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Inria Sophia Antipolis - Méditerranée and University Côte d’Azur, France

Progress In Electromagnetics Research Symposium - PIERS 2018

Toyama, Japan, August 1-4, 2018

S. Lanteri (Inria) August 1st, 2018 1 / 37



Context and objective of the study

Spatial dispersion effects in metals

Various models exist for modeling metal dispersion for the study of plasmon waves

The most famous is the Drude model describing permittivity function of noble metals

Such models share a common assumption: the local response assumption (LRA)

LRA states that, at any point of the metal, the polarization of the electrons only depends
on the electromagnetic fields at this precise point

For scales approaching the nanometer, plasmons exhibit features that cannot be correctly
predicted in the LRA framework

Modified models are required, called non-local models (NLM), owing to their accounting
for what happens in the vicinity of the electron to determine its response

Quantum HydroDynamic (QHD) is one popular (semiclassical) theory

Numerical modeling of QHD

Frequency-domain and time-domain settings

Mostly considered in 2D with finite element (FE) and finite difference (TD) methods

Resource demanding (CPU and memory) in 3D
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Context and objective of the study

Numerical modeling of QHD: some related works

Time-domain setting (FDTD)

J.M. McMahon, S.K. Gray and G.C. Schatz

Phys. Rev. B 82, 035423, 2010

M. Fang, Z. Huang, W.E.I. Sha, X.Y.Z. Xiong and X. Wu - PIER, Vol. 157, 2016

And many other references ...

Time-domain setting (DGTD)

A. Hille, M. Moeferd, C. Wolff, C. Matyssek, R. Rodrguez-Oliveros, C. Prohm

J. Niegemann, S. Grafström, L.M. Eng and K. Busch

J. Phys. Chem. C, Vol. 120, No. 2, 2016 Y. Grynko, T. Zentgraf, T. Meier and J. Förstner

Appl. Phys. B, Vol. 122, 2016

Frequency-domain setting (FEM)

K.R. Hiremath, L. schiedrich and F. Schmidt

J. Comp. Phys., Vol. 231, No. 17, 2012

N.A. Mortensen, S. Raza, M. Wubs, T. Sndergaard and S.I. Bozhevolnyi

Nature Comm., Vol. 5, 2014

Frequency-domain setting (HDG - Hybridized DG)

L. Li, S. Lanteri, N.A. Mortensen and M. Wubs

Comput. Phys. Comm., Vol. 219, 2017
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Context and objective of the study

Context: development of high order finite element type solvers for time-domain plasmonics

Objective: impact of high order treatment of curvilinear geometries on accuracy and

performance of a DGTD method for studying nonlocal dispersion effects

Modeling setting: linearized nonlocal hydrodynamic Drude model

A. Moreau, C. Ciraci and D.R. Smith

Physical Review B 87, 045401, 2013

S. Raza, S.I. Bozhevolnyi, M. Wubs, N.A. Mortensen

J. Phys.: Condens. Matter 27, 183204, topical review, 2015
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Left figure: molecule sensing with nanocubes.
Right figure: nanocube setup to study the influnce of nonlocal dispersion on gap plasmons
(ongoing work in collaboration with A. Moreau, Institut Pascal, France).
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Numerical framework: the DG method

Context

Somewhere between a finite element and a finite volume method, gathering
many good features of both

Extensively developed by the CFD community

Application to wave propagation problems naturally followed

J.S. Hesthaven and T. Warburton (Springer, 2008)
Nodal discontinuous Galerkin methods: algorithms, analysis, and applications

(a) Finite elements:
continuous,
non-constant-per-cell
solution

(b) Finite volumes:
discontinuous,
constant-per-cell
solution

(c) Discontinuous
Galerkin:
discontinuous,
non-constant-per-cell
solution
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Numerical framework: the DG method

Classical DG formulation

Naturally adapted to heterogeneous media and discontinuous solutions

Can easily deal with unstructured, possibly non-conforming meshes (h-adaptivity)

High order with compact stencils and non-conforming approximations (p-adaptivity)

