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Abstract
Distributed tasks such as constructing a maximal independent set (MIS) in a network, or properly
coloring the nodes or the edges of a network with reasonably few colors, are known to admit
efficient distributed randomized algorithms. Those algorithms essentially proceed according to
some simple generic rules, by letting each node choosing a temptative value at random, and
checking whether this choice is consistent with the choices of the nodes in its vicinity. If this is
the case, then the node outputs the chosen value, else it repeats the same process. Although
such algorithms are, with high probability, running in a polylogarithmic number of rounds, they
are not robust against actions performed by rational but selfish nodes. Indeed, such nodes may
prefer specific individual outputs over others, e.g., because the formers suit better with some
individual constraints. For instance, a node may prefer not being placed in a MIS as it is not
willing to serve as a relay node. Similarly, a node may prefer not being assigned some radio
frequencies (i.e., colors) as these frequencies would interfere with other devices running at that
node. In this paper, we show that the probability distribution governing the choices of the output
values in the generic algorithm can be tuned such that no nodes will rationally deviate from this
distribution. More formally, and more generally, we prove that the large class of so-called LCL
tasks, including MIS and coloring, admit simple “Luby’s style” algorithms where the probability
distribution governing the individual choices of the output values forms a Nash equilibrium. In
fact, we establish the existence of a stronger form of equilibria, called symmetric trembling-hand
perfect equilibria for those games.
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1 Introduction

1.1 Motivation and Objective
In networks, independent sets and dominating sets can be used as backbones to collect,
transfer, and broadcast information, and/or as cluster heads in clustering protocols (see,
e.g., [19, 23]). Hence, a node belonging to some selected independent or dominating set
may be subject to future costs in term of energy consumption, computational efforts, and
bandwidth usage. As a consequence, rational selfish nodes might be tempted to deviate
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0:2 Equilibria of Games in Networks for Local Tasks

from the instructions of an algorithm used to construct such sets, so that to avoid becoming
member of the independent set, or dominating set, under construction. On the other hand,
the absence of a backbone, or of cluster heads, may penalize the nodes. Hence every node
is subject to a tension between (1) facilitating the obtention of a solution, and (2) avoiding
certain forms of solutions.

A large class of randomized algorithms [5, 22] for constructing maximal independent
sets (MIS) proceed in synchronous rounds, where a round allows every node to exchange
information with its neighbors in the network, and to perform some individual computation.
Roughly, at each round of these algorithms, every node i which has not yet decided applies to
enter the MIS with a certain probability pi. If a node applies to enter the MIS, and none of
its neighbors simultaneously apply, then the former node enters the MIS, and, subsequently,
all its neighbors renounce to enter the MIS. If two adjacent nodes simultaneously apply
to enter the MIS, then there is a conflict, and both nodes remain undecided, and go to
the next round. The round complexity of the algorithm heavily depends on the choice of
the probability pi that node i applies to enter the MIS, which may typically depend on
the degree of node i, and may vary along with the execution of the algorithm, as node i
accumulates more and more information about its neighborhood. Hence, a node i aiming
at avoiding entering the MIS might be tempted to deviate from the algorithm by setting
pi small. However, if all nodes deviate in this way, then the algorithm may take a very
long time before converging to a solution. The same holds whenever all nodes are aiming at
entering the MIS.

Similar phenomenons may appear for other problems, like, e.g., coloring [7], that is,
an abstraction of frequency assignment in radio networks. For solving this task, typical
algorithms provides every node i with a probability distribution Di over the colors, and
node i chooses color c at random with probability Di(c). If this color does not conflict with
the chosen colors of its neighbors, then node i adopts this color, else it performs another
random choice, and repeats until no conflicts with the neighbors occur. However, some
frequencies might be preferred to others because, e.g., some frequencies might be conflicting
with local devices present at the node. As a consequence, not all colors are equal for the
nodes, and while each node is aiming at constructing a coloring quickly (in order to take
benefit from the resulting radio network), it is also aiming at avoiding being assigned a color
that it does not want. Therefore, in a random assignments of colors, every node might be
tempted to give more weight to its preferred colors than to its non desired colors, and if all
nodes deviate in this way, then the algorithm may take a long time before converging to a
solution, if converging at all.

In fact, such phenomena as those listed above are susceptible to occur for many network
problems, typically for solving so-called locally checkable labeling tasks [24], or LCL tasks
for short.

1.1.1 Locally Checkable Labelings
LCL tasks [24] form a large class of classical problems, including maximal independent set,
coloring, maximal matching, minimal dominating set, etc., studied for more than 20 years
in the framework of distributed computing in networks. An LCL task is characterized by a
finite set of labels, and a set of good labeled balls3 of radius at most t, for some fixed t ≥ 0.

3 A ball of radius t is a graph with one identified node, called center, and with all the other nodes at
distance at most t from the center. In a graph G, a ball of radius t centered at some node v is the
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For instance, in the MIS task, balls are of radius 1, a label is either • (interpreted as being
member of the independent set), or ◦ (interpreted as not being member of the independent
set), and a labeled ball is good if either (1) its center is labeled •, and all its neighbors
are labeled ◦, or (2) its center is labeled ◦, and at least one of its neighbors is labeled •.
Similarly, in k-coloring, the labels are in {1, . . . , k}, balls are of radius 1, and a ball is good
if the label of the center is different from the label of each of its neighbors.

Solving an LCL task consists in designing a distributed algorithm resulting in all nodes
collectively assigning a label to each of them, such that all resulting balls are good.

