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Stochastic analysis of emergence of evolutionary cyclic behavior
in population dynamics with transfer

Nicolas Champagnat? Sylvie Méléard! Viet Chi Tran*

January 8, 2019

Abstract

Horizontal gene transfer consists in exchanging genetic materials between microorganisms
during their lives. This is a major mechanism of bacterial evolution and is believed to be of
main importance in antibiotics resistance. We consider a stochastic model for the evolution
of a discrete population structured by a trait taking finitely many values, with density-
dependent competition. Traits are vertically inherited unless a mutation occurs, and can also
be horizontally transferred by unilateral conjugation with frequency dependent rate. Our
goal is to analyze the trade-off between natural evolution to higher birth rates and transfer,
which drives the population towards lower birth rates. Simulations show that evolutionary
outcomes include evolutionary suicide or cyclic re-emergence of small populations with well-
adapted traits. We focus on a parameter scaling where individual mutations are rare but
the global mutation rate tends to infinity. This implies that negligible sub-populations may
have a strong contribution to evolution. Our main result quantifies the asymptotic dynamics
of subpopulation sizes on a logarithmic scale. We characterize the possible evolutionary
outcomes with explicit criteria on the model parameters. An important ingredient for the
proofs lies in comparisons of the stochastic process describing the population with logistic or
branching birth and death processes with immigration. For the latter processes, we derive
several results of independent interest.

Keywords: horizontal gene transfer, bacterial conjugation, stochastic individual-based models,
long time behavior, large population approximation, coupling, branching processes with immi-
gration, logistic competition.

MSC 2000 subject classification: 92D25, 92D15, 60J80, 60K35, 60F99.

1 Introduction and presentation of the model

Bacterial evolution understanding is fundamental in biology, medicine and industry. The ability
of a bacterium to survive and reproduce depends on its genes, and evolution mainly results from
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the following basic mechanisms: heredity (also called vertical transmission); mutation which gen-
erates variability of the traits; selection which results from the interactions between individuals
and their environment; exchange of genetic information between non-parental individuals during
their lifetimes (also called horizontal gene transfer (HGT)), see for example [15], [13]. In many
biological situations, these mechanisms drive the population to different evolutionary outcomes.
The resulting effects may have a key role in the transmission of an epidemic, in the development
of antibiotic resistances, in epigenetics or for the bacterial degradation of novel compounds such
as human-created pesticides (e.g. [16], [12], [11]). In [I] and [2], the authors introduced an
individual-based stochastic process for the trade-off between competition, transfer and advanta-
geous mutations from which they derived some macroscopic approximations. They proved that
the whole population is driven (by transfer) to evolutionary suicide, under the assumption that
mutations are very rare. However, simulations show much richer evolutionary behaviors when
mutation events are more frequent.

We propose below a toy model to capture these phenomena. The simulations of Figure [1.1
show that, depending on the transfer rate, we can observe either dominance of the trait with
higher birth rate, or a cyclic phenomenon, or evolutionary suicide.

(e) (f) (e) (h)

Figure 1.1: Simulations of eco-evolutionary dynamics with unilateral frequency dependent trait transfer.
The evolution of the trait distribution is pictured on the left columns, the evolution of the population sizes
(NE(®t),...,NE(t)) is on the right columns. In all the simulations, K = 10000 and § = 0.1 and o = 0.5.
(a)-(b): T = 0.3. Smaller transfer rates are considered on longer time windows. (c)-(d): 7 = 0.6. We
see cyclic re-emergences of the fittest traits. (e)-(f): T = 0.75. Re-emergence still occurs, but the higher
transfer rate drives the trait distribution towards higher and less fit trait values. On stochastic simulations,
this can lead to extinction or (temporary) cyclic behaviour. (g)-(h): T = 0.8. An evolutionary suicide
takes place.



We consider a stochastic discrete population of individuals characterized by some trait. The
population evolves in continuous time through births (with or without mutation), deaths and
transfer of traits between couples of individuals. More precisely, we study a continuous time
Markov pure jump process, scaled by some integer parameter K, often called carrying capacity.
The initial population size is of the order of K for large K. The trait space is the grid of mesh
d>0o0f[0,4]: X =[0,4]NéN ={0,6,...,Ld} where L = |4/5]. The population is described by
the vector

(NGE(t), ..., NE(), ... ,NE(1)

where N/ (t) is the number of individuals of trait x = £§ at time t. We define the total population
size NX as

Let us now describe the dynamics of the population process.

e An individual with trait x = ¢4 in the population gives birth to another individual with
rate b(z) = 4 — x. With probability

prk = K~ with a € (0,1), (1.1)

a mutation occurs and the new offspring carries the mutant trait (¢ + 1)9.
With probability 1 — pg =1 — K—%, the new individual inherits the ancestral trait.

e An individual with trait x transfers its trait to a given individual of trait y in a population

of total size N at rate .

T(l’,y, N) = N ]lx>ya
for some parameter > 0.

e The individuals compete to survive (to share resources or territories). An individual with
trait x = £0 in the population of total size N dies with natural death rate dx(x, N) =
1+ CN/K.

The trait £ may be interpreted in the biological setting as a phenotypic value quantifying
either the pathogenic strength of bacteria or their antibiotic resistance [2]. It may be assumed to
be related to the quantity of plasmids held by a bacterium. The birth rate favors small values of
x with optimum at x = 0. It may represent a reproductive cost due to plasmids quantity. When
a transfer happens, the quantity of plasmids in the recipient bacterium increases. The recipient
bacterium receives the donor trait (this is called conjugation in the biological setting [I]). The
transfer rate is assumed frequency-dependent, as observed by biologists for large populations [10].
The density-dependence in the death rate is uniform over the trait space. Because of the factor
1/K, competition is governed only by traits with population size of order K. Therefore, density-
dependence disappears when the total population size is negligible with respect to K.

Let us note that under Assumption , the total mutation rate in a population with size of order
K, is equal to K~ and then goes to infinity with K. We are very far from the situation described
in many papers as [4} 6, 2] where the authors explore the assumptions of the adaptive dynamics
theory. In that cases, the total mutation rate Kpg is assumed to satisfy log K < 1/(Kpg) <



e“K | leading to a time scale separation between demographic and mutational events. Here,
small populations of size order K?, 8 < 1 can have a non negligible contribution to evolution by
mutational events and we need to take into account all subpopulations with size of order K7.

We need to consider in the sequel two different situations: either there is a single trait x with
population size of order K, called resident trait, or the total population size is o(K). In this last
case, a trait with larger population size is called dominant trait.

When the trait z is the unique resident trait, it is well known [9] that, when K tends to
infinity, the total population size can be approximated by K n(t) where n(.) solves the ODE

n(t) =n(t)(3 —z — Cn(t)),
whose unique positive stable equilibrium is given by

3—z)VO0
—

7i(z) = (1.2)

The invasion fitness of a mutant individual of trait y in this resident population is then given by
S(y;z) = b(y) —dr (y, Kn(z)) + 7lpey — Tlpsy = o — y + 7sign(y — z), (1.3)

where sign(z) = 1if ¢ > 0; 0 if x = 0; —1 if z < 0. Indeed, the total transfer rate from x to y
is given by K7 (x) (Kﬁ(%]lymﬁ ~ 7 1y~; when K — +o0 and similarly from y to x. Note that
S(z;z) = 0 and, for all traits z,y, S(y;2) = —S(z;y) (see Figure[L.2)). This implies in particular
that there is no long-term coexistence of two resident traits. We also define the fitness of an
individual of trait y in a negligible population (of size o(K)) with dominant trait z. In this case,

the density-dependence vanishes, and since NX (¢)/N/ ~ 1, the fitness is now

~

S(y;2) =3 —y+ 7lpcy — Tlpsy,. (1.4)
S (y; )
-
0 Yy —x
—T ™~
-7

Figure 1.2: Fitness function S(y;x). In the absence of transfer (r = 0), evolution favors traits y
smaller than x (their fitness is positive). The introduction of a positive transfer reverts this evolutive
trend: S(y;x) > 0if ¢ <y < &+ 7. Note that S(y;x) > 0 also for y < x — 7, which explains possible
re-emergence of sufficiently smaller traits.

Our study of the evolutionary dynamics of the model is based on a fine analysis of the size
order, as power of K, of each subpopulation corresponding to the different trait compartments.



These powers of K evolve on the timescale log K, as can be easily seen in the case of branching
processes (see Lemma |A.1)). We thus define 85 (¢) for 0 < ¢ < L such that

_log(1 + N[<(tlog K))
N log K '

NE(tlog K) = K% — 1, e pE(t) (1.5)

We assume that the trait z = 0 is initially resident, with density 3/C. The initial condition
is given by

K 3K -« 1—Lla 1-|1/aa
N (0):({7“}( | (KK ],0,...,0).

Due to mutations, this is close (in logarithmic scale) to the population state reached instanta-
neously on the time scale log K when the initial population is only composed of L%j individuals
with trait 0. This can be understood from Lemma (with 8 =0 and ¢ = 1 — « for trait J).
With this initial condition, we have

BE(0) P (1= ta)lycp . (1.6)

Our main result (Theorem gives the asymptotic dynamics of 8% (t) = (B (t), ..., B85 (1))
for t > 0 when K — +o00. We show that the limit is a piecewise affine continuous function, which
can be described along successive phases determined by their resident or dominant traits. When
the latter trait changes, the fitnesses governing the slopes are modified. Moreover, inside each
phase, other changes of slopes are possible due to a delicate balance between mutations, transfer
and growth of subpopulations. Our ambition is to cover all the possible cases: local extinctions,
re-emergence of subpopulations, changes of slopes due to mutation and selection, dynamics
when the total population size is o( K), total extinction of the population... We deduce from the
asymptotic dynamics of 55 (t) explicit criteria for the occurrence of the different evolutionary
outcomes observed in Figure (Theorem [2.5). We provide a detailed study of the case of three
traits in Section [3

Such approach has already been used in [8, [3]. Durrett and Mayberry [8] consider constant
population size or pure birth (Yule process) models, with directional mutations and increas-
ing fitness parameter. They obtain travelling waves of selective sweeps. Bovier, Coquille and
Smadi [3] consider a model with density-dependence but without transfer, with a single trait
with positive fitness separated from the initial trait by unfit traits. They obtain bounds on the
time needed to cross the fitness valley.

In our case, the dynamics is far more complex due to the trade-off between larger birth rates
for small trait values and transfer to higher traits, leading to diverse evolutionary outcomes,
including cyclic dynamics or evolutionary suicide. As a consequence, we need to consider cases
where the dynamics of a given trait is completely driven by immigrations due to mutations
from the resident trait, with time inhomogeneous immigration rates (see Theorem [B.5)). This
complexifies a lot the analysis.

We first state in Section [2] our main results. First, we give our general result on the con-
vergence of the exponents Bf (Theorem in Section Then, we give general criteria on
the parameters 7, § and « for re-emergence of trait 0 and evolutionary suicide in Section [2.2)
(Theorem . We then study in details the limit process in the case of three traits (L = 2) in
Section [3] The proofs of Theorems [2.] and are given in Sections [4] and [5] Useful lemmas



on branching processes and branching processes with immigration are given respectively in Ap-
pendices [A] and [B] Technical lemmas on birth and death processes with logistic competition and
transfer are given in Appendix[C] We conclude in Appendix [D] with the algorithmic construction
of the limit of the exponents ﬂgK , used to perform simulations.

2 Main results

We state the principal results of the paper. Their proofs are given in Sections [4] and

2.1 Asymptotic dynamics

The next result characterizes the asymptotic dynamics of 8% (t) = (85 (¢t),...,55(t)) (when
K — +00) by a succession of deterministic time intervals [sg_1,sk],k > 1, called phases and
delimited by changes of resident or dominant traits. The latter are unique except at times s and
are denoted by /30, k > 1. This asymptotic result holds until a time Ty, which guarantees that
there is neither ambiguity on these traits (Point (a) below) nor on the extinct subpopulations at
the phase transitions (Point (¢) below).

Theorem 2.1 Assume that a € (0,1), 6 € (0,4), 3/ & N,%jf?’ ¢ N and (1.6) hold true.