Usually rely on polynomial interpolation but can also accomodate alternative basis
expansions

But leads to larger problems compared to continuous finite element methods

DGTD: Discontinuous Galerkin Time-Domain method

Increasingly studied since 2000

J.S. Hesthaven and T. Warburton, J. Comput. Phys., Vol. 181, 2002

L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno, ESAIM: M2AN, Vol. 39, No. 6, 2005

For nanophotonics
K. Busch, M. König and J. Niegemann, Las. Photon. Rev., Vol. 5, No. 6, 2011

Commercial implementations: HFSS-TD (2010), Lumerical Device (2018)
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Numerical framework: the DG method
Motivations for electromagnetics

DG for electromagnetic wave propagation in heterogeneous media

Heterogeneity is ideally treated at the element level

Discontinuities occur at material (i.e element) interfaces

Mesh generation process is simplified

Wavelength varies with ε and µ

For a given mesh density, approximation order can be adapted at the
element level in order to fit to the local wavelength

Discretization of irregularly shaped domains

Unstructured simplicial meshes

The basic support of the DG method is the element
(triangle in 2D and tetrahedron in 3D)

Local refinement is facilitated by allowing non-conformity

Non-conformity opens the route to the coupling of different discretization
methods (e.g structured/unstructured)

For time-domain problems, mass matrix is block diagonal (worst case) or diagonal

J. Xin and W. Cai, J. Sci. Comput., Vol. 50, 2012
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Quantum HydroDynamic (QHD) modeling of spatial dispersion

Constitutive equations for metals

Electric polarization: P = Pb + Pf

Pb is the background polarization of the bound electrons

Pf models the currents in the free electron gas

Generalized dispersion model for bound electrons

S. Lanteri, C. Scheid and J. Viquerat - SIAM J. Sci. Comput., Vol. 39, No. 3, 2017

εb(ω) = ε∞ −
σ

iω
−
∑
l∈L1

al

iω − bl
−
∑
l∈L2

cl − iωdl

ω2 − el + iωfl

QHD electron response: free gas modeled by a nonlinear fluid equation

melec (∂t + v · ∇) v = −qelec (E + v × B)−melecγv −∇
(
δG [n]

δn

)
∂tn +∇ · (nv) = 0 (continuity equation)

where
δG [n]

δn
is the quantum pressure

Selection of quantum mechanical effects through the energy functional G [n]

C. Ciraci and F. Della Sala - Phys. Rev. B, Vol. 93, No. 20, 2016

G [n] ≈ Gη[n] = TTF[n] +
1

η
TW[n] + WXC

Terms: kinetic (T), exchange correlation and potential energy (XC)
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Quantum HydroDynamic (QHD) modeling of spatial dispersion

Linearized QHD model

Pure Thomas-Fermi theory

Fist order linearized term of the quantum pressure: β2 1

n0
∇n

Three-dimensionbal Fermi gas: β =
√

3
5
vF where vF is the Fermi velocity

No von Weizäcker contribution as well as exchange correlation

Linearizing around an equilibrium state, i.e. u(x, t) ≈ u0 + u1(x, t) for u ∈ {n, v,E,B},
keeping the linear terms only and omitting the index (·)1

melec∂tv = −qelecE−melecγv + melecβ
2 1

n0
∇n (1)

∂tn = −n0∇ · v (2)

assuming ∂tn0 = v0 = E0 = B0 = 0.

Using Jfree = n0qelecv, the current density of free electrons in the fluid, and (2) in ∂t(1)