In the following, we restrict ourselves to the large class of LCL tasks that are sequentially
solvable by a greedy algorithm that (1) picks the nodes one by one in an arbitrary order,
and (2) sets the label of each node when picked, after solely consulting the vicinity of the
node. For instance, MIS is greedily constructible, as well as (∆ + 1)-coloring in networks
of maximum degree ∆. Instead, ∆-coloring is not greedily constructible, as witnessed by
2-coloring even cycles. We restrict ourselves to greedily constructible LCL tasks because non
greedily constructible tasks are hard to handle in the distributed network computing setting.
Indeed, for solving such tasks, far away nodes might be forced to coordinate, yielding poor
locality, as witnessed by, again, 2-coloring even cycles (which cannot be solved in less than
Ω(n) rounds [21]).

1.1.2 A Generic “Luby’s Style” Randomized Algorithm for LCL Tasks
A generic randomized algorithm for LCL tasks, directly inspired from [5, 22], and therefore
often referred to as “Luby’s style” algorithm, performs as follows. Every node v aims at
computing its label, label(v), for a given LCL task. The labels should be such that all
resulting labeled balls are good with respect to the considered task. Node v starts with
initial value label(v) = ⊥. Let t be the radius of the task, i.e., the maximum radius of the
labeled balls defining the tasks (both MIS and coloring have radius 1).

Distributed Construction Algorithm: At each round, every node v which
has not yet terminated observes the ball of radius t around it in the network
(including its structure, and the already fixed nodes’ labels). Then v chooses a
random temporary label, tmp-label(v), compatible with the current fixed labels
of the nodes in the observed ball. Next, v observes the ball of radius t around
it in the network again, and recovers the temporary labels randomly chosen by
the nodes in the ball. If tmp-label(v) is compatible with all fixed labels, and with
all temporary labels in the ball of radius t centered at v (i.e., if the observed
labeled ball in good w.r.t. the considered LCL task), then v sets label(v) as equal
to tmp-label(v). The value of label(v) is then fixed, and it is not subject to any
modification in the future. Otherwise, node v goes to the next round.

Note that assuming that the LCL task is greedily constructive prevents nodes from being
blocked by nodes that terminated at previous rounds: every node has always at least one
label at its disposal for building a good ball around it. (It can be easily checked that, for all
greedily constructible LCL tasks, the generic distributed construction algorithm terminates,
and outputs correctly, as long as every label has non zero probability to be chosen). Note
that each phase of the generic algorithm takes only 2t rounds for LCL task of radius t, as
every node performs two snapshots of the labels (fixed or temporary) in its t-ball.

subgraph induced by all nodes at distance at most t from v in G. A labeled ball is a ball whose every
node is provided with a label (i.e., a bit-string).

OPODIS 2018
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The random choice of tmp-label(v) is governed by some probability distribution D, which
is actually characterizing the algorithm, and must be tuned according to the LCL task at
hand. Importantly, D may depend on the round, and may also depend on the structure of
v’s neighborhood as observed during the previous rounds. It is known that, for many tasks
such as Maximal Independent Set (MIS), and (∆ + 1)-coloring, there exist distributions D
enabling the generic distributed construction algorithm to terminate in O(logn) rounds in
n-node networks (see, e.g., [5, 7, 22]). In this paper, we consider the following issue:

What if selfish nodes are not playing according to the desired distribution D?

To address this issue, we define LCL games.

1.1.3 LCL Games
To every LCL task can be associated a game, that we call LCL game, and that we define
as follows. Let G be a connected simple graph. Every node v of G is a rational and selfish
player, playing the game with the ultimate goal of maximizing its payoff while performing
the generic distributed construction algorithm described in Section 1.1.2.

Strategy. A strategy for a node v is a probability distribution D over the labels compatible
with the ball of radius t centered at v, which may depend on the history of v during the
execution of the generic algorithm. For instance, in the MIS game, a strategy is a probability
p to propose itself for entering the MIS. Similarly, in the (∆ + 1)-coloring game, a strategy
is a distribution of probabilities over the set of remaining colors compatible with the colors
already assigned to the neighbors. (This set may even include a “fake” color 0 if nodes do
not need to be systematically participating to a choice of color at every round [7]).

Remark. The distribution D over the labels compatible with the ball of radius t centered
at v is the unique item subject to non-orthodox behaviors. In particular, in LCL games,
every node executes the prescribed algorithm, forwards messages correctly, and does not lie
about its internal state, apart from what is concerning its private strategy for choosing its
temporary label at random.

The strategy of a node at a round, i.e., the distribution D of probability over the labels,
may depend on the history of that node at any point in time during the execution of the
generic distributed construction algorithm. On the other hand, the individual strategies
depend only on the knowledge accumulated by the nodes along with the execution of the
algorithm. In fact, at the beginning of the algorithm, player v does not even know which
node she will play in the network, and just knows that the network may belong to some
given graph family (like, e.g., cycles, planar graphs, etc.).

Payoff. The payoff of the nodes is aiming at capturing the tension between the objective
of every node to compute a global solution rapidly (as this global solution brings benefits to
every node), versus avoiding certain forms of solutions (which may not be desirable from an
individual perspective). We denote by prefv a preference function, which is an abstraction of
how much node v will “suffer” in the future according to a computed solution. For instance,
in the MIS game where nodes do not want to belong the constructed MIS, one could set

prefv(I) =
{

0 if v ∈ I
1 otherwise
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for every MIS I. More specifically, we define, for each node v,

prefv : {good balls} → [0, 1]

by associating to each good ball B centered at v the preference prefv(B) of v for that ball.
The payoff function πv of node v at the completion of the algorithm is decaying with the
number k of rounds before the algorithm terminates at v. More precisely, we set

πv = δk prefv(Bv)

where 0 < δ < 1 is a discount factor, Bv is the good ball centered at v as returned by the
algorithm, and k is the number of rounds performed before all nodes in Bv fix their labels.

