
HAL Id: hal-01968419
https://inria.hal.science/hal-01968419v2

Submitted on 28 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reservation Strategies for Stochastic Jobs
Guillaume Aupy, Ana Gainaru, Valentin Honoré, Padma Raghavan, Yves

Robert, Hongyang Sun

To cite this version:
Guillaume Aupy, Ana Gainaru, Valentin Honoré, Padma Raghavan, Yves Robert, et al.. Reserva-
tion Strategies for Stochastic Jobs. IPDPS 2019 - 33rd IEEE International Parallel and Distributed
Processing Symposium, May 2019, Rio de Janeiro, Brazil. pp.166-175, �10.1109/IPDPS.2019.00027�.
�hal-01968419v2�

https://inria.hal.science/hal-01968419v2
https://hal.archives-ouvertes.fr






of the same job will have the same duration; and (ii) randomly

and uniformly sampled from a given probability distribution

law D, whose PDF is f and cumulative distribution function

(CDF) is F . The probability distribution is assumed to be

nonnegative, since we model execution times, and is defined

either on a finite support [a, b], where 0 ≤ a < b, or on an

infinite support [a,∞) where 0 ≤ a. Hence, the execution time

of a job is a random variable X , and P(X ≤ T ) = F (T ) =
∫ T

a
f(t)dt. For notational convenience, we sometimes extend

the domain of f outside the support of D by letting f(t) = 0
for t ∈ [0, a].

B. Cost model

To execute a job, the user makes a series of reservations,

until the job successfully executes within the length of the last

reservation. For a reservation of length t1, and for an actual

duration t of the job, the cost is αt1 + βmin(t1, t) + γ, as

stated in Equation (1), where α > 0, β ≥ 0 and γ ≥ 0. If

t > t1, another reservation should be paid for. Hence, the user

needs to make a (possibly infinite) sequence of reservations

S = (t1, t2, . . . , ti, ti+1, . . . ), where:

1) ti < ti+1 for all i ≥ 1. Indeed, because jobs are

deterministic, it is redundant to have a duration in the

sequence that is not strictly larger than the previous one,

hence that duration can be removed from the sequence;

2) all possible execution times of the job are indeed smaller

than or equal to some ti in the sequence. This simply

means that the sequence must tend to infinity if job

execution times are not upper-bounded.

Throughout the paper, we assume that both properties hold

when speaking of a reservation sequence. For notational con-

venience, we define t0 = 0, in order to simplify summations.

Now, for a sequence S = (t1, t2, . . . , ti, ti+1, . . . ), and for

a job execution time t, the cost is

C(k, t) =
k−1
∑

i=1

(αti + βti + γ) + αtk + βt+ γ (2)

where k is the smallest index in the sequence such that t ≤ tk
(or equivalently, tk−1 < t ≤ tk; recall that t0 = 0).

C. Objective

The goal is to find a scheduling strategy, i.e., a sequence

of increasing reservation durations, that minimizes the cost in

expectation. Formally, the expected cost for a sequence S =
(t1, t2, . . . , ti, ti+1, . . . ) can be written as:

E(S) =

∞
∑

k=1

∫ tk

tk−1

C(k, t)f(t)dt (3)

Indeed, when tk−1 < t ≤ tk, the cost is C(k, t), weighted

with the corresponding probability. Here are two examples:

• UNIFORM(a, b): for a uniform distribution over the interval

[a, b] where 0 < a < b, we have f(t) = 1
b−a

if a ≤ t ≤ b, and

f(t) = 0 otherwise. Given a finite sequence S = (a+b
2 , b), the

expected cost is

E(S) =
∫ a+b

2
a

(αa+b
2

+ βt+ γ) 1
b−a

dt

+
∫ b

a+b
2

(

(α a+b
2

+ β a+b
2

+ γ) + (αb+ βt+ γ)
)

1
b−a

dt

The first term is for values of t that are in [a, a+b
2 ] and the

second term is for larger values of t in [a+b
2 , b]. For the latter

term, we pay a constant cost αa+b
2 + β a+b

2 + γ for the first

unsuccessful reservation, and then a cost that depends upon

the value of t for the second reservation if β 6= 0.

• EXP(λ): for an exponential distribution with rate λ and sup-

port in [0,∞), we have f(t) = λe−λt for all t ≥ 0. Given an

infinite and unbounded sequence S = ( 1
λ
, 2
λ
, . . . , i

λ
, i+1

λ
, . . . ),

the expected cost is

E(S)=
∞
∑

k=1

∫
k
λ
k−1
λ

( k−1
∑

i=1

(α i
λ
+β i

λ
+γ)+α k

λ
+βt+γ

)

λe−λtdt

Again, when t ∈ [k−1
λ

, k
λ
], we pay a fixed cost for the k −

1 first reservations, and a possibly variable cost for the k-

th reservation. Looking at the expression of E(S) above, we

easily see that the given sequence S has a finite expected cost

E(S). In fact, there are many sequences with finite expected

cost, such as those defined by ti = ui+ v for i ≥ 1, where u
and v are positive constants.

We are now ready to state the optimization problem:

Definition 1 (STOCHASTIC). Given a probability distribution

(with CDF F ) for the execution times of stochastic jobs, and

given a cost function given by Equation (1) (with parameters

α, β and γ), find a reservation sequence S with minimal

expected cost E(S) as given in Equation (3).

We further define RESERVATIONONLY to be the instance

of STOCHASTIC where the cost is a linear function of the

reservation length only, i.e., when β = γ = 0. For RESER-

VATIONONLY, we can further consider α = 1 without loss of

generality. For instance, such costs are incurred when making

reservations of resources to schedule jobs on some cloud

platforms, with hourly or daily rates. Throughout the paper, we

focus on the usual probability distributions, hence we assume

that the density function f and the CDF F of D are smooth

(infinitely differentiable), and that D has finite expectation.

