D. Achlioptas and F. Mcsherry, On spectral learning of mixtures of distributions, Learning Theory: 18th Annual Conference on Learning Theory, COLT 2005, pp.458-469, 2005.

. Springer, , 2005.

S. Arora and R. Kannan, Learning mixtures of separated non-spherical Gaussians, The Annals of Applied Probability, vol.162, issue.3-4, pp.707-738, 2015.

M. Belkin and K. Sinha, Polynomial learning of distribution families, SIAM J. Comput, vol.44, issue.4, pp.889-911, 2015.

S. , C. Brubaker, and S. S. Vempala, Isotropic PCA and AffineInvariant Clustering, pp.241-281, 2008.

S. Dasgupta, Learning mixtures of Gaussians, Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, FOCS 99, pp.634-644, 1999.

S. Dasgupta and L. Schulman, A Probabilistic Analysis of EM for Mixtures of Separated Spherical Gaussians, JMLR, vol.8, pp.203-229, 2007.

Y. B. Farfarovskaia, An estimate of the norm f (A) ? f (B) for selfadjoint operators A and B (in Russian), Zap. Nauchn. Sem. LOMI, issue.56, pp.143-162, 1976.

N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance of the empirical measure, Probability Theory and Related Fields, vol.15, pp.69-92, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00915365

R. Ge, Q. Huang, and S. M. Kakade, Learning mixtures of gaussians in high dimensions, Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Computing, STOC '15, pp.761-770, 2015.

M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, 1999.

M. Hein and O. Bousquet, Hilbertian metrics and positive definite kernels on probability measures, Proceedings of AISTATS 2005, pp.136-143, 2005.

R. Kannan, L. Lovász, and M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma, Discrete Comput. Geom, issue.13, pp.541-559, 1995.

R. Kannan, S. Vempala, and H. Salmasian, The spectral method for general mixture models, SIAM J. Computing, vol.38, issue.3, pp.1141-1156, 2008.

N. E. Karoui, The spectrum of random kernel matrices, The Annals of Statistics, vol.38, issue.1, pp.1-50, 2010.

M. D. Kirzbraun, Über die zusammenziehende und Lipschitzsche transformationen, Fundamenta Math, vol.22, pp.77-108, 1934.

M. Ledoux, The Concentration of Measure Phenomenon, AMS Mathematical Surveys & Monographs, 2001.

P. Lévy and F. Pellegrino, Problèmes concrets d'analyse fonctionnelle. Collection de monographies sur la théorie des fonctions, 1951.

V. Milman, A certain property of functions defined on infinite-dimensional manifolds, Dokl. Akad. Nauk SSSR, vol.200, pp.781-784, 1971.

M. Ledoux and S. Bobkov, Poincaré's inequality and Talagrand's concentration phenomenon for the exponential distribution, pp.383-400, 1997.

T. Shi, M. Belkin, and B. Yu, Data spectroscopy: Eigenspaces of convolution operators and clustering. The Annals of Statistics, vol.37, pp.3960-3984, 2009.

C. Suquet, Distances euclidiennes sur les mesures signées et applicationà des théorèmes de Berry-Esseen, Bull. Belg. Math. Soc. Simon Stevin, vol.2, issue.2, pp.161-181, 1995.

J. A. Tropp, Norms of random submatrices and sparse approximation, Comptes Rendus Mathematiques, vol.346, issue.23, pp.1271-1274, 2008.

S. Vempala and G. Wang, A spectral algorithm for learning mixture models, Journal of Computer and System Sciences Special issue on FOCS 2002 archive, vol.68, issue.4, pp.841-860, 2004.

R. Vershynin, Introduction to the non-asymptotic analysis of random matrices, Compressed Sensing: Theory and Applications, pp.210-268, 2012.