The choice of δ ∈ (0, 1) reflects the tradeoff between the quality of the solution from the
nodes’ perspective, and their desire to construct a global solution quickly. Note that k is at
least the time it takes for v to fix its label, and at most the time it takes for the algorithm
to terminate at all nodes. If the algorithm does not terminate around v, that is, if a label
remains perpetually undecided in at least one node of Bv, then we set πv = 0.

The payoff of a node v will thus be large if all nodes in Bv decide quickly (i.e., k is small),
and if the labels computed in Bv suits node v (i.e., prefv(Bv) is close to 1).
Conversely, if v or another node in its ball Bv takes many rounds before deciding a
label (i.e., k is large), or if node v is not satisfied by the computed solution in Bv (i.e.,
prefv(Bv) is close to 0), then the payoff of v will be small.

In particular, if the preference for every good ball is the same, then maximizing the payoff
is equivalent to completing the task as quickly as possible. Instead, if the preference is very
small for some balls, then nodes might be willing to slow down the completion of the task,
with the objective of avoiding being the center of such a ball, in order to maximize their
payoff. That is, such nodes may bias their distribution D towards preferred good balls, even
if this is at the price of increasing the probability of conflicting with the choices of close
nodes, resulting in more iterations before reaching convergence.

1.2 Our Results
We show that LCL games have trembling-hand perfect equilibria, that is, a stronger form of
sequential equilibria due to Reinhard Selten [29], which are themselves a stronger form
of Nash equilibria. Trembling-hand perfect equilibria include the possibility of off-the-
equilibrium play, i.e., players may, with small probabilities, choose unintended strategies.
In contrast, in Nash equilibria, players are assumed to play precisely as specified by the
equilibrium. We show the following:

I Theorem 1. For any greedily constructible locally checkable labeling, the LCL game asso-
ciated to that labeling has a symmetric trembling-hand perfect equilibrium.

Therefore, in particular, for many tasks occurring in the context of distributed network
computing such as MIS, and (∆ + 1)-coloring, there exist strategies played by the nodes of
the network for solving these tasks such that no nodes have incentive to deviate from these
strategies. Moreover, the related equilibria are strong forms of Nash equilibria which ensure
that the players behave rationally even off the equilibrium path.

To establish Theorem 1, we first notice that LCL games belongs to the class of extensive
games with imperfect information, because a node plays arbitrarily many times, and is not
necessarily aware of the actions taken by far away nodes in the network. Also, LCL games
belongs to the class of games with infinite horizon and finite action set: the horizon is

OPODIS 2018



0:6 Equilibria of Games in Networks for Local Tasks

infinite because neighboring nodes may perpetually prevent each other from terminating,
and the action set is supposed to be finite (as long as the set of labels is finite). However,
the classical game theoretical result [12] does not explicitly apply to LCL games. Indeed,
first, in LCL games the actions of far-away nodes are not observable. Second, the imperfect
information in [12] is solely related to the fact that players play simultaneously, while, again,
in LCL games, imperfect information also refers to the fact that each node is not aware of
the states of far away nodes in the network. It follows that the first step in our proof consists
of revisiting the results in [12] for extending them, as specified in the following result.

I Lemma 2. Every infinite, continuous, measurable, well-rounded, extensive game with
perfect recall and finite action set has a trembling-hand perfect equilibrium. Moreover, if the
game is, in addition, symmetric, then it has a symmetric trembling-hand perfect equilibrium.

The hypotheses regarding the nature of the strategy, and the nature of the payoff function
(continuity, measurability, etc.) are standard in the framework of extensive games. The
notion of well-rounded game is new, and is used to capture the fact that the nodes play in
synchronous rounds in LCL games. The fact that the equilibrium is symmetric is crucial as
far as games in networks are concerned since, in LCL games, as in randomized distributed
computing in general, the instructions given to all nodes are identical, and the behavior
of the nodes only vary along with the execution of the algorithm when they progressively
discover their environment. Extending the results in [12] is quite technical, but follows the
standard methods for establishing such results in game theory. Therefore, we have chosen
not to include the proof of Lemma 2 in this extended abstract.

The more interesting part of the proof, as far as local distributed computing in networks
is concerned, is to show that LCL games satisfy all requirements stated in Lemma 2. This
is the role of the following result:

I Lemma 3. LCL games are symmetric, infinite, continuous, measurable, well-rounded,
extensive games with perfect recall and finite action set.

Lemmas 2 and 3 together prove Theorem 1. The rest of the paper is therefore focussing
on formalizing LCL games, and on proving Lemma 3.

