Towards AutoML in the presence of Drift: first results

Jorge Madrid 1 Hugo Jair Escalante 1 Eduardo Morales 1 Wei-Wei Tu 2 Yang Yu 3 Lisheng Sun-Hosoya 4, 5 Isabelle Guyon 4, 5 Michèle Sebag 4, 5
5 TAU - TAckling the Underspecified
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : Research progress in AutoML has lead to state of the art solutions that can cope quite well with supervised learning task, e.g., classification with AutoSklearn. However, so far these systems do not take into account the changing nature of evolving data over time (i.e., they still assume i.i.d. data); even when this sort of domains are increasingly available in real applications (e.g., spam filtering, user preferences, etc.). We describe a first attempt to develop an AutoML solution for scenarios in which data distribution changes relatively slowly over time and in which the problem is approached in a lifelong learning setting. We extend Auto-Sklearn with sound and intuitive mechanisms that allow it to cope with this sort of problems. The extended Auto-Sklearn is combined with concept drift detection techniques that allow it to automatically determine when the initial models have to be adapted. We report experimental results in benchmark data from AutoML competitions that adhere to this scenario. Results demonstrate the effectiveness of the proposed methodology.
Type de document :
Communication dans un congrès
Workshop AutoML 2018 @ ICML/IJCAI-ECAI, Jul 2018, Stockholm, Sweden. 2018, 〈https://sites.google.com/site/automl2018icml/home〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01966962
Contributeur : Marc Schoenauer <>
Soumis le : dimanche 30 décembre 2018 - 11:13:03
Dernière modification le : jeudi 7 février 2019 - 15:37:19

Fichier

drift-wkpICML2018.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01966962, version 1

Citation

Jorge Madrid, Hugo Jair Escalante, Eduardo Morales, Wei-Wei Tu, Yang Yu, et al.. Towards AutoML in the presence of Drift: first results. Workshop AutoML 2018 @ ICML/IJCAI-ECAI, Jul 2018, Stockholm, Sweden. 2018, 〈https://sites.google.com/site/automl2018icml/home〉. 〈hal-01966962〉

Partager

Métriques

Consultations de la notice

73

Téléchargements de fichiers

263