M. Baena-garcía, J. Del-campo, -. Avila, R. Fidalgo, A. Bifet et al., Early drift detection method, 2006.

B. Baker, O. Gupta, N. Naik, and R. Raskar, Designing neural network architectures using reinforcement learning, 2016.

Y. Bengio, Gradient-based optimization of hyperparameters, Neural computation, vol.12, issue.8, pp.1889-1900, 2000.
DOI : 10.1162/089976600300015187

J. Bergstra and Y. Bengio, Random search for hyper-parameter optimization, Journal of Machine Learning Research, vol.13, pp.281-305, 2012.

R. James-s-bergstra, Y. Bardenet, B. Bengio, and . Kégl, Algorithms for hyperparameter optimization, Advances in neural information processing systems, pp.2546-2554, 2011.

A. Ayne, T. Beyene, M. Welemariam, N. Persson, and . Lavesson, Improved concept drift handling in surgery prediction and other applications, Knowl. Inf. Syst, vol.44, issue.1, pp.177-196, 2015.

A. Bifet and R. Gavalda, Learning from time-changing data with adaptive windowing, Proceedings of the 2007 SIAM international conference on data mining, pp.443-448, 2007.
DOI : 10.1137/1.9781611972771.42

URL : http://www.lsi.upc.edu/~abifet/Timevarying.pdf

A. Bifet, G. Holmes, and B. Pfahringer, Leveraging bagging for evolving data streams, Joint European conference on machine learning and knowledge discovery in databases, pp.135-150, 2010.
DOI : 10.1007/978-3-642-15880-3_15

URL : https://link.springer.com/content/pdf/10.1007%2F978-3-642-15880-3_15.pdf

H. Bozdogan, Model selection and akaike's information criterion (aic): The general theory and its analytical extensions, Psychometrika, vol.52, issue.3, pp.345-370, 1987.
DOI : 10.1007/bf02294361

Z. Chen, N. Ma, and B. Liu, Lifelong learning for sentiment classification, 2018.
DOI : 10.3115/v1/p15-2123

URL : https://doi.org/10.3115/v1/p15-2123

M. Hugo-jair-escalante, L. E. Montes, and . Sucar, Particle swarm model selection, J. Mach. Learn. Res, vol.10, pp.405-440, 2009.

G. Fei, S. Wang, and B. Liu, Learning cumulatively to become more knowledgeable, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.1565-1574, 2016.
DOI : 10.1145/2939672.2939835

URL : http://dl.acm.org/ft_gateway.cfm?id=2939835&type=pdf

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum et al., Efficient and robust automated machine learning, Advances in Neural Information Processing Systems, vol.28, pp.2962-2970, 2015.
DOI : 10.1007/978-3-030-05318-5_6

URL : https://link.springer.com/content/pdf/10.1007%2F978-3-030-05318-5_6.pdf

J. Gama, A. Indr?-e-?-zliobait?-e, M. Bifet, A. Pechenizkiy, and . Bouchachia, A survey on concept drift adaptation, ACM Comput. Surv, vol.46, issue.4, 2014.
DOI : 10.1145/2523813

URL : http://eprints.bournemouth.ac.uk/22491/1/ACM%20computing%20surveys.pdf

J. Gama, P. Medas, G. Castillo, and P. Rodrigues, Learning with drift detection, Advances in Artificial Intelligence-SBIA 2004, pp.286-295, 2004.
DOI : 10.1007/978-3-540-28645-5_29

I. Guyon, K. Bennett, G. C. Cawley, H. J. Escalante, S. Escalera et al., Design of the 2015 chalearn automl challenge, 2015 International Joint Conference on Neural Networks, 2015.
DOI : 10.1109/ijcnn.2015.7280767

URL : https://hal.archives-ouvertes.fr/hal-01381164

. Guyon, , pp.1-8, 2015.

I. Guyon, I. Chaabane, H. J. Escalante, S. Escalera, D. Jajetic et al., A brief review of the chalearn automl challenge: Any-time any-dataset learning without human intervention, Proceedings of the 2016 Workshop on Automatic Machine Learning, AutoML 2016, co-located with 33rd International Conference on Machine Learning (ICML 2016), pp.21-30, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01381145

I. Guyon, L. Sun-hosoya, M. Boullé, H. J. Escalante, S. Escalera et al., Analysis of the automl challenge series 20152018, Springer Series on Challenges in Machine Learning, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01906197

G. Hulten, L. Spencer, and P. Domingos, Mining time-changing data streams, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp.97-106, 2001.
DOI : 10.1145/502512.502529

F. Hutter, Automated configuration of algorithms for solving hard computational problems, 2009.

F. Hutter, H. Holger, K. Hoos, and . Leyton-brown, Sequential model-based optimization for general algorithm configuration, International Conference on Learning and Intelligent Optimization, pp.507-523, 2011.
DOI : 10.1007/978-3-642-25566-3_40

URL : http://www.cs.ubc.ca/spider/hutter/papers/10-TR-SMAC.pdf

L. Mario-a-muñoz, D. Villanova, K. Baatar, and . Smith-miles, Instance spaces for machine learning classification, Machine Learning, vol.107, pp.109-147, 2018.