(i) For all T > 0, the sequence (BX(t),t € [0,T A Tp)) converges in probability in D([0,T A
To), [0, 1]%) to a deterministic piecewise affine continuous function (3(t) = (B1(t), ..., BL(t)),t €
[0, T N Tp)), such that 3¢(0) = (1 — o)y, 1. The functions B and Ty are parameterized
by o, § and T defined as follows. :

(i) There exists an increasing nonnegative sequence (sy)r>o0 and a sequence (£} )r>1 1 {0,...,L}
defined inductively as follows: so =0, {7 =0, and, for all k > 1, assuming that sp_1 < Tp
and {} have been constructed and that B(sg—1) # 0, we can construct sj, > sp_1 as follows

Sk = inf{t > Sp_q : 75 EZ, 54(t) = ﬁgz (t)} (2.1)

We can then decide whether we continue the induction after time sy (i.e. Ty > sy ) or not
as follows:

(a) if Bez (sk) > 0, we set
11 = argmax B(sk) (2.2)
(A0

if the argmazx is unique, or otherwise we set Ty = s, and we stop the induction;

(b) if Bez (sk) =0, we set sg41 =To = +oo and B(t) =0 for all t > si;

(c) if in one of the previous cases, we have for some £ # £}, Be(sy) =0 and By(sp —e) >0
for all e > 0 small enough, then we also set Ty = si and stop the induction; otherwise,
the induction proceeds to the next step.

(iii) In (i1), the functions By are defined, for all t € [sx—1, sk|, by

3 ~
60(15) = [H50(5k1)>0 <ﬂo(8k1) +/ 557]{(0;625) ds)] V0 (2.3)



and, for all ¢ € {1,...,L},
t ~
Be(t) = <B£(5k—1) + / Ss,k(f(s;f;;& ds) V (Be—1(t) — a) V0, (2.4)
te—1,kN\E

where, for all traits x,y,
Sei(y; @) = Lo, (=1 5(432) + Lg,. (n<a S(y; @) (2.5)

and where

(2.6)

Sk_1, otherwise.

; B {inf{t > Sk_1, ﬁg_l(t) = Oé}a if 5@(519—1) =0,
—1,k —

In addition, for all £ and all a < b < Ty such that the time interval [a,b] is included in the

interior of the zero-set of By, the event {NZK(t log K) = 0,Vt € [a,b]} has a probability converging
to one as K tends to infinity.

Remark 2.2 1. It follows from the definition of sy and £} | that max By(t) = Bex (t) for all

t e [Skfl, Sk).

2. In ([2.5)), when Be: (t) =1 for some t € (sx—1,5k), there is a single resident trait £;6 with

population of the order of K and the function S defined in (1.3) is used. In the case where
Bex (t) < 1, there is a single dominant trait and the total population size is of order o( K) and

the fitness function is S defined in (1.4]). During each phase, the function gt,k 1s actually
constant, equal to S or S as above, except when a dominant population becomes resident in

the same phase. In the first case, for allt € [sg_1, k), Eq. (2.3)) and (2.4) take the simpler

form

folt) = [Lgo(sx_1)>0 (Bo(sk—1) + S(8; 6:)(t — s51-1))] VO if Bez (sp—1) = 1,
o |:]]-50(sk,1)>0 (/BO(Sk—l) +S(08; 30)(t — 3k—1))] VO if Be(sk—1) <1

and, for all ¢ € {1,...,L},

—_

)

Bu(t) = (Be(sk—1) + SU0; 650)(t — te—1k)+) V (Be-1(t) =) VO if Ber (s-1) =
o= (55(31%1) + 508, 050) (t — tH,m) V (Ber(t) = @) VO if B (s5-1) <

— =

ro
—
o ~—

Otherwise, §t,k switches from S to S at the first time where max [By(t) = ﬁgz(t)
Therefore, since S(£;0,€;0) = 0, we obtain in all cases

B *(t) = ! ifﬂé;(skfl) =1,
G\ = [(Bz;;(szg—ﬂ + 5(£:8; £:5) (t_sk:—l)) A 1} VO if B (k1) < 1.

3. 1t follows from the last formula that maxy B¢(t) < 1 for all t € [0, Tp].

/.

When By(sk—1) = 0, the time t;_1 1 corresponds to the first time where the incoming muta-
tion rate in subpopulation €6 becomes significant.



A

Figure 2.1: Ezponents 5¢(t) as functions of time. (a): 6 = 1.4, « = 0.6, 7 = 2. We see a periodic
behavior showing re-emergences of the fittest traits. (b): § = 1.9, o = 0.4, 7 = 3.43. When the trait 20
becomes dominant, the population size is of order o(K). We see a re-emergence of trait 0 after a phase
of apparent macroscopic extinction (i.e. a total population size o(K)). Although the trait & goes extinct
while 26 is dominant, it is recreated by mutations from trait 0. (¢): § = 0.3, « = 1/7, 7 = 1. A cyclic but
non-periodic behaviour is observed. (d): 6 = 0.41, a = 1/w, 7 = 2.8. The population is directly driven to
evolutionary suicide.

We cannot ensure that Ty = +oo for almost all parameters «, § and 7. However we have not
encountered any case where Ty < +o00 in the simulations. In the sequel, we exhibit large sets of
parameters where Ty = 400 in the case of three traits (Section . We also prove in Theorem
that, for any sets of parameters, Ty is larger than the time of extinction or of first re-emergence.

Note that the previous result keeps track of populations of size K? for 0 < 8 < 1, but not of
populations of smaller order, which go fast to extinction on the time scale log K.

The next theorem gives a characterization of 8 as solution of a dynamical system.

Corollary 2.3 Under the assumptions of Theorem [2.1), we set

(1) =Y Gl s(t) and Sy(y; ) = Ly (m=1 S (W3 @) + 1g,. (1)< S(y; ).
E>1

The function (t) is right-differentiable on [0,Ty) and satisfies

Be(t) = Ze(t) g, (1)>0 or (Be(t)=0 and By (t)=a) (2.8)



where X is defined recursively by Lo(t) = S4(0,80*(t)) and V¢ > 1

St = Sy 0 ()0) V Se 1 (8) if Belt) = Bea(t) —
T Suws; e (1)0) if Be(t) > Bra(t) —

Remark 2.4 One may wonder if the ODE characterizes the function . For this we
first need to characterize £*(t) as an explicit function of B(t). One would like to define it as
0*(t) = argmaxo<<y, Be(t) and take it right-continuous. This is correct if there is a single argmaz.
Otherwise, there are by definition of Ty only two choices £ and £ and there is a single admissible
choice in the sense that the corresponding affine solution to on [t,t + €] satisfies £*(s) =
arg maxo<<r, Be(s) locally for s € (t,t+¢) for e > 0 small enough. Indeed if maxo<¢<r, Be(t) =1
and since S(0'6,00) = —S(£6,0'5), one of the two fitnesses is positive, for example S(£6,¢'5). If
one takes the wrong choice £*(t) = ¢, then Xy(t) = S(¢5,0'6) > 0, hence the solution of
gives Be(s) > 1 for s >t locally. If maxo<y<r, Be(t) < 1, a similar argument with S consists in
choosing the trait with higher invasion fitness.

Therefore, can be expressed as an autonomous ODE and there is a unique admissible
solution. Generalizations of our result to models with different birth, death and transfer rates,
can be obtained by changing accordingly the fitness function in this ODE.

(2.9)

Simulations are shown in Figure for various parameter values. The times s, correspond
to changes of resident or dominant populations. However, we observe several changes of slopes
between these times. The computation of these successive times called ¢, is given in Theorem

in Appendix

2.2 Re-emergence of trait 0

In Figure we have exhibited different evolutionary dynamics (re-emergence of a trait, cyclic
behavior, local extinction, evolutionary suicide). By re-emergence of a trait £0, we mean that
Be(s) = 1 on some non-empty time interval [¢1, o], then By(s) < 1 on some non-empty interval
(t2,t3) and then fy(s) = 1 again on some non-empty interval [ts,t4]. We would like to predict the
evolutionary outcome in function of the parameters «,d, 7. As detailed for three traits (L = 2)
in the next section, there are so many situations that we are not able to fully characterize the
outcomes. Therefore, we focus on the beginning of the dynamics until either global extinction
or re-emergence of one trait. The resurgence of trait 0 is a prerequisite for a cyclic dynamics as
those observed in Figures (c).
We assume that § < 4/3 (so that L > 3) and only consider the case § < 7 < 3. Let

T

F o= [%1 and k= [25].

We will see in the proof of the next result that, for the first phases,
ka

the trait kJ is resident on [sg, sk+1) (Bk(s) = 1) and for all s € [sg, sk+1),

sy(s) = 1= (L= Ko7 = 0)(s = se)] V0 ith<(<I,
VT 1 - D) (k) (k- 0)8)(s — s,) 0 <L <E.

9



These formulas stay valid until either Sy(s) = 0 (loss of 0), or By(s) = 1 for some s > s1 (re-
emergence of 0), or £;0 > 3, where £} has been defined in (the population size becomes
o(K)). The function fp(s) in the previous equation is piecewise affine and its slope becomes
positive at time sg«. Hence its minimal value is equal to

mo = Bo(s%) =1- OzS-k:_—;) (T — ;5) .

Provided the latter is positive, 5y reaches 1 again in phase [sj, s;, ;) at time

1. k T LQlj
T::SE+a(k—1)T—§5 a(|25] —1) 7— =0

T R or T oo (2.10)

Theorem 2.5 Assume 6 <7 < 3, 0 < 4/3 and under the assumptions of Theorem (2.1

(a) If mgp > 0 and k§ < 3, then the first re-emerging trait is 0 and the mazimal exponent is
always 1 until this re-emergence time.

(b) If mg < 0, the trait 0 gets lost before its re-emergence and there is global extinction of the
population before the re-emergence of any trait

(c) If mg > 0 and k§ > 3, there is re-emergence of some trait £6 < 3 and, for some time t before
the time of first re-emergence, maxy<¢<r, Be(t) < 1.

Biologically, Case (b) corresponds to evolutionary suicide. In Cases (a) and (c), very few
individuals with small traits remain, which are able to “reborn” the first re-emerging population
after the resident or dominant trait becomes too large. In these cases, one can expect successive
re-emergences. However, we don’t know if there exists a limit cycle for the dynamics. Case (c)
means that the total population is o(K) on some time interval, before re-emergence occurs after
populations with too large traits become small enough.

Heuristically, using the approximation that k~T /6, we obtain that mg ~ 1 — 5. Hence, we
have mg > 0 (re-emergence) provided 7 < 2§/« and extinction otherwise. Transfer rates higher
than 2§/« favor extinction because the population is pushed to higher trait values. Small values
of § or high values of a give more time for extinction of the small subpopulations. Note that, for
mg > 0, the condition kJ < 3 is roughly 7 < 3/2. Hence, for transfer rates smaller than 3/2, 0
re-emerges first, while other traits can re-emerge before 0 otherwise.

3 Case of three traits

Before proving our main results, let us illustrate the limit exponents 3(t) in the case of three
traits. Let us consider § > 0 such that 20 < 4 < 39, so that the possible traits are 0, § and 24.
A simulation is shown step by step in Figure [3.1} which we will now explain.

The initial condition is

B(0) = (Bo(0), B1(0), B2(0)) = (1,1 — o, (1 = 2a) V 0). (3.1)
The fitnesses given in are
S(0;0) =0, S(6;0) =7 —4, S(26;0) =7 — 2.

10



Time Time

(1) t e [O, 81] (2) t e [0,82]

(3) t € [0, s3] (4) t € [0, 4]

Figure 3.1: Construction step by step of the exponents By(t), B1(t) and Ba(t), as function of time in the
case where 6 < T <2 <3<4<36. Here, =14, a= %, 7 = 1.5. The traits are 0, 1.4 and 2.8.

3.1 Casel: 7<9§

In this case, neither the traits § nor the trait 20 are advantageous and these populations survive
only thanks to the mutations from the trait 0 to ¢ and from the trait § to 29. The exponents
remain constant and V¢ > 0, 4(t) = 5(0).

3.2 Case2: §d<717<2)

Following Theorem we shall decompose the dynamics of 3(t) into successive phases corre-
sponding to the time intervals [sg_1, Sk].

