Improving the efficacy of anti-cancer nanoparticles with data-driven mathematical modeling

Cristina Vaghi 1, 2 Anne Rodallec 3 Raphaelle Fanciullino 3 Joseph Ciccolini 3 Clair Poignard 1, 2 Sébastien Benzekry 2, 1
1 MONC - Modélisation Mathématique pour l'Oncologie
IMB - Institut de Mathématiques de Bordeaux, Inria Bordeaux - Sud-Ouest, Institut Bergonié - CRLCC Bordeaux
3 SMARTc - Simulation and Modeling of Adaptive Response for Therapeutics in Cancer
CRCM - Centre de Recherche en Cancérologie de Marseille
Complete list of metadatas

https://hal.inria.fr/hal-01968959
Contributor : Sebastien Benzekry <>
Submitted on : Thursday, January 3, 2019 - 3:14:01 PM
Last modification on : Tuesday, June 18, 2019 - 7:42:02 PM
Long-term archiving on : Thursday, April 4, 2019 - 3:02:59 PM

File

2018_ds3_vaghi_nanoparticles.p...
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01968959, version 1

Citation

Cristina Vaghi, Anne Rodallec, Raphaelle Fanciullino, Joseph Ciccolini, Clair Poignard, et al.. Improving the efficacy of anti-cancer nanoparticles with data-driven mathematical modeling. Data Science Summer School, Jun 2018, Palaiseau, France. ⟨hal-01968959⟩

Share

Metrics

Record views

204

Files downloads

352