. At this point,
the comparison is restarted with the immediately following pair of degenerate letters.

I Theorem 17. Algorithm GDSC is correct. Given two GD strings R̂ and Ŝ of total sizes
N and M , respectively, over an integer alphabet, algorithm GDSC requires O(N +M) time.

Proof. The correctness follows directly from Lemma 10, Lemma 15, and Theorem 16.
Constructing the generalized suffix tree TR̂,Ŝ can be done in time O(N +M) [12]. For

the sets pair (Âi, B̂i) as in Definition 11, such that w(Âi) = k and w(Âi) ≤ w(B̂i), we query
TR̂,Ŝ with the k-length prefixes of strings in B̂i. For integer alphabets, instead of spelling
the strings from the root of TR̂,Ŝ , we locate the corresponding terminal nodes for (Âi, B̂i). It
then suffices to find longest common prefixes between these suffixes to simulate the querying
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process. Since all suffixes are lexicographically sorted during the construction of TR̂,Ŝ , we
can also have the suffixes considered by pair (Âi, B̂i) lexicographically ranked with respect
to (Âi, B̂i). Hence we do not perform the longest common prefix operation for all possible
suffix pairs, but only for the lexicographically adjacent ones within this group. This can
be done in O(1) time per pair after O(N +M)-time pre-processing over TR̂,Ŝ [7]. chopi is
thus populated with the k-length prefixes of strings in B̂i found in Âi. The set activeÂi,B̂i

of
active suffixes can be found by chopping the suffixes of the string in B̂i from their prefixes
successfully queried in TR̂,Ŝ . This requires time O(|Âi|+ |B̂i|) for processing (Âi, B̂i).

Let R̂ and Ŝ be of length r and s, respectively. Assume that R̂ and Ŝ have no synchronized
proper prefixes. Then Theorem 16 ensures that the total number of comparisons cannot exceed
r+ s− 2: this results in a time complexity of O(N +M +

∑r+s−2
i=0 (|Âi|+ |B̂i|)) = O(N +M).

If R̂ and Ŝ have synchronized proper prefixes, we perform the comparison up to the
shortest synchronized prefixes (i.e. the set of active suffixes becomes empty) and then restart
the procedure from the immediately following pair of degenerate letters. Clearly the total
number of comparisons also in this case cannot be more than r + s− 2. J

4 Computing Palindromes in GD Strings

Armed with the efficient GD string comparison tool, we shift our focus on our initial
motivation, namely, computing palindromes in GD strings.

I Definition 18. A GD string Ŝ is a GD palindrome if there exists a string in L(Ŝ) that is
a palindrome.

A GD palindrome Ŝ[i] . . . Ŝ[j] in Ŝ, whose total width is w(Ŝ[i] . . . Ŝ[j]), can be encoded
as a pair (c, r), where its center is c = w(Ŝ[0]...Ŝ[i−1])+w(Ŝ[0]...Ŝ[j])−1

2 , when i > 0, otherwise,
c = w(Ŝ[0]...Ŝ[j])−1

2 , when i = 0; its radius is r = w(Ŝ[i]...Ŝ[j])
2 . Ŝ[i] . . . Ŝ[j] is called maximal

if no other GD palindrome (c, r′) exists in Ŝ with r′ > r. Note that we only consider the
GD palindromes Ŝ[i] . . . Ŝ[j] that start with the first letter of some string X ∈ Ŝ[i] and end
with the last letter of some string Y ∈ Ŝ[j], while the center can be anywhere: in between or
inside degenerate letters. That is, in Ŝ there are 2 · w(Ŝ)− 1 = 2W − 1 possible centers.

I Example 19. Consider the GD string Ŝ of Figure 1(c) where palindromes are underlined;
one starts at Ŝ[0] and ends at Ŝ[2]: it corresponds to (c, r) = (2.5, 3). A second palindrome
starts at Ŝ[4] and ends at Ŝ[5]: it corresponds to (c, r) = (9, 2.5).

In this section, we consider the following problem. Given a GD string Ŝ of length n, total
size N , and total width W , find all GD strings Ŝ[i] . . . Ŝ[j], with 0 ≤ i ≤ j ≤ n− 1, that are
GD palindromes. We give two alternative algorithms: one finds all GD palindromes seeking
them for all (i, j) pairs; and the other one finds them starting from all possible centers. The
two algorithms have different time complexities: which one is faster depends on W , N , and
n. In fact, they compute all GD palindromes, but report only the maximal ones.

