D. M. Ando, C. Mclean, and M. Berndl, Improving phenotypic measurements in high-content imaging screens, p.2017

A. Anoosheh, E. Agustsson, R. Timofte, and L. Van-gool, Combogan: Unrestrained scalability for image domain translation, 2017.

T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White, Testing that distributions are close, 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, pp.259-269, 2000.

C. Becker, C. M. Christoudias, and P. Fua, Domain adaptation for microscopy imaging, IEEE Trans Med Imaging, vol.34, issue.5, pp.1125-1139, 2015.

S. Ben-david, J. Blitzer, K. Crammer, and F. Pereira, Analysis of representations for domain adaptation, Proceedings of the 19th International Conference on Neural Information Processing Systems, NIPS'06, pp.137-144, 2006.

S. Ben-david, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira et al., A theory of learning from different domains, Machine Learning, vol.79, pp.151-175, 2010.

R. Bermúdez-chacón, C. Becker, M. Salzmann, and P. Fua, Scalable unsupervised domain adaptation for electron microscopy, Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016, pp.326-334, 2016.

S. Bickel, M. Brückner, and T. Scheffer, Discriminative learning for differing training and test distributions, Proceedings of the 24th International Conference on Machine Learning, ICML '07, pp.81-88, 2007.

A. Birmingham, L. M. Selfors, T. Forster, D. Wrobel, C. J. Kennedy et al., Statistical methods for analysis of high-throughput RNA interference screens, Nat. Methods, vol.6, issue.8, pp.569-575, 2009.

K. M. Borgwardt, A. Gretton, M. J. Rasch, H. P. Kriegel, B. Scholkopf et al., Integrating structured biological data by Kernel Maximum Mean Discrepancy, Bioinformatics, vol.22, issue.14, pp.49-57, 2006.

K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan, Domain separation networks. CoRR, 2016.

O. Bousquet and A. Elisseeff, Stability and generalization, Journal of Machine Learning Research, vol.2, pp.499-526, 2002.

P. D. Caie, R. E. Walls, A. Ingleston-orme, S. Daya, T. Houslay et al., High-content phenotypic profiling of drug response signatures across distinct cancer cells, Mol. Cancer Ther, vol.9, issue.6, pp.1913-1926, 2010.

Z. Cao, M. Long, J. Wang, and M. I. Jordan, Partial transfer learning with selective adversarial networks, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

A. Chigorin, G. Krivovyaz, A. Velizhev, and A. Konushin, A method for traffic sign detection in an image with learning from synthetic data, 14th International Conference Digital Signal Processing and its Applications, vol.2, pp.316-319, 2012.

Y. Choi, M. Choi, M. Kim, J. Ha, S. Kim et al., Stargan: Unified generative adversarial networks for multi-domain image-to-image translation, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

R. Collobert, K. Kavukcuoglu, and C. Farabet, Torch7: A matlab-like environment for machine learning, BigLearn, NIPS Workshop, 2011.

N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy, Optimal transport for domain adaptation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.39, issue.9, pp.1853-1865, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01170705

B. Bharath-bhushan-damodaran, R. Kellenberger, and . Flamary, Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation, Devis Tuia, and Nicolas Courty, 2018.

H. Daumé, I. , and D. Marcu, Domain adaptation for statistical classifiers, J. Artif. Intell. Res, vol.26, pp.101-126, 2006.

M. Dredze, A. Kulesza, and K. Crammer, Multi-domain learning by confidence-weighted parameter combination, Machine Learning, vol.79, pp.123-149, 2010.

B. Fernando, T. Tommasi, and T. Tuytelaars, Joint cross-domain classification and subspace learning for unsupervised adaptation, Pattern Recognition Letters, vol.65, pp.60-66, 2015.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle et al., Domain-adversarial training of neural networks, Journal of Machine Learning Research, vol.17, issue.59, pp.1-35, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01624607

M. Ghifary, W. Bastiaan-kleijn, M. Zhang, D. Balduzzi, and W. Li, Deep reconstructionclassification networks for unsupervised domain adaptation, Computer Vision-ECCV, pp.597-613, 2016.

B. Gong, K. Grauman, and F. Sha, Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation, Proceedings of the 30th International Conference on International Conference on Machine Learning, vol.28, 2013.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. J. Smola, A kernel method for the two-sample-problem, NIPS, pp.513-520, 2007.