Phase 1: time interval [0,s;]. In this Case 2, S(0;0) = 0, S(6;0) > 0 and S(24;0) < 0.
While the resident population remains the population with trait 0, the population with trait §

11



has positive fitness and its growth is described for ¢ € [0, s1] by the exponent:
Bty =[1-a)+(t=8t] V(1 —a)vV0o=(1—a)+ (T -t

The bracket corresponds to the intrinsic growth associated to the fitness S(9;0), the term 1 — «
is the contribution of mutations from the population of trait 0 and is here smaller than the term
with the bracket.

The population with trait 20 has negative fitness and

Ba(t) = [(1 —2a) — (26 — 7)t] V [(1 —2a) + (1 = 8)t] VO = [(1 — 2a) + (7 — &)t] V 0.

As for the trait §, the first bracket corresponds to the intrinsic growth with a negative slope
7 — 20 < 0, while the second bracket corresponds to the contribution of mutations from the
population with trait §.

It is clear that f2(t) < B1(t) < 1. Hence the first phase stops when (3 (t) = 1, for

(0%

T—30

S1 =

The first phase is illustrated in Fig. [3.1{1).

Phase 2: time interval [sq,s2]. At time s;, the populations with traits 0 and § both have
sizes of order K: more precisely, the exponents are

Bo(s1) =1,  Bi(s1)=1,  fa(s1)=1-a.

Because S(0;0) < 0 and S(6;0) > 0, the new resident population with trait § replaces the
population with trait 0 whose exponent decreases after time s;. The size of the population with
trait 0 remains close to (3 — 0)K/C, i.e. B1(t) = 1, during the whole Phase 2, and using (|1.3):

S(0;0)=0—-7<0, S(d;9) =0, S(26;0)=7—0>0.

Thus, the decrease of the population with trait 0 is described by So(s1+t) =[1— (1 —0)t] VO
(recall that no mutant can have trait 0). The population with trait 20 has a positive fitness (first

bracket in the following equation) and benefits from mutations coming from the trait § (second
bracket):

Ba(si+t)=[1-a)+(r=0)t]V[l-a]VO=(1-a)+(r—0)t.
This second phase stops when f[a(t) = 1, at time

o 2
Sg =81+ ——= .
T — T—0

We check that fo(si+t) =1—(7—0)t, Vt & [s2—si]. This phase is illustrated in Fig. [3.1{(2).

3.2.1 Case 2(a): 26 <3

In this case, trait 20 can survive on its own, i.e. its equilibrium population size 3%‘5 is positive.

Phase 3: time interval [so,s3]. Because S(0;20) < 0 and S(2d;0) > 0, we have at time
s9 a replacement of the resident population with trait § by the population with trait 25 which
becomes the new resident population, i.e. 82(¢) = 1. At time s9, the exponents are:

,80(52) =1- a, ﬁl(Sg) = ]_, 52(52) =1. (32)
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The population size of trait 2§ is close to (3 — 20)K/C so that the fitnesses are:
S(0;20) =26 —7 >0, S(6;20) =0 —7 <0, S5(26;20) = 0.

The population with trait 0 increases with the exponent [y(se +t) = (1 —a) + (26 — 7)t.
The trait 6 has negative fitness but benefits from mutations coming from the trait 0:

Bi(sa+t)=[1—(r—6)t] v [(1—2a)+ (20 —7)t] VO. (3.3)

This third phase is illustrated in Fig. [3.1(3). This phase stops when fy(t) = 1, i.e. at time

n o 2 n «
83 =8 = .
3 2T s 1 1—6 "2—7

We also have fBi(s3) = (1 -« ;‘_‘i) V(1—a).

We have to distinguish two cases for Phase 4, depending on the value of 51 (s3).
Phase 4, case 2(a)(i): time interval [s3, s4] under the assumption 7 — 0 < 26 — 7. Then,

T—90
26 — 1’

Bo(s3) =1, Pi(ss)=1—-a Ba(s3) = 1.

The new resident population is the one with trait 0 and the fitnesses are the same as in Phase
1, but the initial conditions are different. We obtain as above the exponents 5y(s3 +t) = 1,

,81(53—|-t):[1—27;3__ia+(7'—5)t] Vv [1-a \/0:1—27;5__5T04—|—(T—5)t
and 5
Ba(ss+t)=[1— (206 —7)t] v [1—26fT+(r—5)t] Vo0,

as illustrated in Fig. |3.1] (4). The phase stops when ;(t) = 1 at time

+ o 20 n 2a
sS4 =S5 = .
1 ST s = T =5 25— 1

We check that f[a(ss+t)=1— (20 —7)t, Vt<s4—s3 and hence

Bo(ss) = 1, Bi1(s4) =1, Ba(s4) =1 — a.

We recognize the initial condition of Phase 2. Therefore, the system behaves periodically (as in
Figure 2.1](a)) starting from time sy, with period

o N 2c
T—80 20—171

S4 — 851 =

Phase 4, case 2(a)(ii): time interval [s3, s4] under the assumption 7 —§ > 20 — 7. In
this case,

Bo(ss) =1, PBi(s3) =1—a, Pasz) =1

13



In this case, we obtain By(s3+t) =1, fi(ss+t)=1—a+ (7 —9)t,

o 3a «
Ba(ss+t)=1—(20—7)t and 84_53+T—(5_T—6+26—7'

Phase 5, case 2(a)(ii): time interval [s4, s5]. We have

20 — T
Po(s)) =1, Bulsa) =1,  fBa(sa)=1-a——r-0.
Proceeding as above, we obtain
o — 51t a 20—7 3« . Q@ ta 20 — T
b (1—6)2 7-6 20—71 (1 —0)2
and for all ¢t € [0, s5 — s4], S1(s4 +1) =1,
20 — T
Bo(sa+t)=1—(r—0)t and Pa(sa+t)=1-—« +(r—0)t.

T —

Phase 6, case 2(a)(ii): time interval [s5, s¢]. We have

20 — T
T—06"

Bo(ss) =1—« Bi(ss) =1, Ba(ss) = 1.

We obtain
o — 5m 4 a Ao . o —1—0425_7
O I s T =5 "2 —1 (1 —0)2
and for all ¢ € [0, s — s5], Ba(s5 +t) =1,

25_;_4—(25—7')75 and [i(ss+t)=1—(1—0)t.

Bo(ss +t)=1—«
’7— [e—
Hence fo(ss) =1, Bi(ss) =1 — a, B2(sg) = 1. We recognize the initial condition as in Phase
4, case 2(a)(ii). Therefore, the system behaves periodically starting from time s3, with period
2a 26 — T

56_5327—5+a(7—6)2'

3.2.2 Case 2(b): 20 >3

Phase 3: time interval [sy, s3]. In this case, the trait 29, which replaces the former resident
trait 0 at time so, cannot survive alone and becomes dominant. So fa(s2 + t) does not remain
equal to 1, but decreases with slope S (26;26). Recall that, at time sg, the exponents are given
by . The fitnesses now become:

~ ~ ~

S(0;20) =3 — T, S(8;20) =3—-0—7<0, S(26;26) =3—20 <0.

Note that we do not distinguish yet on the sign of S (0;26), which may be either positive or
negative in this case. We obtain

Bo(sa+t)=1—a+B-7)t]v0, Bi(sa+t)=[1—-(T+0-3)t]V[I-2a+B—-7)t]VO0

14



and fa(sy +t) =1— (20 —3)t until either By(t) = P2(t) > 0, which corresponds to a change
of dominant population with exponent smaller than 1, or 3(¢t) = 0, which corresponds to the
extinction of the whole population. Note that we cannot have £;1(t) = B2(t) before By(t) = Pa2(t)
since 7+6 —3 > 20 — 3. One can easily check that 3(t) hits 0 before crossing the curve Sy(t) if

and only if %g:g < a. Of course, this cannot occur if 7 < 3, since in this case S(0;29) > 0.

Phase 3, case 2(b)(i): %g—:g < a. In this case, the whole population gets extinct at time

L 20 1
S3 = S = .
3T o5 3 1 -6 " 20-3

Phase 3, case 2(b)(ii): %g:g > «. Trait 0 becomes dominant and replaces trait 20 at time

n o 2 N «
S3 =8 = .
3 2T s 1 1—6 "2—7

We obtain the exponents [Sy(s3) = fa(s3) =1 —« gg:i € (0,1) and

51@3):[1_@5“—3} [1_a4<5—7—f’>

20 — 1 20 — T

Phase 4, case 2(b)(ii). We obtain the new fitnesses

~ ~

S(0;0)=3, 8(50)=3+7-0>3,  S(20;0)=3—-20+7 € (0,3).

To compute [;(s3 + t), one needs to distinguish whether 51(s3) > 0 or 1(s3) = 0. In the last
case, one needs to wait until Sy(s3+¢) = « before 31 starts to increase with slope 3+ 7 —4J. The
phase stops either when Sy(s3 +t) = 1 (re-emergence of trait 0, which becomes resident once
again) or fo(t) = B1(t) < 1 (change of dominant trait). A delicate case study shows that the
first case occurs if 7 — ¢ < 3/2 when S1(s3) > 0, or if 7 — § < 3a/(1 — a) when S(s3) = 0, and
the second case if 7—§ > 3/2 when £;(s3) > 0, or if 7 —3 > 3a/(1 — a) when S;(s3) = 0. In the
first case, one needs to proceed with similar computations as in the first phases. In the second
case, either trait J re-emerges first (i.e. becomes resident again), or trait 20 becomes dominant
once again. Explicit computations of the subsequent dynamics are very lengthy. This case is
illustrated by Figure 2.1|(b).

3.3 Case 3: 20 <1

We proceed similarly as in Case 2.

Phase 1: time interval [0,s;]. This phase is the same as in Case 2. The resident trait is 0
and the fitnesses of the three traits are given by

S(0;0) =0, S(;0)=7—-35>0, S5(2§0)=71—26>0.
We obtain, for all ¢ € [0, s1], Bo(t) = 1,

fit)=1—a+(r—0)t and p[a(t)=1—2a+ (1 —19)t
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where s = -%5. Thus fo(s1) = B1(s1) = 1 and Ba(s1) =1 — c.

Phase 2: time interval [s;, so]. This phase is also the same as in Case 2. The resident trait
is 6 and the fitnesses are given by

S(0;0)=—(r—0) <0, S(§0)=0, S(2§0)=7—06>0.
We obtain, for all ¢ € [0, s2 — s1], f1(s1 +1t) =1,
Bo(si+t)=1—(r—06)t and Pa(si+t)=1—a+(r—9)t,

where sy = 51+ -%5. Thus Si(s2) = fa(s2) =1 and So(s2) =1 — .
Again, we have to separate the cases 26 < 3 and 2 > 3.

3.3.1 Case 3(a): 26 <3

Phase 3: time interval [s2,4+00). The resident trait is 20 and the fitnesses are given by
S5(0;20) = —(1—20) <0, S(6;20)=—(1—9) <0, S5(26;29)=0.
We obtain, for all t > 0, Ba(s2 +t) =1, Bo(s2+t)=[1—a—(7—26)t] V0 and
Bi(sa+t)=[1— (=98t V[l—2a—(r—2)t]VO.

Therefore, 20 remains the resident trait forever.

3.3.2 Case 3(b): 20 >3

Time interval [s2,+00). The resident trait 20 cannot survive by itself. Hence, the fitnesses are
now given by

5(0:20) =3—7<0, 5(0;20)=3-06—7<0, 85(2525) =3-—25<0.
Since S(0;28) < S(26;26) and 5(5;26) < S(26;26), Phase 3 will end when B5(t) hits 0, i.e.
when the population gets extinct. Hence, for all ¢ > 0, fo(se +t) = [l —a+ (3 —7)t] VO,
Pi(sa+t)=[1—(1+d—-3)t]V[l—2a+ (3—7)t] V0 and Ba(s2+1t) =[1— (20 —3)t] VO,
and the extinction time is s3 = sg + ﬁ.

4 Proof of Theorem [2.1]

4.1 Main ideas of the proof

We start from the stochastic birth and death process with mutation, competition and transfer,
(NE(@),...,NE(t)). Our goal is to study the limit behaviour of the vector (B (¢),..., X (t))
defined in .