We first describe algorithm MaxPalPairs. For all i, j positions within Ŝ, in order to
check whether Ŝ[i] . . . Ŝ[j] is a GD palindrome, we apply the GDSC algorithm to Ŝ[i] . . . Ŝ[j]
and its reverse, denoted by rev(Ŝ[i] . . . Ŝ[j]); the reverse is defined by reversing the sequence
of degenerate letters and also reversing the strings in every degenerate letter. GD palindromes
are, finally, sorted per center, and the maximal GD palindromes are reported. Sorting the
(i, j) pairs by their centers can be done in O(W ) time using bucket sort, which is bounded
by O(N) since N ≥W .
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Since there are O(n2) pairs (i, j), and since by Theorem 17 algorithm GDSC takes time
proportional to the total size of Ŝ[i] . . . Ŝ[j] to check whether Ŝ[i] . . . Ŝ[j] is a GD palindrome,
algorithm MaxPalPairs takes O(n2N) time in total. In algorithm MaxPalCenters,
we consider all possible centers c of Ŝ. In the case when c is in between two degenerate
letters we simply try to extend to the left and to the right via applying GDSC. In the
case when c is inside a degenerate letter we intuitively split the letter vertically into two
letters and try to extend to the left and to the right via applying GDSC. At each extension
step of this procedure we maintain two GD strings L̂ (left of the center) and R̂ (right
of the center) such that they are of the same total width. We consider the reverse of L̂
(similar to algorithm MaxPalPairs) for the comparison. In the case where c occurs inside a
degenerate letter to make sure we do not identify palindromes which do not exist, for all j
split strings of the degenerate letter, we check that L̂R[0][j][0 . . . k − 1] = R̂[0][j][0 . . . k − 1]
where L̂R = rev(L̂) and k = min(w(LR[0]), w(R̂[0])). If no matches are found, we move
onto the next center. Otherwise, when a match is found, we update rev(L̂) and R̂ with the
remainder of the split degenerate letter (if its length is greater than k), as well as the next
degenerate letters. Algorithm GDSC is applied to compare rev(L̂) and R̂. After a positive
comparison, we overwrite L̂ and R̂ by adding the degenerate letters of the current extension
until w(L̂) = w(R̂) (or until the end of the string is reached). This process is repeated as
long as GDSC returns a positive comparison, that is, until the maximal GD palindrome with
center c is found. The radius reported is then the total sum of all values of w(L̂). If GDSC
returns a negative comparison at center c, we proceed with the next center, because we
clearly cannot have a GD palindrome centered at c extended further if rev(L̂) ∩ R̂ is empty.

By Theorem 17 and the fact that there are 2W − 1 possible centers, we have that
algorithm MaxPalCenters takes O(WN) time in total. We obtain the following result.

I Theorem 20. Given a GD string of length n, total size N , and total width W , over an
integer alphabet, all (maximal) GD palindromes can be computed in time O(min{W,n2}N).

The problem that gained significant attention recently is the factorization of a string X of
length n into a sequence of palindromes [3, 13, 30, 9, 5, 2]. We say that X1, X2, . . . , X` is
a (maximal) palindromic factorization of string X, if every Xi is a (maximal) palindrome,
X = X1X2 . . . X`, and ` is minimal. In biological applications we need to factorize a sequence
into palindromes in order to identify hairpins, patterns that occur in single-stranded DNA
or, more commonly, in RNA. Next, we define and solve the same problem for GD strings.

I Definition 21. A (maximal) GD palindromic factorization of a GD string Ŝ is a sequence
P̂1, . . . , P̂` of GD strings, such that: (i) every P̂i is either a (maximal) GD palindrome or a
degenerate letter of Ŝ; (ii) Ŝ = P̂1 . . . P̂`; (iii) ` is minimal.

After locating all (maximal) GD palindromes in Ŝ using Theorem 20, we are in a
position to amend the algorithm of Alatabbi et al [3] to find a (maximal) GD palindromic
factorization of Ŝ. We define a directed graph GŜ = (V, E), where V = {i | 0 ≤ i ≤ n} and
E = {(i, j + 1) | Ŝ[i . . . j] (maximal) GD palindrome of Ŝ} ∪ {(i, i + 1)|0 ≤ i < n}. Note
that V contains a node n being the sink of edges representing (maximal) GD palindromes
ending at Ŝ[n− 1]. For maximal GD palindromes, E contains no more than 3W edges, as the
maximum number of maximal GD palindromes is 2W − 1. For GD palindromes, E contains
O(n2) edges, as the maximum number of GD palindromes is O(n2). A shortest path in GŜ
from 0 to n gives a (maximal) GD palindromic factorization. For maximal GD palindromes,
the size of GŜ is O(W ), as n ≤ W , and so finding this shortest path requires O(W ) time
using a standard algorithm. For GD palindromes, the size of GŜ , and thus the time, is O(n2).
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I Theorem 22. Given a GD string Ŝ of length n, total size N , and total width W , over an
integer alphabet, a (maximal) GD palindromic factorization of Ŝ can be computed in time
O(min{W,n2}N).

5 A Conditional Lower Bound under SETH

In this section, we show a conditional lower bound for computing palindromes in de-
generate strings. Let us first define the 2-Orthogonal Vectors problem. Given two sets
A = {α1, α2, . . . , αn} and B = {β1, β2, . . . , βn} of d-bit vectors, where d = ω(logn), the
2-Orthogonal Vectors problem asks the following question: is there any pair αi, βj of vectors
that is orthogonal? Namely, is

∑d−1
k=0 αi[k] · βj [k] equal to 0? For the moderate dimension of

this problem, we follow [16], assuming n2−εdO(1) ≤ n2d. The following result is known.