1.3 Related Work
Let us first position our result into the various settings of game theory. Indeed, games
take various forms, and the types of equilibria that can be satisfied by these games vary
according to their forms. Table 1 surveys the results regarding equilibria for various game
settings, from the finite strategic games to the extensive games with imperfect information
(we restrict our attention to games with a finite number of players). Recall that trembling-
hand perfect equilibria [29] are refinements of sequential equilibria, which are themselves
refinements of subgame-perfect equilibria, all of them being Nash equilibria. In Table 1, we
distinguish strategic games (i.e., 1-step games like, e.g., prisoner’s dilemma) from extensive
games (i.e., game trees with payoffs, like, e.g., monetary policy in economy). For the latter
class, we also distinguish games with perfect information (i.e., every player knows exactly
what has taken place earlier in the game), from the games with imperfect information.
We also distinguish finite games (i.e., games with a finite number of pure strategies, and
finite number of repetitions) from games with infinite horizon (i.e., games which can be
repeated infinitely often). The latter class of games is also split into games with finite
numbers of actions, and games with infinite set of actions (like, e.g., when fixing the price
of a product). In particular, Fudenberg and Levine [12] have proved that, under specific
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Strategic Games Extensive games with Extensive games with
perfect information imperfect information
[28] [29]

Finite games [25] Subgame-perfect equilibrium Trembling-hand perfect eq.
Nash equilibrium Pure strategies Behavior strategies

Games with Mixed strategies [12] [12]
a finite Subgame-perfect equilibrium Sequential equilibrium
action set Pure strategies Behavior strategies
Games with [11] [16] [10]
an infinite [14] Subgame-perfect equilibrium Nash equilibrium
action set Nash equilibrium Pure strategies Behavior strategies

Mixed strategies
Table 1 A summary of results about the existence of equilibria

assumptions, every extensive game with imperfect information and finite action set has
a sequential equilibrium (for behavior strategies). The specific class of games for which
this result holds can be described as extensive games with observable actions, simultaneous
moves, perfect recall, and finite action set, plus some continuity requirements. Although
this class of games captures repeated games, and contains natural games in economy, LCL
games are not explicitly included into this class. Indeed, as we already mentioned, the
actions of far-away nodes are not observable in LCL games, and, in these latter games,
imperfect information also refers to the fact that each node is not aware of the states of far
away nodes in the network.

We now list some previous works related to games in networks (for network formation
games, see, e.g., [6, 17]). Many games in networks have complete information, and, among
games with incomplete information, a large part of the literature is dedicated to single-stage
games where players are not initially aware of the network topology (see the survey [18]).
Repeated games in networks have also been considered a lot in the literature (again, see [18]).
These games differ from LCL games since, in repeated games, the utility of a player depends
on each round, and it is computed pairwise with each neighbor, while, in LCL games,
the utility is computed solely when the player terminates, and may depend on the whole
neighborhood. Regarding games with incomplete information involving communications in
networks, it is worth mentioning [2, 8, 9, 13, 15]. However, all these work mostly refer to
games in which the players’ actions consist in choosing which information to reveal, and
to whom it should be revealed. Instead, in LCL games, players actions are always fully
observable by their neighbors at distance ≤ t, where t is the maximum radius of the good
balls for the considered LCL task.

Probably the first contribution to distributed computing by rational agents is [1], which
studies leader election in various networks, including complete networks and rings. Different
forms of Nash equilibria are shown to exist, for both synchronous and asynchronous comput-
ing. The contribution in [3] extended and generalized the results in [1] by considering other
problems (consensus, renaming, etc.), and by identifying different utility functions that en-
compass different preferences of players in a distributed system: communication preference,
solution preference, and output preference. The paper [4] carried on this line of research,
by enlarging the considered set of problems to coloring, partition, orientation, etc., and by
addressing the question of how much global information agents should know a priori about
the network in order for equilibria to exist. All these previous work differ from our approach
in many ways. First, in [1, 3, 4], the agents strategies define the algorithm itself, including
which messages to send, which information to reveal, etc. Instead, in this paper, the agents
strategies solely consist in choosing a probability distribution on the possible outputs (at
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0:8 Equilibria of Games in Networks for Local Tasks

each round, depending on the history of the player). Second, the algorithms in the three
aforementioned papers are “global” in the sense that they can take Ω(n) rounds in n-node
networks. Instead, our (generic) algorithm is in essence “local”, i.e., it is expected to con-
verge in a polylogarithmic number of rounds, even in networks with large diameter. Last but
not least, we consider a whole family of tasks at once (all “reasonable” LCL tasks) while the
three aforementioned papers address each task separately, each one with its own algorithm.

2 The Extensive Games Related to LCL Games

In this section, we specify the type of games we are interested in, aiming at capturing the
characteristics of LCL games. We focus on extensive games with imperfect information, and
we include infinite horizon in the analysis of such games. We formally define all the concepts
appearing in the statement of Lemma 2, and/or useful for formally defining LCL games, and
proving Lemma 3. In particular, we define the novel notion of well-rounded games, which
fits with distributed network computing in the LOCAL model [26].

2.1 Basic Definitions
Recall that an extensive game is a tuple Γ = (N,A,X, P, U, p, π), where:

N = {1, . . . , n} is the set representing the players of the game. An additional player,
denoted by c, and called chance, is modeling all external random effects that might occur
in the course of the game.
A is the (finite) action set, i.e., a finite set representing the actions that can be made by
each player when she has to play.
X is the game tree, that is, a subset of A∗ ∪Aω where A∗ (resp., Aω) denotes the set of
finite (resp., infinite) strings with elements in A, satisfying the following properties:

the empty sequence ∅ ∈ X;
X is stable by prefix;
if (ai)i=1,...,k ∈ X for every k ≥ 1, then (ai)i≥1 ∈ X.