III. CHARACTERIZING THE OPTIMAL SOLUTION

In this section, we establish key properties of an optimal

solution in the general setting.

A. Cost function

We start by establishing a simpler expression for the cost

function of STOCHASTIC.

Theorem 1. Given a sequence S = (t1, t2, . . . , ti, ti+1, . . . ),
the cost function given by Equation (3) (with parameters α, β
and γ) can be rewritten as (with t0 = 0):

E(S) = β · E[X]+

∞
∑

i=0

(αti+1+βti+γ)P(X ≥ ti) (4)



Proof. We first expand Equation (3) as follows:

E(S)=

∞
∑

k=1

(

∫ tk

tk−1

(

k
∑

i=1

(αti+γ)+

k−1
∑

i=1

βti+βt
)

f(t)dt

)

(5)

We compute the three terms on the right-hand side separately.

By defining t0 = 0, the first term can be expressed as:

∑∞
k=1

(

∫ tk
tk−1

(

∑k

i=1 (αti + γ)
)

f(t)dt
)

=
∑∞

k=1

∑k

i=1 (αti + γ)
∫ tk
tk−1

f(t)dt

=
∑∞

k=1

∑k

i=1 (αti + γ)P(X ∈ [tk−1, tk])
=

∑∞
i=1

∑∞
k=i

(αti + γ)P(X ∈ [tk−1, tk])
=

∑∞
i=1 (αti + γ)P(X ≥ ti−1)

Similarly, we obtain the second term:

∑∞
k=1

(

∫ tk
tk−1

(

∑k−1
i=1 βti

)

f(t)dt
)

=
∑∞

i=1 βtiP(X ≥ ti)

and the third term:
∑∞

k=1

(

∫ tk
tk−1

βtf(t)dt
)

= β · E[X]

Plugging these three terms back into Equation (5), we get

the desired expression for the cost function as given by

Equation (4).

B. Upper bound on to1 and finite expected cost

In this section, we extract an upper bound for the first

request to1 of an optimal sequence So to STOCHASTIC, which

allows us to show that the expected cost E(So) is upper

bounded too, and hence finite. This result holds in a general

setting, namely, for any distribution D such that E(X2) < ∞.

Obviously, if the distribution’s support is upper bounded,

such as for UNIFORM(a, b), a solution is to choose that upper

bound for to1 (e.g., to1 ≤ b for UNIFORM(a, b)). Hence, we

focus on distributions with infinite support [a,∞) and aim at

restricting the search for an optimal to1 to a bounded interval

[a,A1] for some A1. We derive the following result.

Theorem 2. For any distribution D with infinite support

[a,∞) such that E[X2] < ∞, the value to1 of an optimal

sequence So = (to1, t
o
2, . . . , t

o
i , t

o
i+1, . . . ) satisfies to1 ≤ A1,

and E(So) ≤ A2, where

A1 = E[X]+1+
α+β

2α
(E[X2]−a2)+

α+β+γ

α
(E[X]−a) (6)

A2 = β · E(X) + αA1 + γ (7)

Proof. We consider the sequence S = (t1, t2, . . . , ti, ti+1, . . . )
with ti = a+ i for i ≥ 1 (and t0 = 0), and compute

E(S)− β · E[X] =
∑∞

i=0(αti+1 + βti + γ)P(X ≥ ti)
=

∑∞
i=0(α(a+ i+ 1) + β(a+ i) + γ)P(X ≥ a+ i)

= α(a+ 1) + γ +
∑∞

i=1(α+ β)(a+ i)P(X ≥ a+ i)
+ (α+ γ)

∑∞
i=1 P(X ≥ a+ i)

= α(a+ 1) + γ + (α+ β)
∑∞

i=1

∫ a+i

a+i−1
(a+ i)P(X ≥ a+ i)dt

+ (α+ γ)
∑∞

i=1

∫ a+i

a+i−1
P(X ≥ a+ i)dt

Note that for all t ∈ [a+i−1, a+i], we have both a+i ≤ t+1
and P(X ≥ a+ i) ≤ P(X ≥ t), thus

(a+ i)P(X ≥ a+ i) ≤ (t+ 1)P(X ≥ t)

Hence, we can write:

E(S)− β · E[X]

≤ α(a+ 1) + γ + (α+ β)
∑∞

i=1

∫ a+i

a+i−1
(t+ 1)P(X ≥ t)dt

+ (α+ γ)
∑∞

i=1

∫ a+i

a+i−1
P(X ≥ t)dt

= α(a+ 1) + γ + (α+ β)
∫∞
a

(t+ 1)P(X ≥ t)dt
+ (α+ γ)

∫∞
a

P(X ≥ t)dt
≤ α(a+ 1) + γ + (α+ β)

∫∞
a

t · P(X ≥ t)dt
+ (2α+ β + γ)

∫∞
a

P(X ≥ t)dt

For the last inequality, we have split
∫∞

a
(t + 1)P(X ≥ t)dt

into
∫∞

a
tP(X ≥ t)dt and

∫∞

a
P(X ≥ t)dt.