I Theorem 23 ([16, 21, 22, 33]). The 2-Orthogonal Vectors problem cannot be solved in
O(n2−ε · dO(1)) time, for any ε > 0, unless the Strong Exponential Time Hypothesis fails.

We next show that the 2-Orthogonal Vectors problem can be reduced to computing
maximal palindromes in degenerate strings thus obtaining a similar conditional lower bound
to the upper bound obtained in Theorem 20 for computing all GD palindromes.

I Theorem 24. Given a degenerate string of length 4n over an alphabet of size σ = ω(logn),
all maximal GD palindromes cannot be computed in O(n2−ε · σO(1)) time, for any ε > 0,
unless the Strong Exponential Time Hypothesis fails.

Proof. Let d = σ and consider the alphabet Σ = {0, 1, . . . , σ − 1}. We say that two subsets
of Σ match if they have a common element. Given a d-bit vector α, we define µ(α) to be
the following subset of Σ: s ∈ µ(α) if and only if α[s] = 1. Thus, two vectors α and β are
orthogonal if and only if the sets µ(α) and µ(β) are disjoint. In the string comparison setting,
two degenerate letters µ(α) and µ(β) do not match if and only if α and β are orthogonal.
The reduction works as follows. Given A = {α1, α2, . . . , αn} and B = {β1, β2, . . . , βn}, we
construct the following simple degenerate string of length 4n in time O(nσ):

S = µ(α1)µ(β1)µ(α2)µ(β2) . . . µ(αn)µ(βn)µ(α1)µ(β1)µ(α2)µ(β2) . . . µ(αn)µ(βn).

· · ·

Then the 2-Orthogonal Vectors problem for the sets A and B has a positive answer if
and only if at any position of S, from 0 to 2n, there does not occur a palindrome of length at
least 2n. All such occurrences can be easily verified from the respective palindrome centers
in time O(n). In other words, if at any position of S there does not occur a palindrome of
length at least 2n, this is because we have a mismatch between a pair µ(αi), µ(βj) of letters,
which implies that there exists a pair αi, βj of orthogonal vectors. Also, by the construction,
all such pairs are to be (implicitly) compared, and thus, if there exists any pair that is
orthogonal the corresponding mismatch will result in a palindrome of length less than 2n. J

6 Experimental Results

We present here a proof-of-concept experiment but we anticipate that the algorithmic tools
developed in this paper are applicable in a wide range of biological applications.

We first obtained the amino acid sequences of 5 immunoglobulins within the human
V regions [15] and converted these into mRNA sequences [31]. The letters X, S, T, Y, Z, R
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Table 1 Coordinates of (maximal) palindromes identified within hypervariable regions I and II.

Hypervariable Region
I II

V [34] This paper [34] This paper

VkII
18-27 11-36 119-130 118-131

104-113 104-113 169-180 169-180
VkIII 18-27 11-30 132-142 131-145
VλII 63-74 62-81 140-152 140-152
VλIII 51-74 50-75 132-143 131-144
VλV 96-104 95-104 134-141 134-141

and H were replaced by degenerate letters according to IUPAC [23]. Each other letter,
c ∈ {A, C, G, U}, was treated as a single degenerate letter {c}. An average of 47% of the total
number of positions within the 5 sequences consisted of one of the following: X, S, T, Y, Z, R and
H. We then used algorithm MaxPalPairs to find all maximal palindromes in the 5 sequences.
Table 1 shows the palindromes identified within hypervariable regions I and II. Our results are
in accordance with Wuilmart et al [34] who presented a statistical (fundamentally different)
method to identify the location of palindromes within regions of immunoglobulin genes. The
ranges we report are greater than or equal to the ones of [34] due to the maximality criterion.
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APPENDIX

A GD String Comparison Using Automata

I Example 25. We illustrate here a simple automata-based approach. Say we want to
compare the following two GD strings:

R̂ =
{

AC

CC

}
·

{
ACAAC

CACCC

}
Ŝ =

{
ACA

CCC

}
·

{
ACC

CAA

}
·
{

C
}
.

We construct the DFA for R̂ and the DFA for Ŝ.

r0start

r2

r3

r5 r7 r9 r11

r12

r4 r6 r8 r10r1

A

C

C C

A

A C C

C

C A A

CC

s0start

s1 s3

s5

s6 s8

s10 s11

s2 s4 s7 s9

A

C

C

A C

A

C

C

A

C

A

C

C

Their product DFA gives their intersection: ACACAAC and CCCACCC.

r0, s0start

r2, s1

r1, s2

r3, s3

r3, s4

r4, s5

r5, s5

r6, s6

r7, s7

r8, s8

r9, s9

r10, s10

r11, s10

r12, s11

A

C

C A C A A

C

C C A C C

C

We observe that computing the product DFA is alphabet-dependent, due to branching
(transition function) on the same letter in the states of the two input DFAs.
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