Theorem [2.1] will be obtained by a fine comparison of the size of each subpopulation defined
by a given trait value with carefully chosen branching processes with immigration. The stochastic
dynamics consists in a succession of phases [a,f log K, 0,5 log K] followed by intermediate steps
[915 log K, Ulﬁil log K. We will prove that 0,5 converges in probability to si, k£ > 1. In each phase

16



there is a single resident or dominant subpopulation. When another trait reaches a comparable
size, the intermediate step starts and ends after the replacement of the resident or dominant
trait. In the limit, intermediate steps vanish on the time scale log K.

To control the exponents Bf (t), we proceed by a double induction, first on the phases, and
inside each phase, on the traits ¢4, for £ = 0 to £ = L. The exponents are approximately piece-
wise affine. Changes of slopes may happen when a new trait emerges, when a trait dies or when
the dynamics of a trait becomes driven by incoming mutations. We use asymptotic results on
branching processes with immigration detailed in Appendix [B] to control the sizes of the non-
dominant subpopulations. The main result used inside phases is Theorem
During intermediate steps, two subpopulations are of maximal order. We use comparisons with
dynamical systems, see Lemmas [C.2] and [C.3]

Let us now describe in more details how the stopping times 0,5 are constructed. At each
phase, this time may have two different definitions depending on whether the future emerging
trait is dominant or resident. For this, it is convenient to consider X and #X where the index
k is omitted. Consider a phase, starting at time ¢X log K with the largest subpopulation of
trait £*0. Two cases may occur: either £*0 is a resident trait with population size close to its
equilibrium (3 — £*0)K/C, or £*§ is a dominant trait with population size o(K).

In the first case, for the k-th step, we have o = J,f — Sk_1 in probability when K — 400
and * = (7. Other population sizes are negligible with respect to K. Given parameters e, > 0

and given m > 0 to be fixed later, we introduce:

306 3—0%

C

9K — inf {t > oK . NE(tlog K) ¢ [( — 30K, ( + 35*)17(]

or ZNf((tlogK) >me K ). (4.1)
£

On the time interval [oX log K, 0K log K], we proceed by induction on the traits. For £ €
{1,... L}, having proved the convergence of B (t), ... B85 (t), to Bo(t), ... Be—1(t), we will bound
from below and above the population size NEK (t) for £ # £* by branching processes with immi-
gration on each interval where 3,_; is affine. Either 85 — 400 when K — +o0o with probability
tending to 1 and in the limit there is no further change of the resident population. Or, 8% has a
finite limit s, in probability (s, = sj for the k-th phase). In this case, we will show that at time
6K only two traits have sizes of order K and are then competing with each other, or s, = Tp
and we stop the analysis. In the first case, there is a transition step, with duration of order 1,
leading with large probability to the replacement of the resident population by the new trait.

In the second case, for the k-th phase, the time o is chosen such that ¢ = 0,5 — Sp—1+S

for some small s > 0 in probability when K — +o00. We proceed similarly as before, replacing
6K by

i = inf {t o i Jog(1+ N (tlog K))

<= s # B (8) = 0, B (1) 4 21,

or ZNgK(tlogK) > me NE(tlog K) p . (4.2)
£t
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4.2 Phase 1

Let us begin the induction on the phases and start with Phase 1. We study the stochastic process
between times 0 and s; log K. For the chosen initial condition (1.6)), 8¢(0) = (1 — fa)+ and the
resident trait is 0. We distinguish two cases: either 7 < § or § < 7.

4.2.1 Case 7 < J: a single phase
Using formulas (2.3)) and (2.4) recursively, we obtain

Bo() 1 tO,l:O
(1—a—|— 7—5)t)v(1—a)\/021—a, t11 =20

ﬁg(t) = (1— bt (r—8)t) vV (1—La) VO =(1—fa)s, te=0.

From (2.1)), we obtain s; = 400, and 3(t) is constant. This is due to the fact that all non-resident
traits have negative fitness and their size is kept of constant order due to mutations from the
resident trait 0.

In the sequel, we denote by BPk (b, d, 3) the distribution of the branching process, with in-
dividual birth rate b > 0, individual death rate d > 0 and initial value Zf = [K” — 1] € N. We
refer to Appendix |A|for the classical properties of BPx (b, d, ) which will be used to obtain the
following results.

We also denote by BPIk(b,d,a,c, ) the distribution of a branching process with immigration,
with individual birth rate b > 0, individual death rate d > 0, immigration rate K% at time
s > 0 with a,c¢ € R and same initial value. We refer to Appendix [B]

Similarly, LBDIk(b,d,C,~) is the distribution of a one-dimensional logistic birth and death
process (see Appendix |C]) with individual birth rate b > 0 and individual death rate d + Cn/K
when the population size is n and immigration at predictable rate v(t) > 0 at time ¢.

We introduce a parameter £g > 0 and we choose K large enough so that NOK(O) € [(% —
60)K, (% + Eo)K:|. Consider 9K in ({.1)) with ¢* =0, e, = g9 and o& = 0.

In order to couple the population with branching processes with immigration, we start with
computing the arrival and death rates in the subpopulation of trait 49, for £ > 0. For K large
enough, arrivals in this population due to reproduction of trait £6 or transfer occur at time

£—1 K
t <OK AT at rate NS (tlog K) [(4—65)(1—K‘°‘)+ 2y N (o8 )

le Nf( ((og K)] satisfying

NE(tlog K) {4—55—60—1-7' 3 — 3C ]

3+ 0(3 + m)Eg
Ne/ (t log K)
Ezl Né{((thgK)

< NE(tlog K) [(4 — ) (1 - K )47 ] < NE(tlog K)[4— €5 +7].

Arrivals due to incoming mutations from trait (¢ — 1) occur at time t < 65 A T at rate
NE (tlog K)(4 — (£ —1)8) K.
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Deaths occur at rate N/ (tlog K) [1 + % 25:1 N (tlog K)] satisfying

NE(tlog K) (4 — 3Ceq) < NE(tlog K)

L
1+ % > N (tlog K)] < Nf(tlog K) (4 + C(3 + m)eg) -
=1

Step 1 Let us prove by induction on ¢ > 0 the following bounds on the mutation rates: for all
t < 0K AT, with probability converging to 1 as K — +o0,
KB —a—(tHz0 < NK(t1og K)(4 — £6) K~ < KAt —at(tH1)z0,
For ¢ = 0, by definition of §X,
K'mo0 < NE(tlog K) 4K~ < K'7ateo (4.3)
is clear. To proceed to £ = 1, we use standard coupling arguments to obtain
Z{ (tlog K) < N{*(tlog K) < Z{,(tlog K), Vt<O0F AT, (4.4)

where Z{\| is a BPIg(4— 047 —Ceo, 4+ Ce,0,1 —a—eo,1 —a—gg) and Z{%, is a BPIx(4—
§+ 71,4 —Ce,0,1 —a+¢ep,1 —a+eg), with

C=1+1VvT7)C(6+m).

Note that the addition of €9 in the coefficient 8 of the upper-bounding branching process ensures
that ¢ < (3, so that we can use Theorem [B.5{(i) to deduce that as K tends to infinity, since
T—0<0,

log(1+ Z{ (tlog K _
°8( L(tlog K)) — [1—a—egy+ (1—6—-2Ce)t]V[l—a—g] > 1—a—eo = Bi(t) — o

log K
and
log(1 + ZK,(tlog K _
B 10;21({ ) — [1—a+e+(t=0+Ce)t] V[l —a+eg] <1—a+eo = Bi(t) +eo,

in L>°([0,T]) and provided that g is small enough.

Assume now that the induction hypothesis is true for —1 > 1 and let us prove it for £. Either
¢ <1+ |1/a| and we have for all t < X AT, with probability converging to 1 as K — 400,

Klm(amamteo < NE (1log K)(4 — (0 — 1)0) K~ < K1~ (-Damatteo (4.5)

or £ > 1+ |1/a) and Nf,(tlog K)(4 — (£ — 1)6)K~® = 0. Hence, with probability converging
to 1,
Z{ (tlog K) < N[ (tlog K) < Z[S(tlog K), ¥Vt < 0K AT, (4.6)

where Zgﬁ is a BPIg(4— 05+ 1 — Cep,4 + Ce,0,(1 — ({ — 1))y — a — Leg, (1 — b — Leg) )
and Ze{g is a BPI(4 — 45+ 7,4 — Cep,0,(1 — (£ — 1)a)y — a + Leg, (1 — ba + {2p)+). Note
that when ¢ > 1 4 |[1/a], the lower bound has nonzero but negligible immigration, hence the
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comparison is true only on the event where there is no immigration in Zé{l on [0, T log K], which
has probability converging to 1 (see Lemma [B.7)).

If ¢ < |1/a], we use Theorem [B.5 (i) to deduce that as K tends to infinity, uniformly for
te[0,T7,

log(1 + Zfl (tlog K))
log K

— [1— Lo — leg + (7 — €6 — 2Ceq)t] V [1 — Lo — Leg) > By(t) — Le,

and

log(1 + Z§5(tlog K))
log K

— [1 —lo+ leg + (T — 45 —i—éeo)t] V1 — Lo+ leg] < Be(t) + Leo.

If |1/a]+1 < ¢ < L, we use Theorem B.5| (iii) and (B.15) (assuming that £¢ is small enough)
to prove that log(1+ ZX (tlog K))/log K converges to 0 in L>([0,77), and N gets extinct with
high probability for t < 85 A T.

We deduce that, with probability converging to 1, (4.5)) is satisfied with ¢ — 1 replaced by /.
This completes the proof of ({.5) by induction. In particular, on the time interval [0, 0% A T7,
log(1+ NE(tlog K))/log K converges to B(t) = (1 — fa).

Step 2 It remains to prove that #X > T with probability converging to 1. Using the previous
steps and recalling that 5,(t) = 5,(0) = (1 — fav)+, we have, with probability converging to 1,
that sup,c(oo7) |BE(t) — Be(t)| < a/2, and thus, for all t < 65 A 2T,

™=

NE(tlog K) < K™®ase<rreper) PeO+5 = 1-3 (4.7)
/=1
Hence, we have for all t < 5 A 2T that
Z§ (tlog K) < N§¥ (tlog K) < Z§5(tlog K), (4.8)

where Z{< is a LBDIx(4(1— K~®),1+CK~%/2 C,0) and Z&% isa LBDIk(4,1,C,0). Applying
Lemma|C.1(i) to the processes Zéfi, i = 1,2, we deduce that 85 > T with probability converging
to 1 when K — +o0.

4.2.2 Case 7 > ¢§: Phase 1
We already computed in Lemma (5.4)) the functions S,(t) and the duration

o
T—90

S1 =

of the first phase. Recall that, on [0, s1], B¢(t) = (1 —Lla+ (7 —§)t)+. Notice that | /41 < 51 <
te for all £ > |1/a], where t;, are defined in (2.6)), so that, on [0, s1],

o for { < |1/a] + 1, By(t) is an affine function with slopes 7 — § except for the resident
population;
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o for £ > [1/a] +1, Be(t) = 0;
e for £ = [1/a] + 1, there is a change of slope at time #|1 /4] 1

We define the same stopping time #X as above. The comparisons of arrival and death rates
of Nf(tlog K) are the same as in Section We proceed by induction over ¢ > 0 as above.

For ¢ = 0, (&.3) remains true by definition of #5. To proceed to ¢ = 1, we observe that (4.4
remains valid and Theorem [B.5|(i) gives as before that as K tends to infinity, since 7 — § > 0,

log(1 + Z{% (tlog K))

— [1—a—eg+ (1 =0 —2Ce)t] V[1—a—eg] > fi(t) — 2CeoT,

log K
and
log(1 + Z{%(tlog K _ B
g( 10;,2]({ g ))_> [1—a+50+(7_5+050)t]V[l—a-i-Eo]§51(t)+60(1+CT),

in L>=([0,s1 A T]) and provided that ¢ is small enough.