The set X is partially ordered by the prefix relation, denoted by �, where x � y means
that x is a prefix of y, and x ≺ y means that x is a prefix of y distinct from y. The
elements of X are called histories. A history x is terminal if it is a prefix of no other
histories in X. In particular, every infinite history in X is terminal. The set of terminal
histories is denoted by Z. If the longest history is finite then the game has finite horizon,
otherwise it has infinite horizon. For every non-terminal history x, we denote by A(x) =
{a ∈ A : (x, a) ∈ X} the set of available actions after the history x.
P is the player partition, i.e., a function P : X \ Z → N ∪ {c} that assigns a player to
each non-terminal history. P (x) is the player who has to play after the history x. The
sets Pi = {x ∈ X \ Z : P (x) = i}, for i ∈ N ∪ {c}, called player sets, form a partition
of X \ Z.
U is the information partition, that is, a refinement of the player partition, whose ele-
ments are called information sets, such that for every u ∈ U , and for every two histories
x, y in this information set u, we have A(x) = A(y), i.e., the sets of available actions after
x and after y are identical. We can therefore define A(u) as the set of actions available
after the information set u. Formally, A(u) = {a ∈ A : (x, a) ∈ X for every x ∈ u}.
For every history x, the information set containing x is denoted by u(x). We also define
P (u) as the player who has to play after the information set u has been reached, and
for every player i, the set Ui = {u ∈ U : P (u) = i}. The collection {Ui, i ∈ N ∪ {c}}
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forms a partition of U . Information sets regroup histories that are indistinguishable to
players. Since the chance player c is not expected to behave rationally, we will simply
put Uc = {{x}, x ∈ Pc}.
p is a function that assigns to every history x in Pc (the player set of the chance c) a
probability distribution over the set A(x) of available actions after the history x. This
chance function p is supposed to be common knowledge among the players.
π is the payoff function, that is, π : Z → Rn assigns the payoff (a real value) to every
player in N for every terminal history of the game. We assume that every payoff is in
[−M,M ] for some M ≥ 0.

2.2 Well-Rounded Games
We introduce the concept of rounds in extensive games, and of well-rounded games.

I Definition 4. The round function r of an extensive game assigns a positive integer to
every non terminal history x, defined by r(x) = |Rec(x)| where

Rec(x) = {x′ ∈ X | x′ ≺ x and P (x′) = P (x)}.

We call r(x) the round of x. The round of a finite terminal history is the round of its
predecessor, and the round of an infinite history z is r(z) = ∞. An extensive game Γ for
which the round function is non decreasing with respect to the prefix relation, i.e.,

y � x =⇒ r(y) ≤ r(x),

is said to be well-rounded.

Note that not every game is well-rounded, because two histories x and y such that x � y
do not necessarily satisfy P (x) = P (y). In a well-rounded game, since r is non decreasing,
we have that, for any non terminal history x, every player has played at most r(x) + 1 times
before x. Moreover, every player which has played less than r(x) times before x will never
play again after x.

Let u ∈ Ui and u′ ∈ Ui be two (non necessarily distinct) information sets of the same
player i, for which there exist x ∈ u, x′ ∈ u′, and a ∈ A(u′), such that (x′, a) � x. Recall
that an extensive game is said to have perfect recall if, for every such i, u, u′ and a, we have:

∀y ∈ u,∃y′ ∈ u′ | (y′, a) � y.

The following lemma will allow us to safely talk about the round of an information set.

I Lemma 5. Let Γ be an extensive game with perfect recall, and let x ∈ X and x′ ∈ X

be two non terminal histories in the same information set u ∈ U . Then x and x′ have the
same round.

Proof. We first observe the following. Let Γ be an extensive game with perfect recall, and
let y ∈ X be a finite history. Let y′ ∈ X and y′′ ∈ X for which there exists u ∈ U such that

y′ ∈ Rec(y) ∩ u and y′′ ∈ Rec(y) ∩ u.

Then y′ = y′′. Indeed, since both y′ and y′′ are in Rec(y), we have that both are prefixes
of y, and thus one of the two is a prefix of the other. Assume, w.l.o.g., that y′′ ≺ y′ ≺ y

(as, if y′ = y′′ then we are done). Let a be the action such that (y′′, a) � y′. Since the
game has perfect recall, there must exist a history y′′′ ∈ u such that (y′′′, a) � y′′. Thus
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y′′′ ≺ y′′ ≺ y′ ≺ y.We can repeat the same reasoning for y′′′ and y′′ as we did for y′′ and
y′. In this way, we construct an infinite strictly decreasing sequence of histories, which
contradicts the fact that y is finite.

If both Rec(x) and Rec(x′) are empty, then x and x′ have the same round. Assume,
w.l.o.g., that Rec(x) 6= ∅, and let y ∈ Rec(x). Let a be the action such that (y, a) � x.
Since the game has perfect recall, there exists y′ ∈ u(x′) such that (y′, a) � x′. Therefore
y′ ≺ x′ and P (y′) = P (y) = P (x) = P (x′). It follows that y′ ∈ Rec(x′). Thus, for any
y ∈ Rec(x), we have identified a corresponding y′ ∈ Rec(x′). This mapping from Rec(x) to
Rec(x′) is one-to-one. Indeed, let y1 and y2 in Rec(x), and let y′1 and y′2 in Rec(x′) be the
corresponding histories. If y′1 = y′2, then, since u(y1) = u(y′1) and u(y2) = u(y′2) = u(y′1), we
get that

y1 ∈ Rec(x) ∩ u(y′1) and y2 ∈ Rec(x) ∩ u(y′1).