∂ttJfree + γ∂tJfree − β2∇(∇ · Jfree)− ω2
Pε0∂tE = 0 with ωP =

√
n0bq2

elec

ε0melec

First order form
∂tJfree + γJfree − β2∇Q − ω2

Pε0E = 0

∂tQ −∇ · Jfree = 0

S. Lanteri (Inria) August 1st, 2018 12 / 37



Quantum HydroDynamic (QHD) modeling of spatial dispersion

Time-domain Maxwell-QHD equations

∇× E + µ0∂tH = 0

∇×H− ε0ε∞∂tE− Jfree − Jbound = 0

∂tJfree + γJfree − β2∇Q − ω2
Pε0E = 0

∂tQ −∇ · Jfree = 0

−Jbound + J 0 +
∑
l∈L1

J l +
∑
l∈L2

J l = 0

−J 0 +

σ +
∑
l∈L2

dl

E = 0

−J l + alE− blP l = 0 ∀l ∈ L1

−∂tP l + J l = 0 ∀l ∈ L1

−∂tJ l + (cl − dl fl )E− flJ l − elP l = 0 ∀l ∈ L2

−∂tP l + dlE + J l = 0 ∀l ∈ L2

with {ε∞, σ, al , bl , cl , dl , el , fl} ∈ IR and L1,2 being the number of first and second order

poles, respectively, in the GDM for local dispersion.
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Curvilinear DGTD method for the Maxwell-QHD equations

Main principles of a DG method

1 Definition of the computational domain

Unstructured mesh with tetrahedral elements

Structured or unstructured mesh with hexahedral elements

Local refinement (possibly non-conforming)

2 Discretization in space

Element-wise weak formulation

Numerical traces (fluxes) at inter-element boundaries to recover consistency

⇒ Solution of a Riemann problem

Numerical integration of elementary terms on a reference element

3 Time integration of the semi-discrete equations

Explicit scheme (in most of the cases)

Implicit scheme or locally implicit scheme

Local time stepping
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Curvilinear DGTD method for the Maxwell-QHD equations

τ − τ +

(d) Field discontinuity
at the interface of two
mesh cells

x

W

W+W−

(e) Generalized Riemann
problem at a cell interface

x

Wl

W+
lW−

l

(f) Leading Riemann
problem at the cell
interface

x

t

W+
l

W+
∗W−

∗

W−
l

λ7,8,10

λ1,..,4

λ5,6,9

(g) Solution of the leading
term Riemann problem

Riemann problem. Figure (d) illustrates a field discontinuity at the interface of two mesh cells.
Generally, this is subject to a generalized Riemann problem as shown in (e). Considering only the
leading term within the vicinity of the interface (orange region), simplifies the generalized
Riemann problem to a standard Riemann problem with a piecewise constant solution (f). Its
solution in the (x− t) space is shown in (g).
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Curvilinear DGTD method for the Maxwell-QHD equations

Main principles of a DG method

Z : impedance - Y : admittance - α : upwinding parameter

{A}−+ := A− + A+, JAK−+ := A− − A+,

Numerical flux for the Maxwell part

n×H−∗ =
1

Z− + Z+
(n× {ZH}−+ − αn× (n× JEK−+)) ,

n× E−∗ =
1

Y− + Y +
(n× {YE}−+ + αn× (n× JHK−+))

Numerical flux for the hydrodynamic Drude model part(
β−
)2

Q−? =
β−β+

β− + β+
({βQ}−+ − α (n · JJK−+)) ,

(
β−
)2

n · J−? =

(
β−
)3 (

β+
)3

(β−)3 + (β+)3

(
n · { J

β
}−+ − αJQK−+

)
with on the boundary of the nonlocal dispersive domain

Q−? |∂ΩNL
= Q− and n · J−? |∂ΩNL

= 0
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Curvilinear DGTD method for the Maxwell-QHD equations

Dealing with geometry approximation error

NURBS-enhanced finite element method (NEFEM)

M. Dawson, R. Sevilla and K. Morgan, Appl. Math. Model., Vol. 55, 2018

High order DGTD method for computing resonant frequencies and modes

Isogeometric analysis

Directly employs the geometric basis functions as approximation space

A. Buffa, G. Sangallia and R. Vázquez

Comp. Meth. Appl. Mech. Engng., Vol. 199, No. 17-20, 2010

Our setting: isoparametric FEM

A1

A2

A3

A4

A5
A6

A7

A8
A9

A10

ξ
ζ η

v1

v2

v3

v4

v5

v6

v7

v8
v9

v10

x
z y

x = ψτi (ξ)

Second order mapping from the reference element τ̂ to the physical element τi
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Curvilinear DGTD method for the Maxwell-QHD equations

Validation: standing wave in a spherical PEC cavity

α
M1 M2 M3 M4

Rect. Curv. Rect. Curv. Rect. Curv. Rect. Curv.