Extending the support of D to [0,∞) by letting f(t) = 0
for 0 ≤ t ≤ a, and hence P(X ≥ t) = 1 for 0 ≤ t ≤ a, we

have the following property for any integer p ≥ 1:
∫∞
0

tp−1
· P(X ≥ t)dt =

∫∞
t=0

tp−1
∫∞
x=t

f(x)dxdt

=
∫∞
x=0

f(x)
∫ x

t=0
tp−1dtdx =

∫∞
0

xp

p
f(x)dx = E[Xp]

p

Hence, using p = 1, we have:
∫∞
a

P(X≥ t)dt=
∫∞
0

P(X≥ t)dt−
∫ a

0
P(X≥ t)dt = E[X]−a

and using p = 2, we get
∫∞
a

t · P(X ≥ t)dt =
∫∞
0

t · P(X ≥ t)dt−
∫ a

0
t · P(X ≥ t)dt

= E[X2]−a2

2

Altogether, we derive that

E(S) ≤ β · E[X] + αA1 + γ (8)

where A1 is given by Equation (6). From Equation (4), the

expected cost of any sequence S satisfies E(S) ≥ β · E[X] +
αt1 + γ (cost of expected execution time and cost of first

request). Hence, necessarily in an optimal sequence, the first

reservation to1 satisfies to to1 ≤ A1. Thus, Equation (6) gives

the desired bound on to1.

C. Properties of optimal sequences

We now derive a recurrence relation between the successive

requests in the optimal sequence for STOCHASTIC.

Theorem 3. Let So = (toi )i≥1 denote an optimal sequence

for STOCHASTIC. For all i ≥ 1, if F (toi ) 6= 1, we have the

following property:

αtoi+1 + βtoi + γ = α
1− F (toi−1)

f(toi )
+ β

1− F (toi )

f(toi )
(9)

Proof. We fix an index j ≥ 1 such that F (toj) 6= 1 and
consider the expected cost when we replace toj by an arbitrary

value t ∈ [toj−1, t
o
j+1]. This amounts to using the sequence

So
j (t) = (to1, t

o
2, · · · , t

o
j−1, t, t

o
j+1, · · · ) whose expected cost,

according to Equation (4), is the following:

E(So
j (t)) = β · E[X] +

∑

i 6=j−1,j

(αtoi+1 + βt
o
i + γ)P(X ≥ t

o
i )

+ (αt+ βt
o
j−1 + γ)P(X ≥ t

o
j−1)

+ (αtoj+1 + βt+ γ)P(X ≥ t)

which we can rewrite as:

E(So
j (t)) = Cj+αt(1−F (toj−1))+(αtoj+1+βt+γ)(1−F (t))



where Cj is some constant independent of t. By definition,

the minimum of E(So
j (t)) on [toj−1, t

o
j+1] is achieved at t = toj

(and potentially at other values). Because E(So
j (t)) is smooth,

we have that its derivative at toj , which is not an extremity of

the interval [toj−1, t
o
i+1], must be equal to zero, i.e.,

∂E(So
j (t))

∂t
=

0. This gives:

α(1−F (toj−1))+β(1−F (toj ))− (αtoj+1+βt
o
j+γ)f(toj ) = 0 (10)

To get the final result, it remains to show that f(toj) 6= 0.

Otherwise, we would get from Equation (10) that α(1 −
F (toj−1))+β(1−F (toj)) = 0, which implies that F (toj−1) = 1
because α > 0 (and β(1 − F (toj)) ≥ 0). But then, F (toj) ≥
F (toj−1) = 1, which contradicts the initial assumption. Hence,

f(toj) 6= 0, and rewriting Equation (10) directly leads to

Equation (9).

Note that the condition F (toi ) 6= 1 in Theorem 3 applies

to distributions with finite support, such as UNIFORM(a, b),
where F (b) = 1. For the usual distributions with infinite sup-

port, such as EXP(λ), we have F (t) < 1 for all t ∈ [0,∞) and

an optimal sequence must be infinite. In essence, Theorem 3

suggests that an optimal sequence is characterized solely by

its first value to1:

Proposition 1. For a smooth distribution with infinite support,

solving STOCHASTIC reduces to finding to1 that minimizes

∞
∑

i=0

(αti+1+βti+γ)P(X ≥ ti)

where to0 = 0, and for all i ≥ 2,

t
o
i =

1− F (toi−2)

f(toi−1)
+

β

α

(

1− F (toi−1)

f(toi−1)
− t

o
i−1

)

−
γ

α
(11)

For a smooth distribution with finite support, the recurrence

in Equation (11) still holds but the optimal sequence stops as

soon as it reaches toi with F (toi ) = 1.

Proposition 1 provides an optimal algorithm for general

smooth distributions, up to the determination of to1. How-

ever, computing the optimal to1, remains a difficult problem,

except for simple distributions such as UNIFORM(a, b) (see

Section III-D).

D. Uniform distributions

In this section, we discuss the optimal strategy for a uniform

distribution UNIFORM(a, b), where 0 < a < b. Intuitively,

one could try and make a first reservation of duration, say,

t1 = a+b
2 , and then a second reservation of duration t2 = b.

However, we show that the best approach is to make a single

reservation of duration t1 = b, for any value of the parameters

α, β and γ:

Theorem 4. For a uniform distribution UNIFORM(a, b), the

optimal sequence for STOCHASTIC is So = (b).

Proof. We study here only the sequences of length smaller

than or equal to 2, i.e., S = (t1, b), where t1 ≤ b. The full

proof is available in the companion report [4].

Note that necessarily, in a sequence of length 2, t2 = b
otherwise t2 < b and E((t1, t2)) = ∞ because the interval

[t2, b] has non-zero measure.

Using Equation (4) we obtain:

E((t1, b)) = βE(X) + (αt1 + γ)P(X ≥ 0)
+ (αb+ βt1 + γ)P(X ≥ t1)

= βE(X) + (αt1 + γ) + b−t1
b−a

(αb+ βt1 + γ)

= βE(X) + α b2−t1a
b−a

+ b−t1
b−a

(βt1 + γ) + γ

We can verify easily that this is minimized when t1 = b (and

that E((t1, b)) = E((t1)). Hence So = (b) is optimal amongst

the sequences of length smaller than or equal to 2.

