H. Berry and H. Chaté, Anomalous diffusion due to hindering by mobile obstacles undergoing brownian motion or ornstein-ulhenbeck processes, Physical Review E, vol.89, issue.2, p.22708, 2014.

T. Bickel, A note on confined diffusion, Physica A: Statistical Mechanics and its Applications, vol.377, issue.1, pp.24-32, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01553040

. Bressloff, P. Newby-;-bressloff, and J. Newby, Stochastic models of intracellular transport, Reviews of Modern Physics, vol.85, issue.1, p.135, 2013.

P. C. Bressloff and . Briane, Statistical analysis of particle trajectories in living cells, Physical Review E, vol.41, p.62121, 2014.

D. Chandler-;-chandler, Introduction to modern statistical mechanics. Introduction to Modern Statistical Mechanics, p.288, 1987.

[. Chenouard, Objective comparison of particle tracking methods, Nature Methods, vol.11, issue.3, p.281, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00932869

L. Coutin-and-qian-;-coutin and Z. Qian, Stochastic analysis, rough path analysis and fractional brownian motions. Probability Theory and Related Fields, vol.122, pp.108-140, 2002.

[. Decreusefond, Stochastic analysis of the fractional brownian motion, vol.10, pp.177-214, 1999.

V. Dix, J. A. Dix, and A. Verkman, Crowding effects on diffusion in solutions and cells, Annu. Rev. Biophys, vol.37, pp.247-263, 2008.

A. Einstein, On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat, Annalen der physik, vol.17, pp.549-560, 1905.

T. C. Elston, A macroscopic description of biomolecular transport, Journal of Mathematical Biology, vol.41, issue.3, pp.189-206, 2000.

[. Etoc, Non-specific interactions govern cytosolic diffusion of nanosized objects in mammalian cells, Nature Materials, vol.17, pp.740-746, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01871099

[. Feder, Constrained diffusion or immobile fraction on cell surfaces: a new interpretation, Biophysical Journal, vol.70, issue.6, p.2767, 1996.

A. Fick, V. on liquid diffusion, Philosophical Magazine Series, vol.4, issue.63, pp.30-39, 1855.

[. Gal, Particle tracking in living cells: a review of the mean square displacement method and beyond, Rheologica Acta, vol.52, issue.5, pp.425-443, 2013.

L. Gallardo, Mouvement brownien et calcul d'Itô: cours et exercices corrigés, 2008.

P. Grassberger-;-grassberger, Conductivity exponent and backbone dimension in 2-d percolation, Physica A: Statistical Mechanics and its Applications, vol.262, issue.3, pp.251-263, 1999.

B. Havlin, S. Havlin, and D. Ben-avraham, Diffusion in disordered media, Advances in Physics, vol.36, issue.6, pp.695-798, 1987.

[. Henley, Routes, destinations and delays: recent advances in ampa receptor trafficking, Trends in Neurosciences, vol.34, issue.5, pp.258-268, 2011.

N. Hozé, Modélisation et méthodes d'analyse de la diffusion et agrégation au niveau moléculaire pour l'organisation sous-cellulaire, 2013.

N. Hoze and D. Holcman, Statistical methods for large ensembles of super-resolution stochastic single particle trajectories in cell biology, Annual Review of Statistics and Its Application, vol.4, pp.189-223, 2017.

H. E. Hurst, Long-term storage capacity of reservoirs, Trans. Amer. Soc. Civil Eng, vol.116, pp.770-808, 1951.

[. Jeon, In vivo anomalous diffusion and weak ergodicity breaking of lipid granules, Physical Review Letters, vol.106, issue.4, p.48103, 2011.

S. Karlin and . Klebaner, Introduction to Stochastic Calculus with Applications, 1981.

A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers, Dokl. Akad. Nauk SSSR, vol.30, pp.299-303, 1941.

S. C. Kou-;-kou, Stochastic modeling in nanoscale biophysics: subdiffusion within proteins, The Annals of Applied Statistics, pp.501-535, 2008.

H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica, vol.7, issue.4, pp.284-304, 1940.

[. Kusumi, Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed singlemolecule tracking of membrane molecules, Annu. Rev. Biophys. Biomol. Struct, vol.34, pp.351-378, 2005.

[. Kusumi, Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). effects of calcium-induced differentiation in cultured epithelial cells, Biophysical Journal, vol.65, issue.5, p.2021, 1993.