J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and B. Scholkopf, Correcting sample selection bias by unlabeled data, Proceedings of the 19th International Conference on Neural Information Processing Systems, NIPS'06, pp.601-608, 2006.

P. Isola, J. Zhu, T. Zhou, and A. A. Efros, Image-to-image translation with conditional adversarial networks, CVPR, pp.5967-5976, 2017.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long et al., Convolutional architecture for fast feature embedding, 2014.

E. Jones, T. Oliphant, and P. Peterson, SciPy: Open source scientific tools for Python, 2001.

K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson et al., Unsupervised domain adaptation in brain lesion segmentation with adversarial networks, Information Processing in Medical Imaging, pp.597-609, 2017.

J. Kang, C. H. Hsu, Q. Wu, S. Liu, A. D. Coster et al., Improving drug discovery with high-content phenotypic screens by systematic selection of reporter cell lines, Nat. Biotechnol, vol.34, issue.1, pp.70-77, 2016.

D. Kifer, S. Ben-david, and J. Gehrke, Detecting change in data streams, Proceedings of the Thirtieth International Conference on Very Large Data Bases, vol.30, pp.180-191, 2004.

P. Koniusz, Y. Tas, and F. Porikli, Domain adaptation by mixture of alignments of second-or higherorder scatter tensors, 2016.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems, vol.25, pp.1097-1105, 2012.

Y. Le-cun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, pp.2278-2324, 1998.

M. Liu, T. Breuel, and J. Kautz, Unsupervised image-to-image translation networks, Advances in Neural Information Processing Systems, vol.30, pp.700-708, 2017.

V. Ljosa, K. L. Sokolnicki, and A. E. Carpenter, Annotated high-throughput microscopy image sets for validation, Nat. Methods, vol.9, issue.7, p.637, 2012.

M. Long, Y. Cao, J. Wang, and M. I. Jordan, Learning transferable features with deep adaptation networks, Proceedings of the 32Nd International Conference on International Conference on Machine Learning, vol.37, pp.97-105, 2015.

M. Long, J. Wang, and M. I. Jordan, Deep transfer learning with joint adaptation networks. CoRR, abs/1605.06636, 2016.

M. Long, Z. Cao, J. Wang, and M. I. Jordan, Domain adaptation with randomized multilinear adversarial networks. CoRR, abs/1705.10667, 2017.

Y. Mansour, Learning and domain adaptation, Algorithmic Learning Theory, 20th International Conference, ALT, pp.4-6, 2009.

Y. Mansour, M. Mohri, and A. Rostamizadeh, Domain adaptation with multiple sources, Proceedings of the 21st International Conference on Neural Information Processing Systems, NIPS'08, pp.1041-1048, 2008.

S. Motiian, M. Piccirilli, D. A. Adjeroh, and G. Doretto, Unified deep supervised domain adaptation and generalization, The IEEE International Conference on Computer Vision (ICCV), 2017.

K. Muandet, D. Balduzzi, and B. Schölkopf, Domain generalization via invariant feature representation, Proceedings of the 30th International Conference on International Conference on Machine Learning, vol.28, 2013.

N. Otsu, A Threshold Selection Method from Gray-level Histograms, IEEE Transactions on Systems, Man and Cybernetics, vol.9, issue.1, pp.62-66, 1979.

S. J. Pan and Q. Yang, A survey on transfer learning, IEEE Transactions on Knowledge and Data Engineering, vol.22, issue.10, pp.1345-1359, 2010.

Z. Pei, Z. Cao, M. Long, and J. Wang, Multi-adversarial domain adaptation, Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018.

L. Y. Pratt, J. Mostow, and C. A. Kamm, Direct transfer of learned information among neural networks, Proceedings of the Ninth National Conference on Artificial Intelligence (AAAI-91), AAAI'91, pp.584-589, 1991.

S. Preibisch, S. Saalfeld, and P. Tomancak, Globally optimal stitching of tiled 3D microscopic image acquisitions, Bioinformatics, vol.25, issue.11, pp.1463-1465, 2009.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh et al., ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision (IJCV), vol.115, issue.3, pp.211-252, 2015.

