J. Bierkens-;-bierkens, Non-reversible Metropolis-Hastings, Stat. Comput, vol.26, issue.6, pp.1213-1228, 2015.

R. Breyer, L. A. Breyer, and G. O. Roberts, From metropolis to diffusions: Gibbs states and optimal scaling, Stoch. Process. their Appl, vol.90, issue.2, pp.181-206, 2000.
DOI : 10.1016/s0304-4149(00)00041-7

URL : https://doi.org/10.1016/s0304-4149(00)00041-7

. Brooks, S. P. Brooks, and A. Gelman, General methods for monitoring convergence of iterative simulations, J. Comput. Graph. Stat, vol.7, issue.4, pp.434-455, 1998.

. Buades, A non-local algorithm for image denoising, Comput. Vis. Pattern Recognit, vol.2, pp.60-65, 2005.

[. Burger, Image denoising: can plain neural networks compete with BM3D?, SIAM J. Imaging Sci, vol.7, issue.3, pp.1484-1502, 2012.
DOI : 10.1109/cvpr.2012.6247952

. Chatterjee, P. Milanfar-;-chatterjee, and P. Milanfar, Patch-based near-optimal image denoising, IEEE Trans. Image Process, vol.21, issue.4, pp.1635-1649, 2012.
DOI : 10.1109/tip.2011.2172799

[. Dabov, Image denoising by sparse 3D transform-domain collaborative filtering, IEEE Trans. Image Process, vol.16, issue.8, pp.145-149, 2007.
DOI : 10.1109/tip.2007.901238

[. Deledalle, Iterative weighted maximum likelihood denoising with probabilistic patch-based weights, IEEE Trans. Image Process, vol.18, issue.12, pp.2661-2672, 2009.
DOI : 10.1109/tip.2009.2029593

URL : https://hal.archives-ouvertes.fr/ujm-00431266

[. Deledalle, Non-local methods with shape-adaptive patches (NLM-SAP), J. Math. Imaging Vis, vol.43, issue.2, pp.103-120, 2012.
DOI : 10.1007/s10851-011-0294-y

URL : https://hal.archives-ouvertes.fr/hal-00536723

[. Duval, A bias-variance approach for the nonlocal means, SIAM J. Imaging Sci, vol.4, issue.2, pp.760-788, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00947885

M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, In IEEE Trans. Image Process, vol.15, pp.3736-3745, 2006.
DOI : 10.1109/tip.2006.881969

F. Förster and R. Hegerl, Structure determination In Situ by averaging of tomograms, In Cell. Electron Microsc, vol.79, pp.741-767, 2007.

A. Gelman and D. B. Rubbin, Inference from iterative simulation using multiple sequences, Stat. Sci, vol.7, issue.4, pp.457-511, 1992.
DOI : 10.1214/ss/1177011136

URL : https://doi.org/10.1214/ss/1177011136

[. Gilks, Markov Chain Monte Carlo in Practice: Interdisciplinary Statistics, 1995.

R. Gribonval-;-gribonval, Should penalized least squares regression be interpreted as maximum a posteriori estimation?, IEEE Trans. Signal Process, vol.59, pp.2405-2410, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00486840

[. Guesdon, Single versus dual-axis cryo-electron tomography of microtubules assembled in vitro: limits and perspectives, J. Struct. Biol, vol.181, issue.2, pp.169-78, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00831759

F. Guichard and F. Malgouyres, Total variation based interpolation, Eur. Signal Process. Conf., volume, vol.3, pp.1741-1744, 1998.

W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, pp.97-109, 1970.
DOI : 10.2307/2334940

[. Holden, Adaptive independent MetropolisHastings, Ann. Appl. Probab, vol.19, issue.1, pp.395-413, 2009.

[. Jin, Nonlocal means and optimal weights for noise removal, SIAM J. Imaging Sci, vol.10, issue.4, pp.1878-1920, 2017.
DOI : 10.1137/16m1080781

URL : https://hal.archives-ouvertes.fr/hal-01575918

[. Katkovnik, From local kernel to nonlocal multiple-model image denoising, Int. J. Comput. Vis, vol.86, issue.1, pp.1-32, 2010.
DOI : 10.1007/s11263-009-0272-7

URL : http://www.cs.tut.fi/~foi/papers/KFKA-LocalNonLocalDenoising-IJCV-Preprint2009.pdf

[. Kazerouni, Bayesian denoising: from MAP to MMSE using consistent cycle spinning, IEEE Signal Process. Lett, vol.20, pp.249-252, 2013.
DOI : 10.1109/lsp.2013.2242061

URL : http://bigwww.epfl.ch/publications/kazerouni1301.pdf

C. Kervrann, PEWA: Patch-based exponentially weighted aggregation for image denoising, Adv. Neural Inf. Process. Syst, vol.27, pp.1-9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01103358

C. Kervrann and J. Boulanger, Optimal spatial adaptation for patch-based image denoising, In IEEE Trans. Image Process, vol.15, pp.2866-2878, 2006.
DOI : 10.1109/tip.2006.877529

URL : http://www.irisa.fr/vista/Papers/2006_ip_kervrann.pdf

. Kervrann, C. Boulanger-;-kervrann, and J. Boulanger, Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal, In Scale Sp. Var. Methods Comput. Vis, pp.520-532, 2007.
DOI : 10.1007/978-3-540-72823-8_45

URL : https://hal.archives-ouvertes.fr/hal-00645444

. Kervrann, C. Boulanger-;-kervrann, and J. Boulanger, Local adaptivity to variable smoothness for exemplar-based image regularization and representation, Int. J. Comput. Vis, vol.79, issue.1, pp.45-69, 2008.
DOI : 10.1007/s11263-007-0096-2

. Kervrann, Approximate bayesian computation, stochastic algorithms and non-local means for complex noise models, IEEE Int, 2014.
DOI : 10.1109/icip.2014.7025573

URL : https://hal.archives-ouvertes.fr/hal-01103322

, Conf. Image Process, pp.2834-2838

[. Kindermann, Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul, vol.4, issue.4, pp.1091-1115, 2005.
DOI : 10.1137/050622249

[. Ková?ik, A simple Fourier filter for suppression of the missing wedge ray artefacts in single-axis electron tomographic reconstructions, J. Struct. Biol, vol.186, issue.1, pp.141-52, 2014.