. M-kehinde-olorunnimbe, L. Herna, E. Viktor, and . Paquet, Intelligent adaptive ensembles for data stream mining: a high return on investment approach, International Workshop on New Frontiers in Mining Complex Patterns, pp.61-75, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

A. Pesaranghader, L. Herna, and . Viktor, Fast hoeffding drift detection method for evolving data streams, Machine Learning and Knowledge Discovery in Databases, pp.96-111, 2016.
DOI : 10.1007/978-3-319-46227-1_7

A. Pesaranghader, H. Viktor, and E. Paquet, Reservoir of diverse adaptive learners and stacking fast hoeffding drift detection methods for evolving data streams, 2017.

E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu et al., Large-scale evolution of image classifiers, 2017.

A. Luis-debiaso-rossi, A. Carlos-ponce-de, L. Ferreira, C. Soares, and B. Souza, Metastream: A meta-learning based method for periodic algorithm selection in time-changing data, Neurocomputing, vol.127, pp.52-64, 2014.

C. Jeffrey, R. Schlimmer, and . Granger, Beyond incremental processing: Tracking concept drift, AAAI, pp.502-507, 1986.

D. Silver and R. Mercer, Selective functional transfer: Inductive bias from related tasks, IASTED International Conference on Artificial Intelligence and Soft Computing (ASC2001), pp.182-189, 2001.

L. Daniel, Q. Silver, and . Li, Lifelong machine learning systems: Beyond learning algorithms, Lifelong Machine Learning: Papers from the 2013 AAAI Spring Symposium, pp.49-55, 2013.

L. Daniel, R. E. Silver, and . Mercer, The parallel transfer of task knowledge using dynamic learning rates based on a measure of relatedness, Learning to learn, pp.213-233, 1996.

L. Daniel, R. E. Silver, and . Mercer, The task rehearsal method of life-long learning: Overcoming impoverished data, Conference of the Canadian Society for Computational Studies of Intelligence, pp.90-101, 2002.

W. , N. Street, and Y. Kim, A streaming ensemble algorithm (sea) for large-scale classification, Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '01, pp.377-382, 2001.
DOI : 10.1145/502512.502568

K. Swersky, J. Snoek, and R. Adams, Freeze-thaw bayesian optimization, 2014.

C. Thornton, F. Hutter, H. Holger, K. Hoos, and . Leyton-brown, Auto-weka: Combined selection and hyperparameter optimization of classification algorithms, Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '13, pp.847-855, 2013.

S. Thrun, . Tom, and . Mitchell, Lifelong robot learning. Robotics and autonomous systems, vol.15, pp.25-46, 1995.

G. Jan-n-van-rijn, B. Holmes, J. Pfahringer, and . Vanschoren, Algorithm selection on data streams, International Conference on Discovery Science, pp.325-336, 2014.

G. Jan-n-van-rijn, B. Holmes, J. Pfahringer, and . Vanschoren, Having a blast: Meta-learning and heterogeneous ensembles for data streams, Data Mining (ICDM), 2015 IEEE International Conference on, pp.1003-1008, 2015.

J. Vanschoren, J. N. Van-rijn, B. Bischl, and L. Torgo, Openml: Networked science in machine learning, SIGKDD Explor. Newsl, vol.15, issue.2, pp.49-60, 2014.

H. Wang, W. Fan, P. S. Yu, and J. Han, Mining concept-drifting data streams using ensemble classifiers, Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '03, pp.226-235, 2003.
DOI : 10.1145/956755.956778

H. Wang, W. Fan, S. Philip, J. Yu, and . Han, Mining concept-drifting data streams using ensemble classifiers, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp.226-235, 2003.

G. Widmer and M. Kubat, Indr? Zliobaite. Change with delayed labeling: When is it detectable?, Data Mining Workshops (ICDMW), 2010 IEEE International Conference on, vol.23, pp.843-850, 1996.

B. Zoph, . Quoc, and . Le, Neural architecture search with reinforcement learning, 2016.