E. Exponential distributions

In this section, we provide partial results for the RESER-

VATIONONLY problem (β = γ = 0 and α = 1) with an

exponential distribution EXP(λ). From Theorem 2 (and the

example in Section II-C), we know that there exist sequences

of finite expected cost. We further characterize the optimal

solution as follows:

Proposition 2. Let S1 = (s1, s2, . . . , si, si+1, . . . ) denote the

optimal sequence for RESERVATIONONLY with an EXP(1)
distribution. Then, s2 = es1 , and for i ≥ 3,

si = esi−1−si−2 =
esi−1

Πi−1
j=2sj

(12)

The expected cost of S1 is E(S1) = s1 + 1 +
∑∞

i=1 e
−si .

Furthermore, the optimal sequence for RESERVATIONONLY

with EXP(λ) distribution is the infinite sequence Sλ =
(t1, t2, . . . , ti, ti+1, . . . ) such that ti = si

λ
for i ≥ 1. Its

expected cost is E(Sλ) =
1
λ
E(S1).

Proof. Consider an EXP(λ) distribution. From Equation (4),

the expected cost of the optimal sequence Sλ is E(S) =
∑∞

i=0 ti+1e
−λti where t0 = 0, t1 is unknown, and the value

of ti for i ≥ 2 is given by Equation (11) as ti =
eλ(ti−1−ti−2)

λ

for i ≥ 2. Introducing si = λti for all i ≥ 0, we derive that

E(Sλ) =
1

λ

∞
∑

i=0

si+1e
−si

with si = esi−1−si−2 for all i ≥ 2. We have si+1e
−si =

e−si−1 for i ≥ 1, which gives the desired value for E(Sλ).
Now, we prove Equation (12) by induction. It holds for

i = 3, because s3 = es2−s1 = es2

es1
= es2

s2
. Assume that it

holds for any j ≤ i. Then si+1 = esi−si−1 = esi

esi−1 , and by

induction esi−1 = sis2 . . . si−1, hence the result.

Again, the optimal sequence is fully characterized by the

value of t1 or s1. Here, s1 is independent of λ. In other

words, the solution for EXP(1) is generic, and the solution

for EXP(λ) for an arbitrary λ can be directly derived from it.

Unfortunately, we do not know how to compute s1 analytically.

However, a brute-force search provides the value s1 ≈ 0.742,

which means that the first reservation for EXP(λ) should be

approximately three quarters of the mean value 1
λ

of the

distribution, for any λ > 0.



IV. HEURISTICS FOR ARBITRARY DISTRIBUTIONS

The results of the preceding section provide a strategy to

compute the optimal sequence up to the determination of to1,

since Theorem 3 and Proposition 1 allow us to compute the

subsequent toi ’s. However, while we have derived an upper

bound on to1, we do not know how to compute its exact value

for an arbitrary distribution. In this section, we introduce sev-

eral heuristics for the STOCHASTIC problem under arbitrary

probability distributions.

A. Brute-force procedure

We first present a procedure called BRUTE-FORCE that

simply tries different values for the first reservation length

t1 in a sequence S, and then computes the subsequent values

according to Equation (11). Specifically, we try M different

values of t1 on the interval [a, b], where a is the lower bound

of the distribution and b is the upper bound if the distribution

is finite. Otherwise, we set b = A1, which is an upper bound

on the optimal to1 as given in Equation (6). As an example,

when α = 1, β = γ = 0, we have A1 ≤ 1 + 2E(X) + E(X2)
2 .

For each m = 1, . . . ,M , we generate a sequence that starts

with t1 = a + m · b−a
M

. Given a sequence S, its expected

cost is evaluated via a Monte-Carlo process, as described in

Section V-A: we randomly draw N execution times from the

distribution, and compute the expected cost incurred by the

sequence over the N samples. We finally return the minimum

expected cost found over all the M values of t1. Note that

some values of t1 may not lead to any result, because the

sequence computed based on it and using Equation (11) may

not be strictly increasing. In this case, we simply ignore the

sequence. The complexity of this heuristic is O(MN).
We point out that the actual optimal value for the first

request to1 would possibly lie in between two successive values

of t1 that we try. However, because we deal with smooth

probability distributions, we expect to return a t1 and an

associated expected cost that are close to the optimal when

M and N are sufficiently large. In the performance evaluation,

we set M = 5000 and N = 1000.

B. Discretization-based dynamic programming

We now present a heuristic that approximates the optimal

solution for STOCHASTIC by first discretizing the continuous

distribution and then computing an optimal sequence for the

discrete problem via dynamic programming.

1) Truncating and discretizing continuous distributions:

If a continuous distribution has finite support [a, b], where

0 ≤ a < b, then we can directly discretize it. Otherwise,

for a distribution with infinite support [a,∞), where 0 ≤ a,

we need to first truncate it in order to operate on a bounded

interval. In the latter case, we define b = Q(1 − ǫ), where

Q(x) = inf{t|F (t) ≥ x} is the quantile function. That is, we

discard the final ǫ ∈ (0, 1) quantile of the distribution, which

for usual distributions ensures that b is finite. In either case, the

discretization will then be performed on the interval [a, b]. Let

n denote the number of discrete values we will sample from

the continuous distribution. The result will be a set of n pairs

(vi, fi)i=1...n, where the vi’s represent the possible execution

times of the jobs, and the fi’s represent the corresponding

probabilities. We envision two schemes for the discretization:

• EQUAL-PROBABILITY: This scheme ensures that all the

discrete execution times have the same probability. Thus,

for all i = 1, 2, . . . , n, we can compute vi = Q
(

i · F (b)
n

)

and fi =
F (b)
n

.

• EQUAL-TIME: This scheme makes the discrete execution

times equally spaced in the interval [a, b]. Thus, for all i =
1, 2, . . . , n, the execution times and their probabilities are

computed as vi = a+ i · b−a
n

and fi = F (vi)−F (vi−1).