P1
0 – – 2.01 – 1.85 – 1.51 –
1 – – 2.14 – 2.03 – 2.01 –

P2
0 – – 2.19 2.85 2.14 2.29 2.03 2.30
1 – – 2.20 3.25 2.03 3.08 2.01 3.06

P3
0 – – 2.19 4.17 2.14 3.82 2.03 3.55
1 – – 2.20 4.36 2.03 4.03 2.03 4.03

P4
0 – – 2.18 4.37 2.14 4.25 2.03 4.04
1 – – 2.18 4.36 2.03 4.26 2.03 4.05

Convergence rates of the spherical cavity case for different approximation orders and fluxes, with

linear and curvilinear meshes of increasing refinement (α is the upwinding parameter).
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Numerical results
Scattering by a gold nanosphere

(h) Mesh M1 without
high order cells.

(i) Mesh M1 with
quadratic cells.

(j) Mesh M2 without
high order cells.

(k) Mesh M2 with
quadratic cells.

Four different discretization for
a scattered sphere in vacuum.
Figures (a) and (b) have the
same number of elements and
differ by the geometric
representation order from linear
to quadratic. Figure (c) is a
refined version of (a) and (d) is
the high order version.
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Numerical results
Scattering by a gold nanosphere
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(l) Mesh M1.
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P1 Quadratic

P4 Linear

P4 Quadratic

(m) Mesh M2.

Extinction cross-section spectra on meshes M1 and M2.
Comparison of the extinction cross-section spectra of a metallic nano-sphere in dependence of
the polynomial interpolation order and the geometric mesh order, i.e. linear or quadratic mesh
elements.
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Numerical results
Scattering by a gold nanosphere

P1 P2 P3 P4

M1− Linear 33.33% 29.95% 28.83% 28.80%
M1−Quadratic 43.67% 18.51% 6.60% 2.38%

M2− Linear 33.50% 11.07% 7.18% 5.34%
M2−Quadratic 39.40% 10.07% 3.58% 0.96%

Relative error is given with respect to the analytical nonlocal Mie solution
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Numerical results
Scattering by a gold nanosphere
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Extinction cross-section spectra on meshes M1 and M2.
Comparison of the extinction cross-section spectra of a metallic nanosphere in dependence of the
polynomial interpolation order and the geometric mesh order, i.e. linear or quadratic mesh
elements.
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Numerical results
Scattering by a gold nanosphere

M1−Quadratic− P3 M2− Linear− P4

L2−error (Mie) 6.6% 5.34%
# Cells 13827 14334

# Sphere cells 46 292
# High order cells 200 -

# Iterations 7060 90933
Memory 1481 MB 1980 MB

Time for 100 iterations (seq.) 374 s 703 s
Total time in loop (seq.) 26404 s 639259 s

Speedup 24.2 -

Time for 100
iterations (parallel)

#proc T [s] Speedup
2 186 2.0
4 94 4.0
8 50 7.5

12 37 10.1

#proc T [s] Speedup
2 380 1.9
4 200 3.5
8 105 6.7

12 73 9.6

Mesh characteristics and performance figures for DGTD simulations with mesh M1 based on
curvilinear elements and a polynomial order P3 versus refined mesh M2 based on linear elements
and a polynomial order P4. The listed values only contain the actual mesh and do not contain
ghost cells due to boundary conditions and domain decomposition for the parallel MPI runs.
Simulation have been performed on an Intel Xeon CPU E5-2630 v2 2.6 GHz machine with 64
GB RAM.
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Numerical results
Nanosphere dimer