For 2 < /¢ <1+ |1/a], the induction relation (4.5) is modified as follows. For all £ > 1, let
Cy=1+2CT. (4.9)
We assume that, for all t < 05 A sy AT,

log(NE  (tlog K)(4 — (£ — 1)6) K~2)

() —a—Cpe <
Be—1(t) —a — Cy_1g0 < g K

< Be-1(t) —a+ Cpqgo.  (4.10)
Hence, with probability converging to 1,
Z{ (tlog K) < N[*(tlog K) < Z{%(tlog K), Vt <0 Asi AT, (4.11)

where ngl is a BPIx(4— 05 +7— Ceg,4+ Ceo, 7 — 0,1 —ba — Cy_1€0, (1 — b — Cy_1£0)4 ) and
ZZI,(Q isa BPIg(4—05+ 7,4 — Ceg, 7 — 0,1 —ba + Cy_1 €0, (1 —La+ Cy_ye9)4).

Note that, in this Phase 1, 8,_1(¢) is affine on [0, s1], so we can apply Theorem on the
whole interval [0, s1]. If £ < |1/a], we apply Theorem [B.F] (i) and if £ =1+ |[1/a], 8,(0) = 0 so
we apply Theorem [B.5| (ii), using that a = 7 — § > r = 7 — £5 + Cgq for €y small enough. We
deduce that, in both cases, as K tends to infinity, for all ¢t < 05 A sy AT,

log(1 + N[ (tlog K))
log K

Hence, we have proved (4.10) for £ + 1 and the induction step is complete. We also deduce
from (B.15) that Nl]iLl Ja] (tlog K) = 0 for all ¢ in a closed interval of [0,s;] included in the

complement of the support of (1 — o — Cy_160 + (T — 0)t)+.

(Be(t)—=Cr—1g0)+ <

< (1—la—Cy_1e0+(7=00)t)+ < Be(t)+Co_180. (4.12)

For £ =2 + [1/a], because 341/, has a change of slope at time

a—(1-[1/a]a)
t1/al1 = - ;
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the bounds (4.10]) on the immigration rate do not allow to apply Theorem on the whole inter-
val [0, 51]. Instead, we first apply them successively on the intervals [0,%1/4,1] and [t|1/q),1,51]-
On the first interval, we have the bounds

Z{ (tlog K) < N/ (tlog K) < Z[%(tlog K), ¥Vt < 05 A1/ AT,

where Z[Y is a BPIg(4 — €5 + 7 — Ceo, 4 + Cep, 0, —a — Cp_1€0,0) and Z[, is a BPIr(4 —
05+ 7,4 — Ceg,0, —a+ Cy_10,0). We apply Theorem [B.5| (iii) to deduce that, with probability
converging to 1, N[K(tlogK) =0forall t € [0,#1 /)1 A oK AT).

On the second interval, we obtain similar bounds with Zeffl a BPI(4—5+71—Ceg,4+Ceq, T —
9, —a — Cy_1£0,0) and Zzl,(z is a BPIx(4 — 06 + 7,4 — Ceo, 7 — 6,—a + Cy_1€0,0). Because
(7—0)(81—t[1/a),1) < @, we apply Theorem [B.5[ (i) to deduce that, with probability converging
to 1, NX(tlog K) =0 for all t € [t11/a),1 A 05 AT, 51 NOK AT

For ¢ > 2+|1/a], we proceed similarly to prove by induction that, with probability converging
to 1, NS (tlog K) =0 for all t <s; AOE AT.

Using the comparison argument with logistic birth-death processes (4.8) on the interval
[0,0% A (s1—n) AT], we can prove as in the previous section that, for all n > 0, 05 > (s; —n) AT
with probability converging to 1.

To conclude, since gp in (4.12) is arbitrary, we have proved that, for all n > 0, log(1 +
NE(tlog K))/log K converges to B¢(t) in L>([0, (s1 —n) A T)).

4.2.3 Case 7 > J: Intermediate Step 1

The goal of the intermediate step is to prove that, on a time interval [0X log K, X log K+T (s, m)]
with T'(e,m) to be defined below, the two traits £70 = 0 and ¢350 = § are of size-order K and
population with trait 0 is declining below a small threshold while population with trait § reaches
a neighborhood of its equilibrium Kn(d) = %.

Let us first show that 85 < s; 47 with probability converging to one, for any 1 > 0. For this,
we observe that the bounds of and are actually true for all t < 85 AT provided we
use (1 —la+ (1 — 0)t); instead of B,(t) inside (4.10), since B(t) is constructed only on [0, s1] in
Phase 1. This gives with high probability for all t < 8K AT

log(1 + NE(tlog K))
log K

(1 —la+ (tr—=90)t)y — Crep < <(1—la+ (r—=90)t)y + Creo.  (4.13)

In particular, if 85 > s; 47 with positive probability, we would obtain, with high probability
on this event

log(1 + N ((s1 +n)log K))
log K

>1—a—Cieg+ (1 —=90)(s1 +n),

which is larger than 1 provided ¢g is small enough. This would contradict the assumption that
0K > 51 +n. Hence, limg_, o0 X = 51 in probability.

In the previous phase, we used bounds on N({((t log K) until time s; — 7. We now need
to extend them until 5. In this case, (4.7) is not true anymore. Therefore, assuming K
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large enough to get 4K~% < Cmeg, we couple NOK (t) with two logistic processes Zéfl and Z&(Q
of respective law LBDIk(4,1,C,0) and LBDIk(4 — Cmeg, 1 + 7220~ + Cmeo, C,0). The

3/C—3e9
equilibrium density of Z[{{l is 3/C but the one of Z&% is

Z 3 o | 2m + m
Z02 = — — m+ ——-: .
0.2-= ¢ =0 3 35,C

We choose m small enough to have

™n 1

O<2m+—"" 2
Mt 33,0 < 3

(4.14)

Then, observing that Z&(Q(O) € {(2072 — 450/3) K, (20,2 + 450/3) K} we can apply Lemma [C.1{i)
to Zg with & = 4g/3 to deduce that

Z§(tlog K)

3
li IP’( , (202U PO 0 ) —1
Jim Vt € [0,s1 + 1) % 7C+360
Applying similarly Lemma (1) to ngl, we obtain
NE@OFlogK) 3 3
li [[D(O*— 2 el ) - 1.
e K €lg =320, 5 + 3]

Hence, by construction of X we have with probability converging to 1

L
ZNZK(Gf log K) > meo K.
(=1

Remark 4.1 The constraint on the constant m > 0 ensures that, when trait 0 is resident,
with high probability, at time 05, a second trait emerges. Similar constraints can be defined for
any other resident trait £6 < 3 and we can choose m such that all the constraints are satisfied.
In all the proof, we assume that such m > 0 is chosen.

Using Formula ([#.13) and the convergence of 85 to s, we show immediately that, with

probability converging to 1,
L

> NF(0Flog K) < K72, (4.15)
(=2
Hence N¥ (6K log K) > megK /2 for K large enough.
It is now possible to use Markov property by conditioning at time #X log K. We distinguish
whether the emerging trait § can survive on its own (§ < 3) or not (6 > 3).

Case 7 > 0: Intermediate step 1, case § < 3 For § < 3, we first claim that there exists
s > 0 small enough such that

L
S ONE(tlog K) < K4 vie [0F, 65 + o).
=2
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This can be obtained from the continuity argument of Lemma Then, we can apply Lemma
C.3(1) with
BE(1) = 40— K™), b (1) = (4—8)(1— K,

L
df () = df () = 1+ ([i ST NRG Y )> >N,
£=0 (=2

Ng* (t) + N (1) —a
OZeL:o Ngfl(t) 0 () =0, (1) = 4K NG (1),

which converge respectively to by =4, by =4 —0, dy = dy = 1, 7, 0 and 0. Note that Point (i) of

Lemma [C.3] applies here since ro = by —dp =3 > 0,11 =by—d; =3—0 >0and S=7—-6 > 0.

We obtain that there exists a finite time T'(m, g) such that with large probability,

-0 3—0
-3

c " e

5 (t) =

3
NE (95 log K+T'(m,e0)) < megK  and NE (95 log K+T'(m,e0)) € [ —1—350}.

Hence, the first intermediate phase ends at the time
oflog K = 60X log K 4 T'(m, &)

where o — 51 in probability. Using (4.13)), the continuity argument of Lemma and the fact
that (7 — §)s1 = «, the population state at time o satisfies with probability converging to 1

NlK(U{(logK)G[Z%—d_E 3—6
K c U cC

l-—1a—e,l—(L—-1Da+ 61] = [Be(s1) — €1, Be(s1) + €1],

V2<0<1+[1/al,
NE(oKlogK) =0, V2+|l/a] <(<L.

K750 < NE(oKlog K) < meoK,

log(1 + NE(cflog K)) {
log K

+511|a

where

e1 = (CL V 3)ep. (4.16)
We are then ready to proceed to phase 2 (see Section .

Case 7 > §: Intermediate step 1, case § >3 When ¢ > 3, we need to apply Lemma (iii)
instead of (i) since r; =3 —§ < 0. Using and the continuity argument of Lemma as
above, we obtain for all s > 0 small enough, with probability converging to 1,
log(1 + NE((0K + s)log K))
log K
NE(OK +5)logK)) =0, V2+[1/a] <(<L,

€ [1—(e—1)a—51,1—(e—1)a+51 , V2<i<1+|1/al,

with €1 defined in (4.16)). Without loss of generality, we can take s > 0 small enough to apply

Lemma [C.3[(iii).

We define the end of the first intermediate phase as
51 == 05 + S
and

K7 < NEGEKlog K) < K—*PNE (), NE(7FlogK) < K175,
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4.3 Phase k£ +1

Recall that when 7 < ¢ there is only one phase. So now, we only consider 7 > 4.

Assume that both Phase & > 1 and intermediate step k are completed and that s < Tp
(otherwise, we stop the induction at the end of phase [si_1,sk]). Two cases may occur: either
the emerging trait becomes resident during Phase k + 1, or it becomes only a dominant trait.
The latter case can occur when the trait is fit (£;,;0 < 3) but its population size is small, or
when it is unfit (£; 0 > 3).

We proceed as in Phase 1 by induction over ¢ € {0,...,L}. For each ¢, we couple NEK with
branching processes with immigration on each time interval included in [sg, sp+1] where Bp_1 is
affine.

In Phase 1, we took care to give bounds involving explicit constants Cy for sake of precision.
From now on, we use a constant C, which may change from line to line.

4.3.1 Phase k+1, case 1

We assume that, maxo<¢<r, Be(sk +s) = 1 and £ 6 < 3, and this maximum is attained only for
{7 and €2+1> since s < Tp.

The induction assumption in this case is as follows: suppose that, for all £ > 0 small enough,
we have constructed o,f such that a,f log K is a stopping time and

° Uf converges in probability to sg;

Ng (offlogK)  rg sp 3-5¢
° k+1 c k+1
K C

«
k+1 .
€k, C+ + €k |3

o K178k < N(fg(a,flogK) < e K

o for all ¢ # 05,05, either N (offlog K) = 0 if B¢(sx) = 0, or otherwise

_ log(1+ NE(cFlog K))

_ < 1.
Be(sk) — ek < log K& < Bi(sk) +ex <

We now give the proof of the induction step. Let us define #X as in (4.1 with ¢* = et

€« = € and Uf :U,f.

Observe first that, by definition of X

- log(1 + NX (tlog K))

1-— *
- log K

<l4e., Vte[oF oK.

Our goal is to obtain bounds on N ZK by induction on £ #£ £*.

Induction initialization: If £* = 0, we start the induction at £ = 1; otherwise, we start it at
£=0.

In the first case, using Markov property at time oX which converges to s, we can proceed
exactly as in Phase 1 to prove that, with high probability for all ¢ € [¢X, 0K A T,

log(N{ (tlog K))
log K

Bi(sk) + (1 —6)(t — s) — Ciex < < Bi(sk) + (7 = 0)(t — si) + Cues.
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Note that, for sp <t < sgy1, Bi1(sg) + (1 — 0)(t — si) = Pi(t), so that we recover bounds of the
form .

In the second case, since there is no incoming mutation for trait 0, we can bound the process
N(f( (Uf + t) with branching processes with constant parameters, and, if 5y(si) > 0, we deduce
from Lemma [AT] that

1 K(t]
Bo(si) + (056 — 7)(t — s) — Chey < og(N(l)Oét;g K))

and that Nf<(tlog K) = 0 for all t > ok if By(s) = 0 (recall that no incoming mutation can
enter the sub-population with trait 0).