Note that when the continuous distribution has infinite

support, the probabilities for the n discrete execution times

do not sum up to 1, i.e.,
∑n

i=1 fi = F (b) = 1− ǫ. A smaller

value of ǫ and a larger number n will provide a better sampling

of the continuous distribution in either discretization scheme.

In the performance evaluation, we set ǫ = 10−7 and n = 1000.

2) Dynamic programming for discrete distributions: We

now present a dynamic programming algorithm to compute

the optimal sequence for any discrete probability distribution.

It will be used with the discretization schemes to approximate

the optimal solution for an arbitrary continuous distribution.

Theorem 5 (Discrete distribution). If X ∼ (vi, fi)i=1...n, then

STOCHASTIC can be solved optimally in polynomial time.

Proof. Let E
∗
i denote the optimal expected cost given that

X ≥ vi. In this case, to compute the optimal expected cost, the

probability distribution of X needs to be first updated as f ′k =
fk

∑

n
j=i fj

, ∀k = i, . . . , n, which guarantees that
∑n

k=i f
′
k = 1.

We can then express E
∗
i based on the following dynamic

programming formulation:

E
∗
i = min

i≤j≤n

(

αvj+γ+

j
∑

k=i

f ′k · βvk +
(

n
∑

k=j+1

f ′k

)

(

βvj+E
∗
j+1

)

)

In particular, to compute E
∗
i , we make a first reservation

of all possible discrete values (vj)j=i...n and select the one

that incurs the minimum total expected cost. For each vj
considered, if the job’s actual execution time is greater than

vj (with probability
∑n

k=j+1 f
′
k), the total cost also includes

the optimal cost E∗j+1 for making subsequent reservations.

The dynamic program is initialized with E
∗
n = αvn +

βvn + γ, and the optimal total expected cost is given by

E
∗
1. The complexity is O(n2), since each E

∗
i depends on

n− i other expected costs, with associated probability updates

and summations that can be computed in O(n − i) time.

The optimal sequence of reservations can be obtained by

backtracking the decisions made at each step.

Note that the sequence obtained by dynamic programming

always ends with the largest value vn = b. When applying it

back to a continuous distribution with infinite support, more

values will be needed, because the sequence must tend to

infinity as explained in Section II-B. In this case, additional

values can be appended to the sequence by using other

heuristics, such as the ones presented next in Section IV-C.



C. Other heuristics

We finally present some simple heuristics that are inspired

by common resource allocation strategies in the literature.

These heuristics do not explore the structure of the optimal

solution nor the probability distribution, but rely on simple

incremental methods to generate reservation sequences.

In the following, we will use µ = E(X) to denote the

mean of a given distribution, σ2 = E(X2)− µ2 to denote its

variance, and m = Q( 12 ) to denote its median, where Q(x) =
inf{t|F (t) ≥ x} represents the quantile function. The different

heuristics are defined as follows:

• MEAN-BY-MEAN: start with the mean (i.e., t1 = µ) and

then make each subsequent reservation request by computing

the conditional expectation of the distribution in the remaining

interval, i.e., ti = E(X|X > ti−1) =

∫

∞

ti−1
tf(t)dt

1−F (ti−1)
for all i ≥ 2.

• MEAN-STDEV: start with the mean and then increment

the reservation length by one standard deviation (σ) for each

subsequent request, i.e., ti = µ+ (i− 1)σ for all i ≥ 2.

• MEAN-DOUBLING: start with the mean and then double

the reservation length for each subsequent request, i.e., ti =
2i−1µ for all i ≥ 2.

• MEDIAN-BY-MEDIAN: each request is the median of the

distribution in the remaining interval, i.e., ti = Q(1− 1
2i ) for

all i ≥ 2.

Note that deriving the sequence for MEAN-BY-MEAN is

straightforward for some distributions (e.g., exponential, uni-

form), but more involved for others. Recursive formulas are

provided in [4] to compute the sequence using this heuristic

for the considered distributions, along with key parameters

(e.g., mean, variance, quantile) to facilitate the sequence

computations for the other heuristics.

V. PERFORMANCE EVALUATION

In this section, we evaluate the different heuristics pre-

sented in Section IV, and compare their performance. The

code and setup of the experiments presented in this section

are publicly available on https://gitlab.inria.fr/vhonore/ipdps

2019 stochastic-scheduling.

A. Evaluation methodology

For each heuristic that generates a reservation sequence

S = (t1, t2, . . . , ti, ti+1, . . . ) under a particular probability

distribution D, we approximate its expected cost via a Monte-

Carlo process2: we randomly sample N possible execution

times from the distribution, and then average over the cost of

all the N samples, i.e.,

Ẽ(S) =
1

N

N
∑

i=1

C(k, t)|t←D (13)

where C(k, t) is the cost for a specific execution time t drawn

from the distribution, computed using Equation (2). For the

presented evaluation results, we set N = 1000.

2The possibly infinite sequence prevents us from analytically evaluating its
expected cost.