It follows from the above observation that y1 = y2. Thus the mapping is one-to-one, and
hence r(x) ≤ r(x′). It follows that we also have Rec(x′) 6= ∅. Therefore, we can apply
the same reasoning by switching the roles of x and x′, which yields r(x′) ≤ r(x). Thus
r(x) = r(x′). J

2.3 Strategies, Outcomes, and Expected Payoff
In this section, we first recall several basic concepts about extensive games with perfect
recall. Without loss of generality, we restrict our attention to behavioral strategies since such
strategies are outcome-equivalent to mixed strategies thanks to [20]. The main objective of
this section is to define the expected payoff function, which is novel as it is adapted to infinite
games.

Recall that, for an information set u, the local strategy bi,u of a player i is a probability
distribution over the set A(u) of actions available given u. The set of local strategies of
player i for u is denoted by Bi,u. The behavioral strategy bi of a player i is a function which
assigns a local strategy bi,u to every information set u of this player. The set of all behavioral
strategies of player i is denoted by Bi. A strategy profile is a n-tuple of behavioral strategies,
one for each player. The set of all strategy profiles is B = ×i∈NBi. For each player i, we
denote by B−i the set ×j 6=iBj . Since

B = Bi ×B−i = ×i∈NBi,

a strategy profile b can be identified different ways, as b = (bi, b−i) = (b1, b2, . . . , bn). If
every player plays according to a strategy profile b, then the outcome of the game in entirely
determined, in the sense that every history x has a probability ρb(x) of being reached. For
every strategy profile b, and every history x = (ai)i=1,...,k where k ∈ N ∪∞, the realization
probability of x is defined by ρb(∅) = 1, and

ρb(x) =
k−1∏
i=0

bP (xi),u(xi)(ai+1)

where x0 = ∅, and, for every positive i ≤ k, xi = (a1, a2, . . . , ai). For the chance player c,
we simply identify its strategy with the chance function p:

P (xi) = c⇒ bP (xi),u(xi)(ai+1) = p(xi, ai+1).

The function ρb : X → [0, 1] is called the outcome of the game under the strategy profile b.
An outcome ρ : X → [0, 1] is feasible if and only if there exists a strategy profile b such that
ρ = ρb. The set of feasible outcomes of Γ is denoted by O.
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We are now ready to define the expected payoff. Note that, in a game with infinite
horizon, there can be uncountably many terminal histories. Therefore the definition of the
probability measure on Z requires some care. For any finite history x, let

Zx = {z ∈ Z | x � z}.

Note that Zx might be uncountable. Let Σ be the σ-algebra on Z generated by all sets of
the form Zx for some finite history x. For each strategy profile b, the measure µb on Σ is
defined by: for every set Zx, µb(Zx) = ρb(x). This definition ensures that µb is a probability
measure because µb(Z) = µb(Z∅) = ρb(∅) = 1.

I Definition 6. Let π be a payoff function that is measurable on Σ. The expected payoff
function Π assigns a real value Π(b) to every strategy profile b ∈ B, defined by

Π(b) =
∫

Σ
π dµb .

Note that each component of the expected payoff function is bounded byM , whereM is the
upper bound on every payoff. A game Γ whose payoff function π is measurable on Σ is said
to be a measurable game. In the following, we always assume that the considered games are
measurable.

2.4 Equilibria, and Subgame Perfection

We now show how to adapt the standard notion of ε-equilibria (cf., e.g., [27]) to infinite
games (Nash equilibria are special cases of ε-equilibria, with ε = 0). Recall that a strategy
profile b is a ε-equilibrium if and only if, for every player i, and every behavior strategy
b′i ∈ Bi of this player, we have Πi(b′i, b−i) − Πi(b) ≤ ε. Similarly, we recall the notions of
subgames and subgame perfect equilibria (see, e.g., [28]). A subtree X ′ of X is said to be
regular if no information sets contain both a history in X ′ and a history not in X ′. To each
regular subtree X ′ is associated a game Γ′ = (N,A,X ′, P ′, U ′, p′, π′), where P ′, U ′, p′ and
π′ are the restrictions of P , U , p and π to X ′, called a subgame. The notions of outcomes
and expected payoff functions for subgames follow naturally.

I Definition 7. A strategy profile b is a subgame perfect ε-equilibrium of an infinite game Γ
if and only if, for every subgame Γ′, the restriction of b to Γ′ is an ε-equilibrium.

Note that a subgame perfect ε-equilibrium of Γ is an ε-equilibrium.

2.5 Metrics

In this section, we now define specific metrics on the set O of feasible outcomes, and on the
set of behavior strategy profiles. These definitions are inspired from [12], with adaptations
to fit our infinite setting.

I Definition 8. Let ρ1, ρ2 ∈ O be two feasible outcomes of the same extensive game Γ. We
define the following metric d on O: d(ρ1, ρ2) = supx∈X,x finite 2−r(x) ·

∣∣ρ1(x)− ρ2(x)
∣∣ where

r(x) is the round of the finite history x.

