B. L. Allen, Carbon nanotube field-effecttransistor-based biosensors, Adv Mater, vol.19, issue.11, pp.1439-1451, 2007.

R. Ansari, Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation, Superlattices and microstructures, vol.51, pp.274-289, 2012.

U. Bangert, Nanotopography of graphene, Phys. Status Solidi A, vol.206, pp.2115-2119, 2009.

F. Banhart, Irradiation effects in carbon nanostructures, Rep. Prog. Phys, vol.62, p.1181, 1999.

F. Banhart, Structural defects in graphene, ACS Nano, vol.5, issue.1, pp.26-41, 2011.

. Bosson, Interactive physically-based structural modeling of hydrocarbon systems, J. of Computational Physics, vol.231, pp.2581-2598, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00755542

D. W. Brenner, Simulated engineering of nanostructures, Fourth Foresight Conference on Molecular Nanotechnology, 1996.

D. W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B, vol.42, pp.9458-9471, 1990.

D. W. Brenner, Molecular dynamics simulations of the nanometer-scale mechanical properties of compressed Buckminsterfullerene, Thin Solid Films, vol.206, pp.220-223, 1991.

D. W. Brenner, The art and science of an analytic potential, Phys. Stat. Sol. (b), vol.217, pp.23-40, 2000.

D. W. Brenner, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys.: Condens. Mater, vol.14, pp.783-802, 2002.

H. Chen, Mechanically strong, electrically conductive, and biocompatible graphene paper, Adv. Mater, vol.20, issue.18, pp.3557-3561, 2008.

V. H. Crespi, Prediction of a pure-carbon planar covalent metal, Phys. Rev. B, vol.53, p.13303, 1996.

A. V. Crewe, J. Wall, and J. Langmore, Science, vol.168, p.1338, 1970.

X. Q. Dai, First-principle study of magnetism induced by vacancies in graphene, Eur. Phys. J. B, vol.80, pp.343-349, 2011.

R. Dettori, Elastic fields and moduli in defected graphene, J. Phys.: Condens. Matter, p.24, 2012.

A. J. Dyson and P. V. Smith, Extension of the Brenner empirical interatomic potential to C-Si-H systems, Surf. Sci, vol.355, pp.140-150, 1996.

A. A. El-barbary, Structure and energetics of the vacancy in graphite, Phys. Rev. B, vol.68, p.144107, 2003.

R. Faccio, Magnetism in multivacancy graphene systems, J. Phys.: Condens. Matter, p.375304, 2012.

M. H. Gass, Free-Standing Graphene at Atomic Resolution, Nat. Nanotechnol, vol.3, pp.676-681, 2008.

A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater, vol.6, pp.183-191, 2007.

Ç. Ö. Girit, Graphene at the Edge: Stability and Dynamics, vol.323, pp.1705-1708, 2009.

A. Hashimoto, Direct evidence for atomic defects in graphene layers, Nature, vol.430, pp.870-873, 2004.

P. Jensen, Catalysis of nanotube plasticity under tensile strain, Phys. Rev. B, vol.66, 2002.

H. Joh, Synthesis and properties of an atomically thin carbon nanosheet similar to graphene and its promising use as an organic thin film transistor, Carbon, vol.55, pp.299-304, 2013.

C. Koch, Determination of core structure periodicity and point defect density along dislocations, 2002.

J. Kotakoski, From point defects in graphene to two-dimensional amorphous carbon, Phys. Rev. Lett, vol.106, p.105505, 2011.

J. Kotakoski, Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation, Phys. Rev. B, vol.83, p.245420, 2011.

C. Lee, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, vol.321, issue.5887, pp.385-388, 2008.

E. Lee, Electrical properties and photoconductivity of stacked-graphene carbon nanotubes, Adv Mater, vol.22, issue.16, pp.1854-1857, 2010.

Y. H. Lee, Catalytic Growth of Single-Wall Carbon Nanotubes: An ab Initio Study, Phys. Rev. Lett, vol.78, pp.2393-2396, 1997.

O. Lehtinen, Magnetic Properties and Diffusion of Adatoms on a Graphene Sheet, Phys. Rev. Lett, vol.91, p.17202, 2003.

O. Lehtinen, Effect of ion bombardment on a two-dimensional target: atomistic simulations of graphene irradiation, Phys. Rev. B, vol.81, p.153401, 2010.

O. Lehtinen, Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation, Nat. Commun, vol.4, p.3098, 2013.

L. Li, Defect energies of graphite: densityfunctional calculations, Phys. Rev. B, vol.72, p.184109, 2005.

J. H. Los and A. Fasolino, Monte Carlo simulations of carbon-based structures based on an extended Brenner potential, Comput. Phys. Commun, vol.147, pp.178-181, 2002.