Table I. Probability distributions and parameter instantiations

Distribution PDF f(t) Instantiation Support

Distributions with infinite support

Exponential (λ) λe−λt λ = 1.0 t ∈ [0,∞)

Weibull(λ, κ) κ
λ

(

t
λ

)κ−1
e−( t

λ )
κ λ = 1.0

κ = 0.5
t ∈ [0,∞)

Gamma(α, β) βα

Γ(α)
tα−1e−βt α = 2.0

β = 2.0
t ∈ [0,∞)

LogNormal
(

ν, κ2
)

1
tκ

√
2π

e
− (ln t−ν)2

2κ2 ν = 3.0
κ = 0.5

t ∈ (0,∞)

TruncatedNormal(ν, κ2, a) 1
κ

√

2
π
·
e
− 1

2

(

t−ν
κ

)2

1−erf
(

a−ν

κ
√

2

)

ν = 8.0
κ2 = 2.0
a = 0.0

t ∈ [a,∞)

Pareto(ν, α) ανα

tα+1

ν = 1.5
α = 3.0

t ∈ [ν,∞)

Distributions with finite support

Uniform(a, b) 1
b−a

a = 10.0
b = 20.0

t ∈ [a, b]

Beta(α, β)
tα−1·(1−t)β−1

B(α,β)

α = 2.0
β = 2.0

t ∈ [0, 1]

BoundedPareto(L,H, α) αLαt−α−1

1−
(

L
H

)α

L = 1.0
H = 20.0
α = 2.1

t ∈ [L,H]

To get uniform results, we normalize the expected cost of

each heuristic by the expected cost of an omniscient scheduler,

which knows the job execution time t a priori, and thus would

make a single request of length t1 = t. Averaging over all

possible values of t from the distribution D, the omniscient

scheduler has an expected cost:

E
o =

∫ ∞

0

(αt+ βt+ γ)f(t)dt = (α+ β)E[X] + γ

Hence, the normalized ratio will always be greater than or

equal to 1, and a smaller ratio means a better result.

We perform the evaluation of the heuristics under two

different reservation-based scenarios.

• RESERVATIONONLY (Section V-B): This scenario is

based on the Reserved Instance pricing scheme avail-

able in AWS [3], where the user pays exactly what is

requested. Hence, we set α = 1, β = γ = 0. We consider

nine probability distributions in this case, six of which

have infinite support and the remaining three have finite

support. Table I lists these distributions with instantiations

of their parameters used in the evaluation.

• NEUROHPC (Section V-C): This scenario is based on

executing large jobs on HPC platforms, where the cost,

as represented by the total turnaround time of a job, is

the sum of its waiting time in the queue and its actual

execution time. We set β = 1 for the execution time

and instantiate the waiting time function (α, γ) by curve-

fitting the data from Fig. 2b. The probability distribution

is derived from the execution traces of the neuroscience

application shown in Fig. 1b.

B. Results for RESERVATIONONLY scenario

Table II presents, for each heuristic, the normalized expected

cost, i.e., Ẽ(S)/Eo, under different probability distributions.

The BRUTE-FORCE heuristic tries M = 5000 values of t1, and

both discretization heuristics set the truncation parameter to be

ǫ = 10−7 and use n = 1000 samples. First, the normalized

costs allow us to compare the performance of these heuristics

https://gitlab.inria.fr/vhonore/ipdps_2019_stochastic-scheduling
https://gitlab.inria.fr/vhonore/ipdps_2019_stochastic-scheduling




Table II. Normalized expected costs of different heuristics in the RESERVATIONONLY scenario under different distributions. The values in the brackets show
the expected costs normalized by those of the BRUTE-FORCE heuristic (best online heuristic).

Distribution BRUTE-FORCE MEAN-BY-MEAN MEAN-STDEV MEAN-DOUB. MED-BY-MED EQUAL-TIME EQUAL-PROB.

Exponential 2.15 2.36 (1.10) 2.39 (1.11) 2.42 (1.13) 2.83 (1.32) 2.31 (1.07) 2.36 (1.10)
Weibull 2.12 2.76 (1.30) 3.58 (1.69) 3.03 (1.43) 3.05 (1.44) 2.40 (1.13) 2.22 (1.05)
Gamma 2.02 2.26 (1.12) 2.18 (1.08) 2.24 (1.11) 2.51 (1.24) 2.20 (1.09) 2.13 (1.05)

Lognormal 1.85 2.19 (1.19) 2.09 (1.13) 1.95 (1.06) 2.30 (1.24) 1.87 (1.01) 1.93 (1.04)
TruncatedNormal 1.36 1.98 (1.46) 1.83 (1.35) 1.98 (1.46) 2.16 (1.60) 1.38 (1.02) 1.36 (1.00)

Pareto 1.62 1.82 (1.12) 2.18 (1.34) 1.75 (1.08) 2.26 (1.39) 1.71 (1.05) 1.66 (1.03)
Uniform 1.33 2.21 (1.66) 1.90 (1.43) 1.67 (1.26) 2.21 (1.66) 1.33 (1.00) 1.33 (1.00)

Beta 1.75 2.02 (1.15) 2.11 (1.20) 1.98 (1.13) 2.45 (1.40) 1.79 (1.02) 1.80 (1.02)
BoundedPareto 1.80 1.84 (1.02) 2.09 (1.16) 1.83 (1.01) 2.81 (1.56) 2.00 (1.11) 1.91 (1.06)

generally with long-running jobs that require a large amount

of resources having higher priorities. Jobs that are kept in the

waiting queue for a long period of time could also be upgraded

and moved up in the queue. Slurm schedules the jobs from the

top of the high-priority queue and moves down. Even though

larger jobs (in term of time and space) have higher priorities,

generally the lack of resource availability in the system leads

to longer wait times. On the other hand, smaller jobs, despite

having lower priorities, are usually scheduled quickly thanks

to the backfilling algorithms that place them in the unused

time slots between successive large jobs.

Some studies (e.g., [18], [21], [27]) have analyzed the

impact of scheduling strategies on the performance of appli-

cations in large HPC centers. Some of these studies show

that the penalty for jobs with longer requested walltimes

and/or larger numbers of nodes is higher than that for jobs

with shorter elapsed times and smaller numbers of nodes.

This is observed, for example, in [27] for the K computer

from Riken Advanced Institute for Computational Science.