I Lemma 9. The function d : O ×O → R specified in Definition 8 is a metric.
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Proof. We first show that d satisfies the triangle inequality. Let ρ1, ρ2 and ρ3 be three
feasible outcomes of Γ. For any finite history x we have the following:

|ρ1(x)− ρ3(x)| ≤ |ρ1(x)− ρ2(x)|+ |ρ2(x)− ρ3(x)|
⇒ 2−r(x)|ρ1(x)− ρ3(x)| ≤ 2−r(x)|ρ1(x)− ρ2(x)|+ 2−r(x)|ρ2(x)− ρ3(x)|

⇒ sup
x∈X

x finite

2−r(x)|ρ1(x)− ρ3(x)| ≤ sup
x∈X

x finite

(
2−r(x)|ρ1(x)− ρ2(x)|+ 2−r(x)|ρ2(x)− ρ3(x)|

)
⇒ sup

x∈X
x finite

2−r(x)|ρ1(x)− ρ3(x)| ≤ sup
x∈X

x finite

2−r(x)|ρ1(x)− ρ2(x)|+ sup
x∈X

x finite

2−r(x)|ρ2(x)− ρ3(x)|

⇒ d(ρ1, ρ3) ≤ d(ρ1, ρ2) + d(ρ2, ρ3).

Next, we prove that d separates different outcomes. Let ρ1 and ρ2 be two feasible outcomes
such that d(ρ1, ρ2) = 0. By definition, this implies that, for every finite history x, we have
ρ1(x) = ρ2(x). Let b1 and b2 be two strategy profiles such that ρ1 = ρb1 and ρ2 = ρb2 .
Let x = (ak)k≥1 be an infinite history, and, for k ≥ 1, let xk = (a1, a2, . . . , ak) be the
corresponding increasing sequence of its prefixes. By definition, ρb1(x) is the limit, for
k → ∞, of the sequence ρb1(xk), and ρb2(xk) → ρb2(x) when k → ∞ as well. Since the
two sequences are equal, they have the same limit, and therefore ρ1(x) = ρ2(x). Since this
equality holds for every infinite history x, it follows that ρ1 = ρ2. J

We can use d to define a metric on behavioral strategy profiles as follows. Let b1, b2 ∈ B
be two behavioral strategy profiles of the same game Γ. We define the metric d on B by:

d(b1, b2) = max
{
d (ρb1 , ρb2) , sup

i∈N
bi∈Bi

d
(
ρ(bi,b1

−i
), ρ(bi,b2

−i
)

)}
.

Finally, we define the continuity of the expected payoff function using the sup norm over Rn.
Specifically, the expected payoff function Π is continuous if, for every sequence of strategy
profiles (bk)k≥1, and every strategy profile b, we have:

d(bk, b) →
k→∞

0 =⇒ sup
i∈N

∣∣Πi(bk)−Πi(b)
∣∣ →

k→∞
0.

An extensive game Γ is continuous if its expected payoff function is continuous.

2.6 Equilibria of Extensive Games Related to LCL Games
As stated in Lemma 2, it can be proved that every (symmetric) infinite, continuous, measur-
able, well-rounded, extensive game with perfect recall and finite action set has a (symmetric)
trembling-hand perfect equilibrium. (Due to lack of space, this proof is not included in this
extended abstract).

3 Proof of Lemma 3

In this section, we show that LCL games satisfy all hypotheses of Lemma 2, from which we
derive Theorem 1. We start by formally defining LCL games.

3.1 Formal Definition of LCL Games
Let A be a finite alphabet, F a family of graphs with at most n vertices, D a probability
distribution over F , and L a greedily constructible LCL task over graphs in F . Let good(L)
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be the set of good balls in L, and let t be the radius of L, that is, the largest radius of the
good balls. Let prefi : good(L) 7→ [0, 1], be a preference function of player i over good balls,
and let δ ∈ (0, 1), called discounting factor. We define the game

Γ(L,D,pref, δ) = (N,A,X, P, U, p, π)

associated to the LCL task L, the distribution D, the preference function pref = (prefi)i∈N ,
and the discounting factor δ, as follows.

The player set is N = {1, . . . , n}.
The action set is A ∪ F where the actions in F are only used by the chance player c in
the initial move, and the actions in A are used by the actual players in N .
The first move of the game is made by the chance player, that is, P (∅) = c. As a result,
a graph G ∈ F is selected at random according to the probability distribution D, and
a one-to-one mapping of the players to the nodes of G is chosen uniformly at random.
From now on, the players are identified with the vertices of the graph G, labeled from 1
to n. Note that F might be reduced to a single graph, e.g., F = {Cn}, and the chance
player just selects, for each vertex v, which player i ∈ N is playing at v (in a one-to-one
manner).
The game is then divided into rounds (corresponding to the intuitive meaning in syn-
chronous distributed algorithms). At each round, the active players play in increasing
order, from 1 to n. At round 0 every player is active and plays, and every action in A is
available.
At the end of each round (i.e., after every active player has played the same number
of times), some players might become inactive, depending on the actions chosen during
the previous rounds. For every i ∈ N , let s(i) denote the last action played by player i,
which we call the state of i, and let ball(i) denote the ball of radius t centered at node i.
Every player i such that ball(i) ∈ good(L) at the end of a round becomes inactive.
In subsequent rounds, the set of available actions might be restricted. For every round
r > 0, and for every active player i, an action a ∈ A is available to player i if and only
if there exists a ball b ∈ good(L) compatible with the states of inactive players in which
s(i) = a.
A history is terminal if and only if either it is infinite, or it comes after the end of a
round with every player being inactive after that round.
Let x be a history. We denote by actionsi(x) the sequence of actions extracted from x

by selecting all actions taken by player i during rounds before r(x). (The action possibly
made by player i at round r(x), and actions made by a player j 6= i are not included in
actionsi(x)).
Let x and y be two non terminal histories such that P (x) = P (y) = i. Then x and y are
in the same information set if and only if, for every j ∈ ball(i), we have

actionsj(x) = actionsj(y).