P. Langevin, Sur la théorie du mouvement brownien, CR Acad. Sci, vol.146, p.530, 1908.

[. Lund, Spattrack: An imaging toolbox for analysis of vesicle motility and distribution in living cells, Traffic, vol.15, issue.12, pp.1406-1429, 2014.

[. Lysy, Model comparison and assessment for single particle tracking in biological fluids, Journal of the American Statistical Association, 2016.

[. Mandelbrot, V. Ness-;-mandelbrot, B. B. Van-ness, and J. W. , Fractional brownian motions, fractional noises and applications, SIAM review, vol.10, issue.4, pp.422-437, 1968.
DOI : 10.1137/1010093

. Meroz, Y. Sokolov-;-meroz, and I. M. Sokolov, A toolbox for determining subdiffusive mechanisms, Physics Reports, vol.573, pp.1-29, 2015.
DOI : 10.1016/j.physrep.2015.01.002

K. Metzler, R. Metzler, and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, vol.339, issue.1, pp.1-77, 2000.
DOI : 10.1016/s0370-1573(00)00070-3

X. Michalet, Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium, Physical Review E, vol.82, issue.4, p.41914, 2010.

. Monnier, Bayesian approach to msd-based analysis of particle motion in live cells, Biophysical Journal, vol.103, issue.3, pp.616-626, 2012.

. Peskin, C. S. Oster-;-peskin, and G. Oster, Coordinated hydrolysis explains the mechanical behavior of kinesin, Biophysical Journal, vol.68, issue.4, p.202, 1995.

[. Pisarev, Numerical analysis of particle trajectories in living cells under uncertainty conditions, Biophysics, vol.60, issue.5, pp.810-817, 2015.

[. Qian, Single particle tracking. analysis of diffusion and flow in two-dimensional systems, Biophysical Journal, vol.60, issue.4, p.910, 1991.

P. Reimann, Brownian motors: noisy transport far from equilibrium, Physics Reports, vol.361, issue.2, pp.57-265, 2002.
DOI : 10.1016/s0370-1573(01)00081-3

URL : http://arxiv.org/pdf/cond-mat/0010237v2.pdf

M. J. Saxton, Lateral diffusion in an archipelago. single-particle diffusion, Biophysical Journal, vol.64, issue.6, pp.1766-1780, 1993.
DOI : 10.1016/s0006-3495(82)84504-9

URL : https://doi.org/10.1016/s0006-3495(82)84504-9

M. J. Saxton, Anomalous diffusion due to obstacles: a monte carlo study, Biophysical Journal, vol.66, issue.2, p.394, 1994.
DOI : 10.1016/s0006-3495(94)80789-1

URL : https://doi.org/10.1016/s0006-3495(94)80789-1

J. Saxton, M. J. Saxton, and K. Jacobson, Single-particle tracking: applications to membrane dynamics, Annual Review of Biophysics and Biomolecular Structure, vol.26, issue.1, pp.373-399, 1997.

H. Scher and E. W. Montroll, Anomalous transit-time dispersion in amorphous solids, Physical Review B, vol.12, issue.6, p.2455, 1975.
DOI : 10.1103/physrevb.12.2455

Z. Schuss, Theory and applications of stochastic processes: an analytical approach, vol.170, 2009.

. Tejedor, Quantitative analysis of single particle trajectories: Mean maximal excursion method, Biophysical Journal, vol.98, pp.1364-1372, 2010.
DOI : 10.1016/j.bpj.2009.12.4282

URL : https://doi.org/10.1016/j.bpj.2009.12.4282

G. E. Uhlenbeck and L. S. Ornstein, On the theory of the brownian motion, Physical Review, vol.36, issue.5, p.823, 1930.

[. Van-kampen-;-van-kampen and N. G. , Stochastic processes in physics and chemistry, vol.1, 1992.

R. Waterston, J. J. Waterston, and L. Rayleigh, On the physics of media that are composed of free and perfectly elastic molecules in a state of motion, Philosophical Transactions of the Royal Society of London, A, vol.183, pp.1-79, 1892.

[. Weber, Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm, Physical Review letters, vol.104, issue.23, p.238102, 2010.
DOI : 10.1103/physrevlett.104.238102

URL : http://europepmc.org/articles/pmc4929007?pdf=render

[. Zhizhina, Modelling axon growing using ctrw, 2015.

R. Zwanzig, Nonequilibrium statistical mechanics, 2001.