< Bo(sk) + (€0 — 7)(t — sx) + Ciex,

Induction step: Assume that we have proved that, with high probability for all ¢ € [¢&, 05 A
Sk4+1 A\ T]7 K
log(N;* (tlog K))
_1(t) — Chex <
Be-1(1) €x < log K

and that N/, (tlog K) = 0 for all ¢t € [0X,05 A s;1 A T) such that Br_1(s) = 0 for all s €
[(t —e4) V sk, t+€*]. Our goal is to prove that this holds true with ¢ replaced by ¢+ 1. We split
the interval [sg, sgp41] into subintervals where 5,_; is affine. We proceed inductively on each of
these subintervals by coupling with branching processes with immigration as in Phase 1. Let us
detail the computation for the first subinterval, say [sk, t1]. On this interval, we introduce a and
¢ such that

< /Bf—l(t) + ey

Be—1(t) =c+a+a (t—s), VtE sk ti],
to be coherent with the notations of Appendix[B] We can then construct as in Phase 1 branching
processes with immigration bounding from above and below NéK(t log K) for all t € [oX, ty ATE A
T with distributions BPI(4—054+71 s+ £Cues, 4—00+T1pcpr FCres, a, cEChey, Br(si) £Crey)
if By(sk) > 0, or BPI(4 — 45 + T1pspr £ Cies, 4 — 00 + 71y px F Cies, a,c = Ciey, 0) otherwise.
We shall consider several cases.

Case (a) Assume that 5y(si) > 0. Then, applying Theorem |B.5| (i) to the bounding processes,
we deduce that, with high probability on the time interval [¢X, 05 A t1 A T,

(Be(sk) + S(€6;070) (t — sp) — Ciex) V (Be-1(t) — a — Ciex) VO
- log(NX (tlog K))
- log K

< (Be(sk) + SU8;070) (t — sg) + Cues) V (Be_1(t) — a+ Cyes) V0.

Case (b) Assume that §;(sx) = 0 and the time ¢,_; j defined in ({2.6|) satisfies ¢,_; , < t1. This
last inequality implies that ¢ < 0 and then ¢, = sy — ¢/a. Applying Theorem |B.5| (ii) to the
bounding processes, we deduce that, with high probability on the time interval [of, 65 At AT],

[(S(£d;075) — Ciex) Va] Vv <t — sk + Cif*g*> VO

< log(N/ (tlog K))
log K

The bound can be rewritten as

V0.

< [(S(08;£°5) + Ce) V a] V (t o ”55>

log(NX (tlog K
(S8 0) V al(t — te_1)s — Coe, < 28N (H08 K))

< - p* _ .
- log K < [S(65;676) V al(t — ti—1k)+ + Ciex
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Case (c) Assume that B¢(s;) = 0 and t,_1 4 > t1. Then, applying Theorem [B.5| (ii) or (iii)
to the bounding processes, we deduce that, with high probability on the time interval [af{ LOK A
t1 AT), NE(tlog K) = 0.

Summing up all these cases, it appears that we can extend [(t) on the interval [sg,?;] as
in (2.4) to obtain, in all cases,

log(NeK(t log K))
log K

Be(t) — Ciex < < Bo(t) + Cie. (4.17)

We proceed similarly for the other subintervals and deduce that (4.17) holds true with high
probability on the time interval [0X, 05 A sz 1 A T]. This finishes the induction on £ # £*.

As in Phase 1, we can control fo (t) by logistic branching processes to show that X >
(sk+1 —n) AT with probability converging to 1 for all n > 0.

It also follows from (B:I5) that N/(¢ log K) = 0 with high probability on close subintervals
of int{fy = 0}Nsk, Sk+1)-

4.3.2 Intermediate step k+ 1, case 1

As in Intermediate step 1, we first extend the inequalities ([{.17) to [0 %, 85X AT]. These inequal-
ities involve the [y(t) that are constructed in Phase k + 1 only until sg1. Explicit expressions
of Be(t), that we do not develop here, can be obtained using the recursion in . Using these
formulas instead of 8,(t) in (£.17)), we obtain inequalities valid on [08%, 05 AT), with probability
converging to 1.

At time s 1, there exists at least one £} , # £} | such that ,Bgz+2 (sg+1) = land S(£Z+25, lip16) >
0. Proceeding by contradiction as in Intermediate step 1, this allows us to prove that

lim 0K = s,.;.
K—+o0o * +

This ends the proof of Theorem R.1]if sz11 = Tp. If sp11 < Tp, as in Intermediate step 1, with
high probability, for some x > 0,

>, NEOFlogK) <K',
SACARRLATY

and Nfgﬁ(@f log K) > me, K/2.

Distinguishing as in Section whether the emerging trait £; 4 is above 3 or not, we can
define a time a,ﬁ(HlogK or aﬁllog K satisfying the recursion properties stated at the beginning
of Section m The fact that the populations such that S¢(sxy+1) = 0 are actually extinct at
time a,ﬁl log K follows from and from the fact that, by definition of Ty, we also have
Be(sk+1 —€) = 0 for € > 0 small enough.

This ends the Phase k + 1 case 1 and its intermediate step.
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4.3.3 Phase k+ 1, case 2

We assume here that sp < Tp and maxo<s<r, Be(sg) < 1 or €5, ;0 > 3 and the maximum is
attained only for ¢ and £ ;.

Here, the induction assumption is as follows: assume that, for all £ > 0 small enough, for
all s > 0 small enough, we have constructed a stopping time 5,5 log K such that

° Ef converges in probability to si + s;

o for all ¢ # (5, cither Nf(oflog K) = 0 if By(si + s) = 0, or otherwise

log(1 + NX(cflog K))
log K

Be(sk +5) — e < < Be(sk +8) +ex < Ber

(st s) <1
Let us define 5*K as in (4.2) with £* = £} |, e« = &; and ok = 5,5. As in the Phase k + 1,
case 1, our goal is to obtain bounds on NV, KK , by an induction on £. Either the trait £*§ remains

dominant during the whole phase (supsc(s, s,,,)8e+(t) < 1, see case (a) below) or it becomes
resident during the phase (case (b)).

Case (a) In this case, there is no density dependence since the whole population is of size order
o(K). We can proceed exactly as in Phase k+1, case 1, with the use of the fitness S instead of S.

With high probability for all ¢ € [¢X, 65 A s AT), for all £ € {0,... L},

log(NX (tlog K))
— <

< By(t) + Che (4.18)

and that N/(tlog K) = 0 for all ¢t € (050K A spy1 A T) such that By_1(s) = 0 for all s €
[(t —e4) Vs, t +£%].

Case (b) Let us denote by ¢; the first time at which S¢«(t) = 1. We introduce:
é\f = inf {t > ol . NE(tlog K) > ma*K}.

On the time interval [0, 6K N OE Aty A T], we proceed as in the case (a) to deduce that
(4.18) holds with high probability on this time interval. As in case (a), the exponents S, are
defined with S for all s € [sg, t1]. Extending By on [sg, t1] like this is consistent with (2.4) where

~ ~

Ssk =S (see (2.5)).
Proceeding as in Section we can prove that, with high probability, é\f < gf and

lim 6K =1¢,.
K—+oo

Using Lemma (ii), there exists T'(e4) such that with high probability

NE(OF log K + T(e.)) . [3—6*6 L 309
K C e

+ 3e4].
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By Lemma at the time 0K log K + T'(ex), we have for all ¢ # ¢,

log(1 + NeL(é\f log K + T'(e4)))
log K

€ [Be(tr) — e, Beltr) + &)

Applying the Markov property at this time é\f log K 4+ T'(e,) and proceeding as in Phase k + 1,
case 1, we obtain (|4.18]) where 8y now evolves with the fitness S instead of S. This is consistent
with (2.4) where S5 =S on [t1, sg4+1]. This enlightens the introduction of S in (2.5). This case

is the only one where S j is not constant on the phase [sy, sky1].

4.3.4 Intermediate step k + 1, case 2

In case (b), a new trait emerges in a resident population. This is treated in Section m
In case (a), either there is extinction of the population at time sp11 < 400 (note that extinction
can occur only in this case), or there is a change of dominant population at time sg41 < 400.

Extinction In this case, either spy1 = Tp, and we can conclude the induction as in Sec-
tion or sp+1 < Tp. This means that, for all £ # £*, 5y(t1 —n) = 0 for some n > 0, so
after time t; — 7, NEK (t) = 0 with high probability. The population is then composed only of
individuals with trait £*6 and can be dominated by a subcritical branching process. Lemma
proves the extinction of the population.

Emergence of a new dominant population The emergence occurs in a population of size
o(K). As in Section we show that limg 1o 05 = sp41 in probability and that at time
9K with high probability, for some & > 0,

Y. NE(BFlogK) < KT°NE (65 log K),
1 o)

K (pK K (gK
and NZ+2(0* log K) > me*NEZH(H* log K)/2.

~

Depending on the sign of S = §(€2+157 Uy 90) — S(; 156,07, 10), we can use Lemma (1)
or (ii). We can then define a time 5l€(+1 satisfying the recursion properties stated in Section

This ends the Phase k + 1 and its intermediate step and finishes the proof.

5 Proof of Theorem 2.5l

Recall that we assume 7 > §. We first give a lemma describing the dynamics of the exponents
before the first re-emergence of trait 0 or the first time when a trait in (3,4) becomes dominant.

Lemma 5.1 Under the assumptions of Theorem and with the definition (2.10) of T,

(a) if mg >0, we have

k _
Sp = e for all kd < kdA3.
T—90
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For all s < sr3/51 AT, let ko < 3 be such that s € [sy, sk11], then, if k < k—1, we have

1 if 0=k,
Be(s) =< [1—(l—k)a+ (T—08)(s—sk)] VO ifk<t<L, (5.1)
1 AL (7 kols) (7 — (k—0)8)(s —s1) f0<L<E,

and if k = k, we have

1 if 0 =k,
[1—(€j/;:)a+(7i5(s—s,;)]vo ifk<{<L,
O =9 1 2Bt (7 Ets) (v — (R~ 09)(s — 5p) 62

\/[l—ﬁa—a(f:;)(T—gé —(r—kd)(s—sp)| if0<L<k;

(b) if mo <0, we have

k
skzia for all kd < 3.
T—90

For all s < s[3/5), let k6 < 3 be such that s € [sk, Sg11], then

1 if £ =k,
= =k)a+(r=6)(s—sk)] VO ifk<t<L,
Puls) = ﬁ—%ﬁ%ﬁﬁ—ﬁﬁa—@uwk—aag—%ﬂvo oV (k—k+1) <<k,
0 fO<l<k—k.

(5.3)

Proof We apply Theorem and proceed by induction on k > 0. The respective fitnesses of
the traits 0 to Lé at time 0 are S(0;0) =0, S(¢6;0) =7 —49, for all 1 < ¢ < L. We use formula
(2.7) recursively from ¢ =1 to L to prove that, for ¢ < Léj

Bet)=(1—tba+ (1—€5)t) V(1 —Lla+ (1 —6)t) VO=1—Lla+ (T —0)t,

and t,; = 0 when ¢ < |1/a]. When ¢ = | 1], we have Bl1/a)(0) € (0,a) and we deduce that

Hajaga = G > 0.