This can be interpreted by the fact that a player i “knows” every action previously taken
by any player at distance at most t from i in the graph.
Let i be a player, and let z be a terminal history. We define the terminating time of
player i in history z by timei(z) = max{|actionsj(z)|, j ∈ ball(i)}−1. The payoff function
π of the game is then defined as follows. For every player i, and every terminal history z,
we have πi(z) = δtimei(z) · prefi(ball(i)). And πi(z) = 0 if timei(z) =∞.
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3.2 The proof of Lemma 3
We survey the properties of LCL games, with emphasis on those listed as pre-conditions in
the statement of Lemma 2.

I Lemma 10. LCL games are well-rounded.

Proof. This follows directly from the fact that, in a LCL game, (1) every active player plays
at every round until it becomes inactive, and (2) once inactive, a player cannot become
active again. J

I Lemma 11. LCL games are symmetric.

Proof. This follows directly from the fact that, in a LCL game, the position of every player
in the actual graph (which might be fixed, or chosen at random in some given family of
graphs according to some given distribution) is chosen uniformly at random. J

I Lemma 12. LCL games have perfect recall.

Proof. Let Γ = (L,D,pref, δ) = (N,A,X, P, U, p, π) be an LCL game. Let u and u′ be two
information sets of the same player i, for which there exists x ∈ u, x′ ∈ u′, and a ∈ A(u′)
such that (x′, a) � x. Let y be a history in u. Since x and y are in the same information
set u, it follows that, for every player j ∈ ball(i), we have actionsj(x) = actionsj(y). In
particular, this implies that x and y are in the same round. Let y′ be the unique history
which is a prefix of y with P (y′) = i, and with r(y′) = r(x′). (Such a history exists because
r(x′) < r(x), and r(y) = r(x)). Since the players play in the same order at every round, we
get that, for every player j ∈ ball(i), actionsj(x′) = actionsj(y′). As a consequence, we have
y′ ∈ u′. Furthermore, since actionsi(x) = actionsi(y), the action played by i after y′ must
be a, which implies (y′, a) � y, and concludes the proof. J

I Lemma 13. The payoff function π of a LCL game is measurable on the σ-algebra Σ
corresponding to the game.

Proof. We prove that, for every player i, and for every a ∈ R, π−1
i (]a,+∞[) ∈ Σ, which

implies that π is measurable on Σ. In LCL game, we have πi : Z 7→ [0, 1]. For every a < 0,
we have π−1

i (]a,+∞[) = Z ∈ Σ. Similarly, for every a > 1, we have π−1
i (]a,+∞[) = ∅ ∈ Σ.

So, let us assume that a ∈]0, 1], and let z be a terminal history such that πi(z) > a. We have
timei(z) < ln a/ ln δ, i.e., every player in ball(i) has played only a finite number of times
in the history z. Let x be the longest history such that x � z, and r(x) = timei(z). By
this setting, the history x′ that comes right after x in z is the shortest prefix of z satisfying
that every player in ball(i) is inactive. Let z′ be a terminal history such that x′ � z′. Since
every player j ∈ ball(i) is inactive after x′, it follows that the state of any such player in z′
is the same as its state in z, and thus πi(z′) = πi(z). It follows from the above that, for any
terminal history z such that πi(z) > a, there exists a finite history x′ in round timei(z) + 1
such that z ∈ Zx′ ⊆ π−1

i (]a,+∞[). Since there are finitely many histories in round timei(z),
we get that π−1

i (]a,+∞[) is the union of a finite number of sets of the form Zx′ . As a
consequence, it is measurable in Σ. It remains to prove that π−1

i (]0,+∞[) ∈ Σ. This simply
follows from the fact that

π−1
i (]0,+∞[) =

⋃
k≥1

π−1
i (] 1

k
,+∞[),

and from the fact that Σ is stable by countable unions. J
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I Lemma 14. LCL games are continuous.

Proof. Let b be a strategy profile, and let (bk)k≥0 be a sequence of strategy profiles such
that d(bk, b) → 0 when k → ∞. By definition of the metric d on B (cf. subsection 2.5),
we have that d(ρbk , ρb) → 0 when k → ∞. By definition of the metric on O, we have that,
for any finite history x, |ρbk (x)− ρb(x)| −→

k�∞
0. It follows that, for any set of the form Zx as

defined in subsection 2.3, |µbk (Zx)−µb(Zx)| −→
k�∞

0. In other words the sequence of measures
µbk strongly converges to µb. Since, for every player i, the function πi is measurable and
bounded, it follows that∫

Σ
πi dµbk −→

k�∞

∫
Σ
πi dµb.

Therefore, Πi(bk) −→
k�∞

Πi(b), and thus the expected payoff function Π is continuous. J

Lemmas 11-14 show that every LCL game satisfies the requirements of Lemma 2, that
is, every LCL game satisfies Lemma 3. J

4 Conclusion and Further Work

In this paper, we have proved that natural games occurring in the framework of local dis-
tributed network computing have trembling-hand perfect equilibria, a strong form of Nash
equilibria. Further study includes the analysis of the performances of the robust algorithms
resulting from these equilibria. This study is challenging as determining the performances of
iterative distributed construction algorithms such as the generic algorithm in Section 1.1.2
is non trivial, even if nodes are altruistic, and follow the prescribed actions imposed by the
algorithm. On the other hand, this line of study is of the utmost importance as, in the
framework of large scale distributed computing, it is unreasonable to assume that no nodes
will be tempted to deviate from the prescribed actions, for optimizing its own benefit, at
the expense of the performances of the algorithms, and of the quality of the solutions.
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