The study shows that, for applications requesting similar

computing resources, the wait time generally increases with

larger requested processing times and can cause delays of

hours for large scientific applications, although it is also

dependent on other workloads submitted to the system. Some

HPC centers divide the resources into seasons for users to

utilize the reserved resources. Users tend to submit more

jobs toward the end of a season causing contention at the

scheduler level which results in even longer waiting times.

The study in [21] presents a trend of the evolution of the

workload of HPC systems and the corresponding scheduling

policies as we move from monolithic MPI applications to

high-throughput and data-intensive jobs. The paper shows that

the cost paid in terms of the wait time of applications in

the queue has generally increased over the years with less

uniform workloads. The study in [18] shows that systems that

give each job a partition of the resources for exclusive use

and allocate such partitions in the order of job arrivals could

suffer from severe fragmentation, leading to low utilization.

The authors propose an aggressive backfilling algorithm for

dealing with such fragmentation. However, users are still

expected to provide accurate runtime estimates. The study

shows that over-estimation may lead to a long wait time and

possibly excessive CPU quota loss, while under-estimations

can lead to job terminations before completion. Some recent

schedulers [19] consider the distribution of execution time of

the submitted jobs to take their scheduling decision in order

to increase their overall utility.

b) Stochastic job scheduling: Many works deal with

stochastic job scheduling (e.g., [6], [9], [23]–[25]). Various

models [5] have been proposed to model the performance

of executing stochastic jobs on computing platforms. For

instance, in [16], stochastic jobs are modeled as a DAG of

tasks whose execution times and communication times are

stochastically independent. In this paper, we model jobs by

an execution time following a probability distribution. The

authors in [23] propose a model based on resource load in

grid systems. Several refinements can be envisioned, such that

improving scheduler performances by including distribution

features in order to optimize final performance. Also, dealing

with heterogeneous nodes increases problem complexity [24].

We refer the reader to the book by Pinedo [20] which contains

a comprehensive survey of stochastic scheduling problems,

and to the book chapter [12] for a detailed comparison of

stochastic task-resource systems.

c) Pricing and reservation schemes for cloud computing:

Cloud computing platforms have emerged as another option

for executing HPC applications. Job scheduling in the cloud

has an even bigger challenge [14], since it needs to deal with

highly heterogeneous resources with a wide range of processor

configurations, interconnects, virtualization environments, etc.

Different pricing and reservation schemes are also available

for users who submit jobs to a cloud service. Several works

have been conducted to study these schemes in the cloud, and

from a computer science perspective, many of these studies

focus on the pricing strategies and service management of

platform providers [2], [7], [8], [26]. Some works consider

modeling the delays for users [2] and how providers manage

the idle resources [8]. The work in [26] studies the pricing

practices of Amazon AWS [3] when the price is dynamically

adapted to real-time demand and idle resources. In [7], authors

provide an analytical model of pricing for reservation-based

scheme (used by Amazon AWS) and utilization-based scheme

(used by Google GCP [13]). They show that the effective price

mainly depends on the variation of platform usage and the

competition for customers. Some tools are also provided for

users to perform cost evaluation in order to select which type

of platform to use. They show that users with high-volatility

demand should consider using AWS offers while one should



use GCP in the other case. The experimental results in this

paper suggest that, compared with on-demand or utilization-

based services, reservation strategies can provide cost-effective

options for executing stochastic jobs when there is significant

difference in the offered price.

VII. CONCLUSION

In this paper, we have studied the problem of scheduling

stochastic jobs on a reservation-based platform. We have

shown the existence of an optimal reservation sequence when

the job execution time follows a set of classical distributions,

and we have characterized the optimal solution up to the

duration of the first reservation. We do not know how to

compute this duration analytically, but we have provided an

upper bound and a brute-force procedure to generate a solution

that is close to the optimal. We have also introduced several

heuristics, one based upon discretizing the continuous distribu-

tion, and some relying on standard measures, such as the mean,

variance and quantiles of the distribution. We have demon-

strated the effectiveness of these heuristics via comprehensive

simulations conducted using both classical distributions and

execution traces of a real neuroscience application.

Future work will include allowing requests with variable

amount of resources, hence offering a combination of a reser-

vation time and a number of processors. Another interesting

direction is to include checkpoint snapshots at the end of

some reservations. We expect the solutions such as the one

introduced in this work not to work because of the difficulty of

choosing which reservations to checkpoint. Indeed we do not

expect the strategy “checkpoint all reservations” to be optimal.

Hence the checkpointing approach calls for a complicated

trade-off between doing useful work through the reservations

and sacrificing some time/budget in order to avoid restarting

the job whenever its execution time exceeds the length of the

current reservation. The cost will then depend both on the

length of the reservation and on a conditional probability based

on previous checkpointing decisions.

Acknowledgments: We thank Bennett Landman and his

MASI Lab at Vanderbilt for sharing the medical imaging

database used to extract the execution time distributions.

This research was supported in part by the National Science

Foundation grant CCF1719674, Vanderbilt Institutional Fund,

and Inria-Vanderbilt associated team Keystone. Part of this

work was done while Valentin Honoré was visiting Vanderbilt

University.

REFERENCES

[1] Medical-image Analysis and Statistical Interpretation (MASI) Lab.
https://my.vanderbilt.edu/masi/.

[2] M. Afanasyev and H. Mendelson. Service provider competition: Delay
cost structure, segmentation, and cost advantage. Manufacturing &

Service Operations Management, 12(2):213–235, 2010.

[3] Amazon. AWS pricing information. https://aws.amazon.com/ec2/
pricing/. Accessed: 2018-10-11.

[4] G. Aupy, A. Gainaru, V. Honoré, P. Raghavan, Y. Robert, and H. Sun.
Reservation Strategies for Stochastic Jobs. Research Report RR-9211,
INRIA, 2018.