For ¢ = 1] +1, we use (2.4) to prove

Blajes 1 (0) = ((=(12 JH18) 0=ty ) )V (1= 4Dt (=00t ) V0 = (1=(L |+ 1)t (r=0)t)

Similar computation gives the general formula for all ¢ € {1,...L}:

0 if ¢ < |1/a
)= (1—Lla+(r—0)t), ; teg = - 54
Be(t) ( a+ (1 —9) )+ 61 {O‘(Zjlgl otherwise. (5:4)

We see that £1(t) is the first exponent to reach 1, so s; = -%;. This completes the initialization
of the induction in both cases (a) and (b).
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Proof of (a) Assume that mg > 0 and that we proved until time s for some k €
{0,1,...,([3/8] — 1) Ak}, and let us prove that is valid until time sx 1 A 7 if k < k, or
that is valid until time 7 < sg; if k = k. At time s, the new resident trait k§ < 3 replaces
the former resident trait (k — 1) and hence, the values of the fitnesses are given by

S(5;k8) =1 — (0 —k)S if £ >k, S(kd;k5) =0, S((5;k8) = (k— 05 —Tif L < k. (5.5)

Since S(00;k0) <7 —0 = S((k+1)0;k0) for all £ > k + 1, applying Theorem we obtain for
all s > sy,
Be(s)=1—(—k)a+ (T —0)(s—si)] V0, Vl>Ek,

until the next change of resident population. Since _obviously Br(s) = 1 until this time, we have
proved the first two lines in (5.1)) (or of (5.2)) if & = k). For the last lines, we obtain for all s > s
and all £ < k

Be(s) = [Be(sk) — [1 — (k= £)0](s — sk)| V [Be—1(sg) —a— [T — (k= L+ 1)d](s — sk)] V...
V [Bo(sk) — ba — [T — kd](s — sx)] VO, (5.6)

until the next change of resident trait. Now, all the terms in the right-hand side except the last

one lie between two consecutive terms of the sequence <1 — O‘(T":;) (T -5 )) o’ so they are all
nz

positive since we assumed mg > 0. Hence

Be(s) = [Be(sk) = [1 = (k = £)d](s = s)] V [Be—1(s) —a — [ — (k= £+ 1)d](s — s)] V ...
V [Bo(sk) — bor — [T — kd(s — si)] . (5.7)
In addition, for all 1 < ¢ < k, the function
S € [k, Skr1 AT| = Be(sk) — [T — (K —£0)d](s — sk) — Be—1(sg) + [T — (E—€+1)d](s — sx) + « (5.8)
is affine and hence takes values between its values at times s and si41, i.e. between
Q Q
— 77__5(27'—(k—€+2)6).
In the case where k < k, we have 1 < k— (< k—-1< k-2 = |25] — 2, so both terms
above are nonnegative, and the function (5.8) is positive for all s — s € [0, -%5]. This means
that the maximum of two consecutive terms in the right-hand side of (5.7 is always the first
term, therefore

(2r —(k—¢+1)6) and

Be(s) = Pe(sk) — [1— (k= £)d](s — si), Y0 </{<k,
until the next change of resident population. Since k — ¢+ 1 < k for all 0 < £ < k, we have
e alk —10) E—0+1
—r=(k=00— =1 — — ) 1
Bulon) — = (k= 0825 =1 S0 (B2
so the first exponent By for £ # k reaching 1 after time s is £ = k + 1 and the next change of
resident population occurs at time sj41. Therefore, we have proved (15.1)).
Let us now consider the case where k = k. The previous argument shows that the maximum

of two consecutive terms in the right-hand side of (5.7)) is always the first term, except possibly
for the last two terms. Therefore, in all cases,

Bu(s) = [Bels) — Ir — (B — )3](s — s)] V [Bolsg) — b — [r — BO)(s — s5)], VO <L<F,

until the next change of resident population. In this case, the first exponent to reach 1 is fy, at
time 7, since 7 — sz < =%5. This concludes the proof of (5.2).
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Proof of (b) Assume now that my < 0. This means that the sequence (1 - O‘(T"__(Sl) (r— %5)) o

becomes negative at some index k** < k and decreases until index n = k.

Assume that we proved until time s; for some k € {0,1,...,[3/d] — 1}, and let us
prove that is valid until time sg41. The fitnesses are the same as in , and the first
computations of case (a) apply similarly to prove the first two lines of until the next change
of resident population.

In order to prove the last two lines of , we need to modify accordingly. To this
aim, let us observe that, when the exponent f(si) of trait £6 is 0, it cannot increase (even if
its fitness is positive) unless some mutant individuals gets born from trait (¢ — 1)d, which only
occurs at times s such that 8y_1(s) > a. Therefore, (5.6) needs to be modified as f;(s) = 0 if
0</{¢<k-—Fk™ for all s > s until the next change of resident trait, or remains true for
OV (k—Fk*+1) </¢<k—2. Asin case (a), we can prove that the maximum between two
successive terms in the previous expression (except the last one, 0) is always reached by the first
one, hence

Be(s) = [Be(sk) — [T — (k= £)d](s — s)] V 0.
In view of the expression for 5;(s), the next change of resident population occurs when Sj11(s)
hits 1, at time sg11 = s + =%5. This ends the proof of ([5.3)). O

Proof [Proof of Theorem Let us first prove (a). We assume mg > 0 and k6 < 3. Then, it
follows from Lemma (a) that there is re-emergence of trait 0 at time 7.

Let us now consider the case (b). Assume mg < 0. We introduce the first index such that
the trait becomes larger than 3 by k = [2].

Note that the integer £** defined in the last proof satisfies k** < k< k. Hence, Lemma (b)
implies that traits 0, 4, - - -, (76\— kE**)d, get lost before their re-emergence and before a trait larger
than 3 becomes dominant. Note that they remain extinct forever since mutations only produce
individuals with larger traits. Our goal is to prove that, after time sg, the other traits get
progressively lost until the global extinction of the population.

At time sz, the dominant trait becomes k6 > 3 and the fitnesses are given by

S(06:k6) =305 —Tif 0 <k, S(ké;kd)=3—ks; S(U5;kS)=3—5+7if 0>k (5.9)
Now, for k — k™ < £ < k, §(£6;k6) < S(¢5; k) < 0 (recall from Lemma (b) that k** < k).
Therefore, all positive exponents [y(s) for £ < k keep on decreasing until they hit 0 (which
means that trait £0 is lost) or until the next change of dominant population. For all £ > E,
Be(sg) =1 — (£~ 7{:\)5]+ and By has slope S((k + 1)5; k) = §(7€\5;%5) + 7 — 0, therefore the next
change of dominant population occurs when 3 +1(5) = Bi(s) at time s; 11 At this time, by
definition of k**,

(0%

B e 11 (S541) < [ﬁg_k**ﬂ(sE) + (K™ —1)§ — T)T — 6} VO0=0,

so trait (k — k™ + 1) is lost. For all k — £* +1 < £ < k + 1,

Be(spq) < [BZ(SE)—I—(?’_%_T)TT(S] V...

Y [ﬁ“"*“(sﬁ) — (K —k—2a+ B (k-k"+2)5 1) 5} Vo
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V| Bi e ya(57) = (L4 0 =k = 2)a — (1 — (K™ = 2)d)

— |utsp) — (= G- 09) -2

V0,

where the last equality was proved in the proof of Lemma [5.1| (b). Hence, we can proceed
inductively to prove that, for all 1 < k < L —k, at time Stk = (k+ k)%, maxo<¢<r, Be(s k—',—k)

ﬁE+k(SE+k) > 0, fBE(SE-;—k) =0forall{ < E—{—kz—k**, all exponents (5y(s) with Ttk—k* < €< k+k
decrease. In addition,

La] VO for all
(k+k+1)T 55

e cither ﬂE+k( Tan) > o and k+k < L, and then Bkt Staw) = B (S500) —

1< <L— k— k, the next time of change of dominant population is STkl =

e or /BEHc(SEHf) <aork+k= L, and then ﬁEH@M(SEHc) = 0 for all £ > 1, so every exponent
keeps on decreasing until 5 +k(s) = 0 and there is extinction of the population.

The second case will necessarily occur after a finite number of steps, so extinction of the popu-
lation occurs before the re-emergence of any trait. This ends the proof of (b).

To prove (c), we assume mg > 0 and k > k. By Lemma in both cases, fo(sz) € (0,1)
and trait kd becomes dominant at time sz- Since kS > 3, the dynamics of the exponents 5, after
time s7. is §0Aver/r\1ed by the fitnesses given in ([5.9)).

Since S(kd; kd) < 0, maxo<y<r, Be(s) < 1 for all s > s; until the next change of dominant

trait. Observe that the fitness of trait 0, S (0; ) ) = 3—7 is positive as long as %6 is the dominant
trait, and for any other dominant trait £6, we have

~ 3—7 ifl>1,
5(0;60) = {3 if0=0

So, as long as maxo<¢<r, Be(s) < 1, Bo(s) is increasing. This implies that there is necessarily
re-emergence of some trait before the extinction of the population. Since in addition S (£6;46) =

3—405 <0 forall > k the first re-emerging trait cannot be any of the traits £ for £ > k. This
ends the proof of (c). O

A Branching process in continuous time

The goal of this section and the next two ones is to give general results on specific branching or
birth-and-death one and two-dimensional processes.

Here, we consider a single population (Z/<,¢ > 0), following a linear birth and death process,
i.e. a branching process, with individual birth rate b > 0, individual death rate d > 0 and initial
value Z()K = |K? — 1| € N. The definition of Zé( means that the population is extinct initially
when 8 = 0, and that Zff ~ K” when K — +oco if > 0. We denote the law of ZX by
BPg(b,d,3). In the sequel, we set r = b — d.
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Lemma A.1 Let ZX follow the law BPg(b,d,[3), where b,d > 0 and 3 > 0. Then the process
o K
%#;M, s >0 converges in probability in L>([0,T]) for allT >0 to ((B+1s)V0,s > 0)

when K tends to infinity.

In addition, if b < d, for allt > /7,

. K _ o
KI_I)IEOOI[D (Ziogx =0) = 1. (A1)

Proof We divide the proof in several steps. We borrow ideas from [§].

Step 1. Construction of a martingale. The process writes
t
zE = K% + MK +/ r ZKds,
0
where M ¥ is a square integrable martingale with quadratic variation (M%), = fg(b +d)ZEKds.
Taking the expectation, we obtain E(Z/) = K + f(f rE(ZX)ds, which gives that
E(zE) = KPe. (A.2)
Using It6’s formula, 14+e " ZF = 1—|—KB—|—]\/4\tK, where ]\ZK = f(f e " dMX is a square integrable
martingale with quadratic variation process

t
<MK>,5:/ e (b +d)ZE ds.
0

Using Doob inequality, for any 0 < n < 3,

P( sup |eZE —KP| > K" =P( sup [Mf|>K")
t<Tlog K t<Tlog K

< AKTE((M")710g i)
Tlog K

= 4K_2’7/ (b+d)e 2 KPersds
0

11-K"T) ifb#d
~ e {H )

(A.3)
Tlog K if b= d.

Step 2. Case r > 0. Fix T'> 0 and n = 23/3. On the set

Q{( - {t<isflll§)gK‘€_rtZg( _K/B‘ < K%}’

whose probability tends to 1, we have:

log(l + Ztll<ogK)

su —(b+rt
t;p) log K (6 )
_ log(1 + Ztlfog[()  log(1 + KA+t N log(1 4 KA+Tt) B log(KA+m)
tS? log K log K log K log K
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< sup lo (1 . Z“OgK> log (1+ K~77")
T o<r logK S\ KAt log K
< sup log tIOgK vV KOt Kpr
T o<r 10g K Zfog i NPT log K
’Zﬁog i — KB KBt
= su + ,
tgg thgK N KB+t log K
. 1 |ZtI§0gK _Kﬁ+rt| . Bt
- tS? _logKl + KB+t K 28 4 log K
. K% K" LK
~ log K fgg KB+t _ g+t log K
2K 5 + KF

log K& (for K large enough) ,

which converges to zero when K — +o00.
A simple adaptation of the previous argument gives the same conclusion for b = d.

Step 3. Case r < 0. Since the function ¢ — [ + rt vanishes at time /3/|r|, we need to consider
three phases. We fix ¢ € (0,0) and set T, = B‘;f and n = § — /3. First we prove that,
before time T; log K the population size remains large enough to use the same argument as in
Step 2. Second, the population gets extinct with high probability between time T} log K and
(T +2¢/|r|) log K and third, in order to obtain the convergence for the L> norm, we prove that
the supremum of the process on the this time interval remains of the order of €. Since € can be

chosen arbitrarily small, the result follows.

Step 3(i). On the set

Qg(:{ sup |e_rtZtK—Kﬁ SK/B_%},
t<T:log K

whose probability tend to 1, we have:

K K r _B—
sup 10g(1+ZtlogK) . (,B+Tt) < sup 1 |ZtlogK Kﬁ'i' t| +K B—rt
t<T. log K T i<t |log K q 4 (KB+rt — K B+7“t)+ log K

Kﬁ—g Krt K—¢
< su +
~ logK tgl}g 1+ (Kﬁ+rt K B+rt)+ log K

_ 2K 5 + K¢

g KK (for K large enough) ,

which also converges to zero when K — 4o00.
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Step 3(ii). It follows from the last step that, with probability converging to 1, Zﬁ og i < 2K°.
Remind from [I4) Section 5.4.5, p. 180] that, if Tey denotes the extinction time of a BP(b,d, 1),

re’t

P(Text > t) - m

(A.4)

Hence, for a BP(b,d,2K¢) branching process,

re’t 2K*
P(Tex t)=1-(1— —— .
(Text > 1) ( bert — d)

Thus, for t = £ log K,

Ir]

2e
i

logK> NQMK_‘E

P <Text > d

as K — +o00. Since this goes to 0 when K — 400, we have completed the proof of (A.1)).