[. Leary, Compressed sensing electron tomography, Ultramicroscopy, vol.131, pp.70-91, 2013.

[. Lebrun, A nonlocal Bayesian image denoising algorithm, SIAM J. Imaging Sci, vol.6, issue.3, pp.1665-1688, 2013.
DOI : 10.1137/120874989

. Liang, Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples, 2010.
DOI : 10.1002/9780470669723

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470669723.fmatter

[. Lou, Image recovery via nonlocal operators, J. Sci. Comput, vol.42, issue.2, pp.185-197, 2010.
DOI : 10.1007/s10915-009-9320-2

URL : https://link.springer.com/content/pdf/10.1007%2Fs10915-009-9320-2.pdf

C. Louchet and L. Moisan, Total variation denoising using posterior expectation, Eur. Signal Process. Conf, vol.5, pp.1-5, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00258849

C. Louchet and L. Moisan, Total variation as a local filter, SIAM J. Imaging Sci, vol.4, issue.3, pp.651-694, 2011.
DOI : 10.1137/100785855

URL : https://hal.archives-ouvertes.fr/hal-00457763

C. Louchet and L. Moisan, Posterior expectation of the total variation model: properties and experiments, SIAM J. Imaging Sci, vol.6, issue.4, pp.2640-2684, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00764175

[. Maggioni, Nonlocal transform-domain filter for volumetric data denoising and reconstruction, IEEE Trans. Image Process, vol.22, issue.1, pp.119-133, 2013.
DOI : 10.1109/tip.2012.2210725

[. Mairal, Non-local sparse models for image restoration, IEEE Int. Conf. Comput. Vis, pp.2272-2279, 2009.
DOI : 10.1109/iccv.2009.5459452

[. Metropolis, Equation of State Calculations, J. Chem. Phys, vol.21, issue.6, pp.1087-1092, 1953.

[. Miao, Equally sloped tomography with oversampling reconstruction, Phys. Rev. B, vol.72, issue.5, pp.3-6, 2005.
DOI : 10.1103/physrevb.72.052103

P. Milanfar, A tour of modern image filtering, IEEE Signal Process. Mag, vol.30, issue.1, pp.106-128, 2013.

L. Moisan, Periodic plus smooth image decomposition, J. Math. Imaging Vis, vol.39, issue.2, pp.161-179, 2011.
DOI : 10.1007/s10851-010-0227-1

URL : https://hal.archives-ouvertes.fr/hal-00388020

L. C. Moisan, Extrapolation de spectre et variation totale pondérée, 18e Colloq. sur le Trait. du Signal des Images, pp.892-895, 2001.

R. M. Neal, Improving asymptotic variance of MCMC estimators : non-reversible chains are bbetter, 2004.

[. Paavolainen, Compensation of missing wedge effects with sequential statistical reconstruction in electron tomography, PLoS One, vol.9, issue.10, pp.1-23, 2014.

[. Pizarro, Generalised nonlocal image smoothing, Int. J. Comput. Vis, vol.90, issue.1, pp.62-87, 2010.
DOI : 10.1007/s11263-010-0337-7

URL : http://www.math.uni-sb.de/service/preprints/preprint248.pdf

. Protter, Closed-Form MMSE estimation for signal denoising under sparse representation modeling over a unitary dictionary, IEEE Trans. Signal Process, vol.58, issue.7, pp.3471-3484, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00577220

R. , C. Robert, C. P. Casella, and G. , , 2004.

, Monte Carlo statistical methods

. Roberts, Weak convergence and optimal scaling of random walk Metropolis algorithms, Ann. Appl. Probab, vol.7, issue.1, pp.110-120, 1997.

. Roberts, G. O. Roberts, and J. S. Rosenthal, Optimal scaling for various Metropolis-Hastings algorithms, Stat. Sci, vol.16, issue.4, pp.351-367, 2001.

. Rudin, Nonlinear total variation based noise removal algorithms, Phys. D, vol.60, pp.259-268, 1992.
DOI : 10.1016/0167-2789(92)90242-f

[. Sutour, Adaptive regularization of the NL-means: application to image and video denoising, IEEE Trans. Image Process, vol.23, issue.8, pp.3506-3521, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00854830

D. Ville, D. Kocher-;-van-de-ville, and M. Kocher, SURE-based non-local means, IEEE Signal Process. Lett, vol.16, issue.11, pp.973-976, 2009.

M. Van-heel and M. Schatz, Fourier shell correlation threshold criteria, J. Struct. Biol, vol.151, pp.250-262, 2005.

. Wang, Y. Wang, and J. Morel, SURE guided Gaussian mixture image denoising, SIAM J. Imaging Sci, vol.6, issue.2, pp.999-1034, 2013.
DOI : 10.1137/120901131

URL : https://hal.archives-ouvertes.fr/hal-00785334

. Zoran, D. Weiss-;-zoran, and Y. Weiss, From learning models of natural image patches to whole image restoration, IEEE Int. Conf. Comput. Vis, pp.479-486, 2011.