Material: gold, ωP = 1.39e + 16 rad/s, γ = 3.23e + 13 rad/s and β = 0.84 m/s

Spere radius: 10 nm

Gap size: 2 nm

E
H

k

x

z

y

Nanosphere dimer system. Left figure sketches the dimer setup with an ex polarized incident
plane wave. Right figure shows the 3D field distribution of the electric field on the dimer surface
and on a cutting plane and along the dimer axis.
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Numerical results
Nanosphere dimer
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Upwind-ac:DGTD

Nanosphere dimer - local. Comparison of the extinction CS spectra for a spherical dimer system
on a linear mesh in dependence of the numerical flux choice. Black: reference DGTD solution
with curvilinear elements. Blue: DGTD with centered fluxes and linear mesh cells. Orange:
DGTD with upwind fluxes and linear mesh cells.
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Numerical results
Nanosphere dimer
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Nanosphere dimer - nonlocal. Comparison of the extinction CS spectra for a spherical dimer
system on a linear mesh in dependence of the numerical flux choice. Black: reference DGTD
solution with curvilinear elements. Blue: DGTD with centered fluxes and linear mesh cells.
Orange: DGTD with upwind fluxes and linear mesh cells.
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Numerical results
Nanosphere dimer

Local dispersion Nonlocal dispersion

0 10 20 30 40

Nanosphere dimer field plot at the third resonance (volume). Left figure: 3D field distribution of
the electric field if a local dispersion model is employed. Right figure:1 a nonlocal dispersion
model is used. Nonlocality smears out vacuum-metal interface and builds up a penetration layer.
The discontinuities of the DGTD method are clearly visible.
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Numerical results
Nanosphere dimer
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Local dispersion

Nonlocal dispersion

Nanosphere dimer: local vs. nonlocal dispersion. Comparison of local and nonlocal extinction CS.
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Numerical results
Nanosphere dimer

Local dispersion Nonlocal dispersion

0 30 60 90 120

Nanosphere dimer: local vs. nonlocal dispersion. Left figure: 3D field distribution at third
resonance of the electric field if a local dispersion model is employed. Right figure: a nonlocal
dispersion model is used. Nonlocality widens the gap plasmon resonance due to stronger field
enhancements.
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Numerical results
Nanosphere dimer

Summary

Centered DGTD solution almost is polluted by spurious modes

Upwind DGTD introduces numerical dissipation and damps spurious modes

The higher numerical dissipation of upwind DGTD can make the detection of weak
resonances impossible

Significant blue-shift for all resonances when switching to nonlocal dispersion

Regarding the near-field distribution, nonlocality leads to a stronger penetration of the field

Nonlocality leads to a field enhancement on the surface and widens the gap mode
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Software

Development of a dedicated software suite for nanophotonics

DIOGENeS - DIscOntinuous GalErkin Nano Solvers
https://diogenes.inria.fr

3D time-domain and frequency-domain Maxwell equations

High order DG and HDG (Hybridized DG) methods

Drude, Drude-Lorentz and generalized dispersion models

Linearized hydrodynamic Drude model

Unstructured and hybrid cubic/tetrahedral meshes

Affine and curvilinear elements

Optimized low storage Runge-Kutta time schemes

PDE-based and algebraic domain decomposition solvers (frequency-domain)

Hybrid MIMD/SIMD parallelization based on MPI/OpenMP

CFS-PML, TF/SF formulation, etc.
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Software

Positioning

Not a commercial software but rather a tool to enable multi-disciplinary collaborations

Main objectives

Enhance the capabilities of DG type methods for dealing with realistic scientific

and technological applications

Contribute to solving concrete problems requiring advanced modeling and

simulation, in addition to experimental design

Participate to collaborative projects with physicists facing difficulties with

their own simulation tools

Under development since December 2015

First official realease planned for end of 2018
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Closure

Summary

Improved numerical treatment of curvilinear geometries

Higer order accuracy thanks to higher order mappings

Better resolution of plasmonic features

Computational efficiency thanks to coarser meshes

Future works

Generalized nonlocal optical response (GNOR) model

Spill-out models

Nonlinear hydrodynamic Drude model

Thank you for your attention !
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