U. Abel and . Bicker, Determination of all minimal cut-sets between a vertex pair in an undirected graph, IEEE Transactions on Reliability, vol.31, issue.2, pp.167-171, 1982.

O. Michael, . Ball, and . Scott-provan, Calculating bounds on reachability and connectedness in stochastic networks, Networks, vol.13, issue.2, pp.253-278, 1983.

M. Bellmore and P. A. Jensen, An implicit enumeration scheme for proper cut generation, Technometrics, vol.12, issue.4, pp.775-788, 1970.

C. Berge, La theorie des graphes, 1958.

T. C. Biedl and G. Kant, A better heuristic for orthogonal graph drawings, Comput. Geom, vol.9, issue.3, pp.159-180, 1998.

R. E. Bixby, , vol.5, pp.253-298, 1975.

B. Timothy, C. Brecht, and . Colbourn, Lower bounds on two-terminal network reliability, Discrete Applied Mathematics, vol.21, issue.3, pp.185-198, 1988.

L. Sunil-chandran and L. Shankar-ram, On the number of minimum cuts in a graph, SIAM Journal on Discrete Mathematics, vol.18, issue.1, pp.177-194, 2004.

S. Even and R. E. Tarjan, Computing an st-numbering, Theoretical Computer Science, vol.2, issue.3, pp.339-344, 1976.

M. L. Gardner, Algorithm to aid in the design of large scale networks, LARGE SCALE SYST, vol.8, issue.2, pp.147-156, 1985.

G. Leslie-ann, Efficient algorithms for listing combinatorial structures, 2009.

J. Horst-w-hamacher, M. Picard, and . Queyranne, On finding the k best cuts in a network, Operations Research Letters, vol.2, issue.6, pp.303-305, 1984.

H. Harada, Z. Sun, and H. Nagamochi, An exact lower bound on the number of cut-sets in multigraphs, Networks, vol.24, issue.8, pp.429-443, 1994.

F. Harary, The maximum connectivity of a graph, Proceedings of the National Academy of Sciences, vol.48, issue.7, pp.1142-1146, 1962.

G. B. Jasmon and . Foong, A method for evaluating all the minimal cuts of a graph, IEEE transactions on reliability, vol.36, issue.5, pp.539-545, 1987.

G. Katona, A theorem for finite sets. Theory of Graphs, pp.187-207, 1968.

L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich et al., Generating cut conjunctions in graphs and related problems, Algorithmica, vol.51, issue.3, pp.239-263, 2008.

. Joseph, The number of simplices in a complex, Mathematical optimization techniques, vol.10, pp.251-278, 1963.

A. Martelli, A gaussian elimination algorithm for the enumeration of cut sets in a graph, J. ACM, vol.23, issue.1, pp.58-73, 1976.

J. , C. Picard, and M. Queyranne, On the structure of all minimum cuts in a network and applications, Mathematical Programming, vol.22, pp.121-121, 1982.

. Vc-prasad, . Sankar, and . Rao, Microelectronics Reliability, vol.32, pp.1291-1310, 1992.

J. Scott-provan and M. Ball, Computing network reliability in time polynomial in the number of cuts, Operations Research, vol.32, issue.3, pp.516-526, 1984.

J. , S. Provan, and D. Shier, A paradigm for listing (s, t)-cuts in graphs, Algorithmica, vol.15, issue.4, pp.351-372, 1996.

P. Rosenstiehl and R. E. Tarjan, Rectilinear planar layouts and bipolar orientations of planar graphs, Discrete & Computational Geometry, vol.1, pp.343-353, 1986.
URL : https://hal.archives-ouvertes.fr/hal-00259777

R. Douglas, D. E. Shier, and . Whited, Iterative algorithms for generating minimal cutsets in directed graphs, Networks, vol.16, issue.2, pp.133-147, 1986.

R. Tamassia, G. Ioannis, and . Tollis, A unified approach a visibility representation of planar graphs, Discrete & Computational Geometry, vol.1, pp.321-341, 1986.

S. Tsukiyama, I. Shirakawa, H. Ozaki, and H. Ariyoshi, An algorithm to enumerate all cutsets of a graph in linear time per cutset, Journal of the ACM (JACM), vol.27, issue.4, pp.619-632, 1980.

L. Yan, A. Hamdy, T. Taha, and . Landers, A recursive approach for enumerating minimal cutsets in a network, IEEE transactions on reliability, vol.43, issue.3, pp.383-388, 1994.

L. Yeh, B. Wang, and H. Su, Efficient algorithms for the problems of enumerating cuts by non-decreasing weights, Algorithmica, vol.56, issue.3, pp.297-312, 2010.