J. H. Los and A. Fasolino, Intrinsic long-range bondorder potential for carbon: performance in Monte Carlo simulations of graphitization, Phys. Rev. B, vol.68, p.24107, 2003.

J. Ma, Stone-Wales defects in graphene and other planar sp 2-bonded materials, Phys. Rev. B, vol.80, p.33407, 2009.

J. C. Meyer, Direct imaging of lattice atoms and topological defects in graphene membranes, Nano Letters, vol.8, pp.3582-3586, 2008.

K. S. Novoselov, Electric field effect in atomically thin carbon films, Science, vol.306, pp.666-669, 2004.

S. Park, The effect of concentration of graphene nanoplatelets on mechanical and electrical properties of reduced graphene oxide papers, Carbon, vol.50, issue.12, pp.4573-4578, 2012.

L. Pauling, The Nature of the Chemical Bond, 1960.

Q. X. Pei, A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene, Carbon, vol.48, issue.3, pp.898-904, 2010.

A. Qureshi, Review on carbon-derived, solidstate, micro and nano sensors for electrochemical sensing applications, Diamond and Related Materials, 18, vol.12, pp.1401-1420, 2009.

Q. M. Ramasse, Probing the Bonding and Electronic Structure of Single Atom Dopants in Graphene with Electron Energy Loss Spectroscopy, Nano. Lett, vol.13, pp.4989-4995, 2013.

S. Redon, Adaptive dynamics of articulated bodies, ACM Trans. Graph. (TOG), vol.24, issue.3, pp.936-945, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00390315

A. W. Robertson, Spatial control of defect creation in graphene at the nanoscale, Nat. Commun, vol.3, pp.1144-1151, 2012.

A. W. Robertson and J. H. Warner, Atomic resolution imaging of graphene by transmission electron microscopy, Nanoscale, vol.5, pp.4079-4093, 2013.

A. W. Robertson, Structural reconstruction of the graphene monovacancy, ACS nano, vol.7, issue.5, pp.4495-4502, 2013.

M. Saito, Magic Numbers of Graphene Multivacancies, Japanese Journal of Applied Physics, vol.46, issue.12L, p.1185, 2007.

F. Scarpa, Effective elastic mechanical properties of single layer graphene sheets, Nanotechnology, vol.20, issue.6, pp.1-11, 2009.

. Schindelin, Fiji: an open-source platform for biological-image analysis, Nature methods, vol.9, issue.7, p.676, 2012.

S. B. Sinnott, Model of carbon nanotube growth through chemical vapor deposition, Chem. Phys. Lett, vol.315, pp.25-30, 1999.

S. Skowron, Energetics of atomic scale structure changes in graphene, Chem. Soc. Rev, vol.44, p.3143, 2015.

B. W. Smith, Electron irradiation effects in single wall carbon nanotubes, J. Appl. Phys, vol.90, p.3509, 2001.

B. Song, Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures, Nano Lett, vol.11, pp.2247-2250, 2011.

V. Sorkin and Y. W. Zhang, Graphene-based pressure nano-sensors, J. Mol. Model, vol.17, issue.11, pp.2825-2830, 2011.

S. Stankovich, Graphene-based composite materials, Nature, issue.7100, pp.282-286, 2006.

A. J. Stone, Theoretical Studies of Icosahedral C60 and some related species, Chem. Phys. Lett, vol.128, pp.501-503, 1986.

S. J. Stuart, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys, vol.112, p.6472, 2000.

T. Trevethan, Vacancy diffusion and coalescence in graphene directed by defect strain fields, Nanoscale, vol.6, pp.2978-2986, 2014.

L. Tsetserisa and S. T. Pantelides, Adatom complexes and self-healing mechanisms on graphene and single-wall carbon nanotubes, Carbon, vol.47, pp.901-908, 2009.

M. M. Ugeda, Missing Atom as a Source of Carbon Magnetism, Phys. Rev. Lett, vol.104, p.96804, 2010.

H. Wang, Doping Monolayer Graphene with Single Atom Substitutions, Nano Lett, vol.12, pp.141-144, 2012.

J. H. Warner, Dislocation-driven deformations in graphene, Science, vol.337, p.209, 2012.

L. Wu, First-principles study on migration and coalescence of point defects in monolayer graphene, J. Phys. Chem. C, vol.117, pp.17066-17072, 2013.

C. H. Xu, Simulations of point-defect properties in graphite by a tight-binding-force model, Phys. Rev. B, vol.18, p.13273, 1993.

J. Yao, In situ chemical synthesis of SnO2graphene nanocomposite as anode materials for lithium-ion batteries, Electrochem Commun, vol.11, issue.10, pp.1849-1852, 2009.

W. Zhang, Tight-binding calculation studies of vacancy and adatom defects in graphene, J. Phys. Condens. Matter, vol.28, p.115001, 2016.