K. Saenko, B. Kulis, M. Fritz, and T. Darrell, Adapting visual category models to new domains, Computer Vision-ECCV 2010, pp.213-226, 2010.

S. Sankaranarayanan, Y. Balaji, C. D. Castillo, and R. Chellappa, Generate to adapt: Aligning domains using generative adversarial networks, 2017.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, vol.9, issue.7, pp.671-675, 2012.

G. Schweikert, C. Widmer, B. Schölkopf, and G. Rätsch, An empirical analysis of domain adaptation algorithms for genomic sequence analysis, Proceedings of the 21st International Conference on Neural Information Processing Systems, NIPS'08, pp.1433-1440, 2008.

H. Shimodaira, Improving predictive inference under covariate shift by weighting the log-likelihood function, Journal of Statistical Planning and Inference, vol.90, issue.2, pp.227-244, 2000.

R. Shu, H. H. Bui, H. Narui, and S. Ermon, A DIRT-T approach to unsupervised domain adaptation, Proceedings of the 6th International Conference on Learning Representations (ICLR), 2018.

A. Sigal, R. Milo, A. Cohen, N. Geva-zatorsky, Y. Klein et al., Dynamic proteomics in individual human cells uncovers widespread cell-cycle dependence of nuclear proteins, Nat. Methods, vol.3, issue.7, pp.525-531, 2006.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.

J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition, Neural Networks, 2012.

T. Stoeger, N. Battich, M. D. Herrmann, Y. Yakimovich, and L. Pelkmans, Computer vision for image-based transcriptomics, Methods, vol.85, pp.44-53, 2015.

B. Sun and K. Saenko, Deep coral: Correlation alignment for deep domain adaptation, Computer Vision-ECCV 2016 Workshops, pp.443-450, 2016.

B. Sun, J. Feng, and K. Saenko, Return of frustratingly easy domain adaptation, Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI, 2016.

Y. Taigman, A. Polyak, and L. Wolf, Unsupervised cross-domain image generation, 2016.

E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, Simultaneous deep transfer across domains and tasks, 2015 IEEE International Conference on Computer Vision (ICCV), pp.4068-4076, 2015.

E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, Deep domain confusion: Maximizing for domain invariance. CoRR, abs/1412, vol.3474, 2014.

E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, Adversarial discriminative domain adaptation. CoRR, abs/1702.05464, 2017.

F. Vallania, A. Tam, S. Lofgren, S. Schaffert, T. D. Azad et al., Leveraging heterogeneity across multiple data sets increases accuracy of cell-mixture deconvolution and reduces biological and technical biases. bioRxiv, 2017.

L. Van-der-maaten and G. Hinton, Visualizing data using t-SNE, Journal of Machine Learning Research, vol.9, pp.2579-2605, 2008.

M. A. Annegreet-van-opbroek, M. W. Ikram, M. Vernooij, and . De-bruijne, Transfer learning improves supervised image segmentation across imaging protocols, I E E E Transactions on Medical Imaging, vol.34, issue.5, pp.1018-1030, 2015.

V. N. Vapnik, Statistical Learning Theory, 1998.

T. Xiao, H. Li, W. Ouyang, and X. Wang, Learning deep feature representations with domain guided dropout for person re-identification, Proceedings of the **th Conference on Computer Vision and Pattern Recognition, CVPR'16, 2016.

Q. Xu and Q. Yang, A Survey of Transfer and Multitask Learning in Bioinformatics, Journal of Computing Science and Engineering, 2011.

Y. Yang and T. M. Hospedales, A unified perspective on multi-domain and multi-task learning, Proceedings of the 3d International Conference on Representation Learning, ICLR'15, 2015.

Z. Yi, P. Hao-(richard)-zhang, M. Tan, and . Gong, Dualgan: Unsupervised dual learning for image-toimage translation, ICCV, pp.2868-2876, 2017.

C. Zhang, L. Zhang, and J. Ye, Generalization bounds for domain adaptation, Advances in Neural Information Processing Systems, vol.25, pp.3320-3328, 2012.

J. Zhang, Z. Ding, W. Li, and P. Ogunbona, Importance weighted adversarial nets for partial domain adaptation, 2018.

J. Zhu, T. Park, P. Isola, and A. A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, ICCV, pp.2242-2251, 2017.