A. Blass, A game semantics for linear logic, Annals of Pure and Applied Logic, vol.56, issue.1, pp.90073-90082, 1992.
DOI : 10.1016/0168-0072(92)90073-9

URL : https://doi.org/10.1016/0168-0072(92)90073-9

R. Blute, T. Ehrhard, and C. Tasson, A convenient differential category, Cah. Topol. Géom. Différ. Catég, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00492424

R. F. Blute, J. R. Cockett, and R. A. Seely, Differential categories. Math. Structures Comput. Sci, vol.16, issue.6, 2006.

A. Church, A formulation of the simple theory of types, The journal of symbolic logic, vol.5, issue.2, pp.56-68, 1940.

T. Ehrhard, On köthe sequence spaces and linear logic, Mathematical Structures in Computer Science, vol.12, issue.5, 2002.

T. Ehrhard, An introduction to differential linear logic: proof-nets, models and antiderivatives, Mathematical Structures in Computer Science, vol.28, issue.7, pp.995-1060, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01326738

T. Ehrhard and L. Regnier, Differential interaction nets, Theoretical Computer Science, vol.364, issue.2, 2006.
DOI : 10.1016/j.entcs.2004.06.060

URL : https://hal.archives-ouvertes.fr/hal-00150274

M. Fiore, Differential structure in models of multiplicative biadditive intuitionistic linear logic, TLCA, 2007.

J. Y. Girard, Linear logic, Theoretical Computer Science, vol.50, issue.1, pp.90045-90049, 1987.
URL : https://hal.archives-ouvertes.fr/inria-00075966

A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires. Memoirs of the AMS 16, 1966.
DOI : 10.1090/memo/0016

URL : http://www.numdam.org/article/SB_1951-1954__2__193_0.pdf

A. Grothendieck, Topological vector spaces, 1973.

H. Jarchow, Locally convex spaces, 1981.

G. Kainz, A. Kriegl, and P. Michor, C 8-algebras from the functional analytic view point, Journal of Pure and Applied Algebra, vol.46, issue.1, pp.89-107, 1987.

M. Kerjean, A logical account for linear partial differential equations, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS, 2018.
DOI : 10.1145/3209108.3209192

M. Kerjean, Reflexive spaces of smooth functions: a logical account for linear partial differential equations, 2018.

O. Laurent, Etude de la polarisation en logique, 2002.
URL : https://hal.archives-ouvertes.fr/tel-00007884

P. A. Melliès, Dialogue categories and chiralities, Publ. Res. Inst. Math. Sci, vol.52, issue.4, pp.359-412, 2016.

L. Schwartz, Théorie des distributions, 1966.

D. Scott and C. Strachey, Towards a mathematical semantics for programming languages, 1971.

R. Seely, Linear logic, *-autonomous categories and cofree coalgebras. In: In Categories in Computer Science and Logic, 1989.

F. Trèves, Topological vector spaces, distributions and kernels, 1967.

, As nuclear (F)-space are reflexive, and as reflexive spaces are stables by projective limit (proposition 1), a LNDF space is reflexive

. Again, the dual E 1 of a LNF-space E " lim Ý Ñi E i identifies as a linear space to a projective limit of complete nuclear (DF)-spaces. As the limit lim Ý Ñi E i is regular