[5] L.-C. Canon, A. K. W. Chang, Y. Robert, and F. Vivien. Scheduling
independent stochastic tasks under deadline and budget constraints.
Research Report 9178, INRIA, June 2018.

[6] L.-C. Canon and E. Jeannot. Evaluation and optimization of the
robustness of dag schedules in heterogeneous environments. IEEE

Transactions on Parallel and Distributed Systems, 21(4):532–546, 2010.
[7] S. Chen, H. Lee, and K. Moinzadeh. Pricing schemes in cloud

computing: Utilization-based versus reservation-based. Production and

Operations Management, 2017.
[8] L. Dierks and S. Seuken. Cloud pricing: the spot market strikes back.

In The Workshop on Economics of Cloud Computing, 2016.
[9] F. Dong, J. Luo, A. Song, and J. Jin. Resource load based stochastic

DAGs scheduling mechanism for Grid environment. In 2010 IEEE

12th International Conference on High Performance Computing and

Communications (HPCC), pages 197–204, Sept 2010.
[10] D. Feitelson. Workload modeling for computer systems performance

evaluation. Version 1.0.3, pages 1–607, 2014.
[11] L. Friedman and G. H. Glover. Report on a multicenter fMRI quality

assurance protocol. Journal of Magnetic Resonance Imaging, 23(6):827–
839, 2006.

[12] B. Gaujal and J.-M. Vincent. Comparisons of stochastic task-resource
systems. In Introduction to Scheduling, page Chapter 10. Springer, 2009.

[13] Google. GCP pricing information. https://cloud.google.com/pricing/.
Accessed: 2018-10-16.

[14] A. Gupta, P. Faraboschi, F. Gioachin, L. V. Kale, R. Kaufmann, B. Lee,
V. March, D. Milojicic, and C. H. Suen. Evaluating and improving
the performance and scheduling of HPC applications in cloud. IEEE

Transactions on Cloud Computing, 4(3):307–321, July 2016.
[15] R. L. Harrigan, B. C. Yvernault, B. D. Boyd, S. M. Damon, K. D.

Gibney, B. N. Conrad, N. S. Phillips, B. P. Rogers, Y. Gao, and
B. A. Landman. Vanderbilt university institute of imaging science
center for computational imaging XNAT: A multimodal data archive
and processing environment. NeuroImage, 124:1097–1101, 2016.

[16] K. Li, X. Tang, B. Veeravalli, and K. Li. Scheduling precedence
constrained stochastic tasks on heterogeneous cluster systems. IEEE

Transactions on Computers, 64(1):191–204, 2015.
[17] A. Mechelli, C. J. Price, K. J. Friston, and J. Ashburner. Voxel-based

morphometry of the human brain: methods and applications. Current

Medical Imaging Reviews, 1:105–113, 2005.
[18] A. W. Mu’alem and D. G. Feitelson. Utilization, predictability, work-

loads, and user runtime estimates in scheduling the IBM SP2 with
backfilling. IEEE Transactions on Parallel and Distributed Systems,
12(6):529–543, June 2001.

[19] J. W. Park, A. Tumanov, A. Jiang, M. A. Kozuch, and G. R. Ganger.
3sigma: distribution-based cluster scheduling for runtime uncertainty. In
Proceedings of the Thirteenth EuroSys Conference, page 2. ACM, 2018.

[20] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer,
3rd edition, 2008.

[21] G. P. Rodrigo Álvarez, P.-O. Östberg, E. Elmroth, K. Antypas, R. Gerber,
and L. Ramakrishnan. HPC system lifetime story: Workload character-
ization and evolutionary analyses on NERSC systems. In Proceedings

of the 24th International Symposium on High-Performance Parallel and

Distributed Computing, HPDC ’15, pages 57–60, New York, NY, USA,
2015. ACM.

[22] W. Tang, Z. Lan, N. Desai, D. Buettner, and Y. Yu. Reducing fragmen-
tation on torus-connected supercomputers. In Parallel & Distributed

Processing Symposium (IPDPS), 2011 IEEE International, pages 828–
839. IEEE, 2011.

[23] X. Tang, K. Li, G. Liao, K. Fang, and F. Wu. A stochastic scheduling
algorithm for precedence constrained tasks on grid. Future Gener.

Comput. Syst., 27(8):1083–1091, Oct. 2011.
[24] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-effective and low-

complexity task scheduling for heterogeneous computing. IEEE TPDS,
13(3):260–274, March 2002.

[25] G. Weiss. Turnpike optimality of smith’s rule in parallel machines
stochastic scheduling. Math. Oper. Res., 17(2):255–270, May 1992.

[26] H. Xu and B. Li. Dynamic cloud pricing for revenue maximization.
IEEE Transactions on Cloud Computing, 1(2):158–171, July 2013.

[27] K. Yamamoto and al. The K computer operations: Experiences and
statistics. Procedia Computer Science, 29:576 – 585, 2014.

[28] A. B. Yoo, M. A. Jette, and M. Grondona. Slurm: Simple linux utility
for resource management. In Workshop on Job Scheduling Strategies

for Parallel Processing, pages 44–60. Springer, 2003.

https://my.vanderbilt.edu/masi/
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/
https://cloud.google.com/pricing/

	Introduction
	Framework
	Stochastic jobs
	Cost model
	Objective

	Characterizing the optimal solution
	Cost function
	Upper bound on to1 and finite expected cost
	Properties of optimal sequences
	Uniform distributions
	Exponential distributions

	Heuristics for Arbitrary Distributions
	Brute-force procedure
	Discretization-based dynamic programming
	Truncating and discretizing continuous distributions
	Dynamic programming for discrete distributions

	Other heuristics

	Performance Evaluation
	Evaluation methodology
	Results for ReservationOnly scenario
	Results for NeuroHPC scenario

	Related Work
	Conclusion
	References

