L. Feuilloley and P. Fraigniaud, Randomized Local Network Computing, proc. 27th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pp.340-349, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01247357

L. Feuilloley and P. Fraigniaud, Survey of Distributed Decision, Bulletin of the EATCS, vol.119, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01331880

L. Feuilloley, P. Fraigniaud, and J. Hirvonen, A Hierarchy of Local Decision, proc. 43rd International Colloquium on Automata, Languages and Programming (ICALP), 2016.
URL : https://hal.archives-ouvertes.fr/hal-01423644

P. Floréen, J. Kaasinen, P. Kaski, and J. Suomela, An optimal local approximation algorithm for max-min linear programs, proc. 21st ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pp.260-269, 2009.

P. Fraigniaud, M. Göös, A. Korman, and J. Suomela, What can be decided locally without identifiers?, 32nd ACM Symp. on Principles of Dist. Comput. (PODC), pp.157-165, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00912527

P. Fraigniaud, M. Halldórsson, and A. Korman, On the Impact of Identifiers on Local Decision, proc. 16th Int. Conference on Principles of Distributed Systems (OPODIS), vol.7702, pp.224-238, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01241093

P. Fraigniaud, A. Korman, and D. Peleg, Towards a complexity theory for local distributed computing, Preliminary version in FOCS, vol.60, p.35, 2011.

M. Göös and J. Suomela, Locally checkable proofs, proc. 30th ACM Symposium on Principles of Distributed Computing (PODC), pp.159-168, 2011.

A. Korman, S. Kutten, and D. Peleg, Proof labeling schemes, Distributed Computing, vol.22, issue.4, pp.215-233, 2010.

F. Kuhn, T. Moscibroda, and R. Wattenhofer, What cannot be computed locally! In proc. 23rd ACM Symp. on Principles of Distributed Computing (PODC), pp.300-309, 2004.

C. Lenzen, Y. A. Oswald, and R. Wattenhofer, What can be approximated locally?, proc. 20th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pp.46-54, 2008.

C. Lenzen and R. Wattenhofer, Leveraging Linial's Locality Limit, proc. 22nd Int. Symp. on Distributed Computing (DISC), pp.394-407, 2008.

N. , Locality in Distributed Graph Algorithms, SIAM J. Comp, vol.21, issue.1, pp.193-201, 1992.

M. Naor and L. Stockmeyer, What Can be Computed Locally?, SIAM J. Comput, vol.24, issue.6, pp.1259-1277, 1995.

D. Peleg, Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

F. Reiter, Distributed Graph Automata, proc. 30th ACM/IEEE Symposium on Logic in Computer Science (LICS), pp.192-201, 2015.

J. Suomela, Survey of local algorithms, ACM Comput. Surv, vol.45, issue.2, p.24, 2013.

.. {0, .. .. {1, . N},-e-i-?-u-;, and .. .. {1, Next, if d 0 = 0, it checks that it has a set S j (u) = {e i | i = 1,. .. , n}. Finally, it checks that the distances are consistent, that is, for every i such that d i = 0, it checks that it has at least one neighbor whose ith distance is smaller than d i, n}, d i is a non-negative integer