Step 3(iii). Since the last two steps were true for any value of € > 0, in order to complete the
proof, it is enough to check that

sup log(1+Z§0gK) < 27(15
S€[Te,Tot2¢|r] log K il

For this, we observe that the maximal size of the families stemming from each individual alive
at time T log K on the time interval log K x [T, T. + 2¢/|r|] is bounded independently by the

2 llf,%K of a Yule process with birth rate b, i.e. a geometric random variable G; with

expectation K20¢/I"l. Hence, with probability converging to 1,

size at time

2K¢
2d
K £5e
sup Zitog K < g G; <KW,
te[Te, Te+2¢/|r]] i=1

The proof is completed. O

B Branching process with immigration

Our goal in this section is to extend the arguments of the previous section to include immigration.

We consider a linear birth and death process with immigration (ZX,¢ > 0) with law BPI (b, d, a, c, 3),
where Z{$ = |KP —1| with 8 >0, b > 0 is the individual birth rate, d > 0 the individual death
rate and K% is the immigration rate at time s > 0 with a,c € R.

With these notations, the generator of ZX at time t > 0 is given for bounded measurable
functions f by

Lef(n) = (bn+ K°™) (f(n+1) = f(n)) +dn (f(n —1) = f(n)).

Recall that » = b — d. We start with a first result in the case where the population does not go
extinct (Theorem [B.1]) and a series of lemmas. Our general result on branching processes with
immigration is Theorem [B.5] whose proof combines similar ideas as for Lemma
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Theorem B.1 (Large population) Assume that ¢ < 3, > 0. Then, for all T > 0 such that

inf (B+7rt)V (c+at) >0, (B.1)
te[0,7
log(1+Z5_ 1) . . . . .
the process TI(g,O < s < T | converges when K tends to infinity in probability in

L=([0,TY) to ((5 +r8)V (c+ as),s € [0, T}).

In the proofs of the main results of [8] and [3], similar asymptotic results on branching
processes with immigration were proved. Our framework is more general since we consider cases
where immigration is time-dependent (a # 0, contrary to [3]) and where growth can be driven
by immigration (a > r, contrary to [8]). The results of these references are based on Doob’s
inequality. In our general case, this is not sufficient: we also need to make use of the maximal
inequality for supermartingales [7, Ch. VI, p. 72| in the case a > r.

To motivate this result, let us first compute the expectation and variance of a BPIk (b, d, a,c, 3)
process. Note that this result is valid also if ¢ > .

Lemma B.2 Assume that (Z[,t > 0) is a BPIk(b,d,a,c, () process. Then, for all t >0,

Kﬁ—1+ﬁ) et — Kot g
oz - { e 77 (B.2)
KB — 14 K°t) ifr=a
and
(b + d) (Kﬁ — 1 + %) EQTt;eTt + Kc <1 _ f-_‘rg) eaf;:gjrt Zfr # a/,
Var(Z[) = ¢ (b+ d)(K# — 1) 2=t 4 gee=e™ | (p 4 g)Keeimelmrie iy — g L),
(K€ 4 2b(K# — 1))t + bK*t? ifr=a=0 (b=d),
(B.3)
where, in the first line, by convention e _ if r=0 and ea;:;zft =t if a =2r.
Proof The semimartingale decomposition of ZX is given by
t
zK =75 + / (rzX + K%)ds + M}, (B.4)
0
where M¥ is a square integrable martingale with quadratic variation
t
(MEY, = / ((b—|— d)zE + Kceas)ds. (B.5)
0

By a usual argument, the expectation x(t) = E(Z[) solves the linear equation
i(t) = ra(t) + K ; 2(0) = KP —1

whose solution is given by (B.2]).
Ito’s formula applied to (Z/)? yields that u(t) = E((Z[)?) is solution to

w(t) = 2ru(t) + (2K + b+ d) z(t) + K™ ; u(0) = (K° —1)%
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Straightforward computation in each case gives (B.3]). O

We deduce from the last lemma that

K K’"t(KfB—l)—l—% if r # a,
T =
Hog K ) k(KA — 1) + Ketrttlog K if r = a,

so that,

log(1 + 2o 1) B4+rt)V(c+rt)V(ct+at) ifB>0
log K (c+rt) V (c+ at) if 3=0
as K — +o00. Note that the expression (B.3)) in the case r # a can be written as

Var(Zf, 1) = (04 A~ Dulr) + Kopula) + (b + 20200 g
where
xt 2rt
pr(z) = %

Since ¢y is nonnegative and nondecreasing for all ¢ > 0, the three terms in the right-hand side
of are positive, so there is no compensation between these terms and hence

CKB+@rvrt \, pret(2rvrva)t  if B8>0,

K
Var(ZtlogK) ~ {CKC+(2rVr\/a)t if 6=0.

for a constant C that may depend on ¢ but remains uniformly bounded and bounded away from
0 for bounded values of t € R,..

In several cases, we can compare the process with its expectation because the standard
deviation Vaur(ngOg K)l/ 2 is negligible compared with xﬁog - One can easily check that this is
always the case when ¢t > 0 and 8 > 0 and r > 0 or when 8 > 0, r < 0 and (8+7rt)V(c+(aVr)t) >
0 or when 8 =0, r >0 and ¢ > 0.

In particular, Theorem corresponds to cases 1) and part of 2). Its proof is based on
martingales inequalities. We start by defining a martingale and computing its quadratic variation.

Lemma B.3 The process

ME = e " ZE - 2f) (B.7)
is a martingale whose predictable quadratic variation process satisfies
. K(a=2r)T _ 1 1— KT
E((MX — K= 4 (b+dK—-1)———
(M) 7106 ) o T (b+d)( )—
K¢ K(a—2r)T_1q 1—K—rT .
— if r#a
b d a—r ( a—2r T )
+( + ) X KCI_I:27TT _KCTIOg(Ii)K_TT Zf r=a.

Proof Recall the semi-martingale decomposition of (Z/ )ier, in (B.4) where the bracket of the

martingale part is given in (B.5]). It follows that ]\ZK is a martingale with predictable quadratic
variation process

(MKY, = /O t 25 ((b+ d) ZK + K°e™)ds, (B.8)
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Using (B.2), we have that

a—r a—2r r

(K —1) 1_157@ + KCl_I:ziTT - Kciﬂog([ﬁ)[(—m if r=a,

_go—rT J (a—2r)T _ _gr—rT .
Tlogk (Kﬁ—l)%—kﬁ(K 1_1-K it r£a
e “xg ds
0

and Lemma B3] follows. O

Proof of Theorem [B.1]

Let us denote 3; = (8 + rt) V (c + at). The proof extends ideas used to prove Lemma
We give the proof in the case where r # a, r # 0 and a # 2r. The extension to the other cases
can be easily deduced using comparison arguments. -

We shall use two different martingale inequalities applied to M. The first one is Doob’s
inequality: for any 0 < n < 3,

IP’( sup ‘e*”(ZtK —a:tK)‘ > K") :]P’( sup \]\ZK| > K”)

t<Tlog K t<Tlog K
SAK TR (M) 105 k)

KBV(B—rT)V(ct+(a=2r)T) if £a

B.9
KPVB=T) 10g K if r=a, (B.9)

<COK™21 x {

where we used the fact that ¢ < § in the last inequality. When a > r, we also apply the maximal
inequality of |7, Ch. VI, p. 72| to the supermartingale e~ A K.

K"P( sup e~ zK — K| > K") =K"P( sup e*(“*’”)t\]\Zﬂ > K")
t<T'log K t<Tlog K

—~ 1/2
<3 sup e (@M (E(Mf)) /
t<Tlog K

Using Lemma [B.3] we deduce

a—r)t+ BV(B*Tt)\/écﬁ»(anr)t)

]P’( sup e_“t|ZtK —;UtK] > K”) < BC’K_”supK_(
t<T'log K t<T

(B.10)

Step 1: Doob’s inequality. Fix T satisfying (B.1)). We consider first the case where we can
find 7 such that
BV (B—=rT)V (c+ (a—2r)T)
2

Then, it follows from that the probability of the event QI converges to 1, where

<n<p. (B.11)

of ={ suw ‘e_rt(ZtK —.I‘tK)‘ < K"}
t<T'log K

On this event, a similar computation as in Step 2 of Lemma entails

K — K K -5 K
sup 10g(1+ZtlogK) _Bt <sup 1 K Tt’ZtlogK_xtlogK| + log (K IBt(l—i_xtlogK))
t<T log K T<T log K K-t <1"50gK A ZtIl<ogK) log K
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Because of Lemma we observe that /3; has been chosen such that, for all t < T,
O KA <ol < OKP: (B.12)
for some constant C' > 0. Hence,
log (K*Bt(l + 2flog i) < log(C + KBy <,

where the last inequality follows from the assumption that inf,<7 3; > 0.
Hence, on the event QI

sup logl1 + Zt]l(ogK) Byl < K7 sup K + ¢
— B <
t<T log K log K <1 (xﬁogK _ Kn—i—'rt) log K
L +
[ K" 2K™
< sup + ;
_logK t<T xﬁogK log K

where we used (B.12)) and the fact that K" = o(mﬁogK), since n < . Hence,

1og(1+ngogK) _
- Mt

sup

< C[ K7 Fo-IBVinticr (et (arn)] | 1 ]

t<T log K log K log K
Kn=F 1
<C . B.13
- [logK * log K] ( )

Case 1(a): r > 0 and a < 2r. In this case, the constraint (B.11) becomes /2 < n < S,
hence we can choose n = 3(/4 for any value of T (note that (B.1)) is always satisfied here).

. . log(l—i—ZﬁO )
Hence (B.13) implies that supy<p |——o g™
Case 1(b): 7 < 0 and a < r. In this case, Assumption (B.1]) is equivalent to inf;<7(8+1t) > 0,

ie. T < f/|r|. Since ¢+ (a —2r)T < B —7rT + (a—r)T < f—rT < 2, it is possible to find 7
such that

— Bi| converges to 0 on the event Q.

BV (B—=rT)V(c—(rA@2r—a))T) :ﬁ—rT
2 2

<n<p
and (B.13) allows again to conclude.

Case 1(c): r > 0 and a > 2r. In this case, (B.11]) is satisfied provided T is such that
c+(a—2rT < 2B,ie. T <T* = % Let us observe that the two lines 8 + rt and ¢ + at

intersect at time ¢* = ’g —, and in our case, T* > t* since a3 > rc. Therefore, we can apply the
) . log(1+ZK =
computation (B.13) to T" € (*,7*) to obtain the convergence of sup; <y ‘W — fBt| to 0.

We explain below (in step 3) how to conclude for any value of T satisfying (B.1)).

Case 1(d): <0, a>r and c+ af/|r| <0. In this case, § +rt > ¢+ at for all t < 3/|r| and
hence Assumption (B.1)) is satisfied if and only if T < 8/|r|. For such T, (B.11)) is satisfied since
c+(a—2r)T < c—{—(a—2r)‘% :26+c—|—a‘% < 28.
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Case 1(e): 7 <0, a > r and c+af/|r| > 0. In this case, Condition (B.11)) is satisfied provided
T < T* = B A 222¢ Since a8 > re, we actually have T* = 282 In addition, if we define

= ] a—2r" a—2r"
tr=28 — the first time where the line 3 4 7t intersects the line ¢ 4 at, we can see exactly as in

a
Case 1(c) that T* > t*. Hence, we can apply the computation (B.13) to T' € (t*,T*) to obtain

log(1+2ZE =
the convergence of sup,< w — fBt| to 0. We explain below (in step 3) how to conclude

for any value of T satisfying (B.1)).

Step 2: maximal inequality. We restrict here to the case § = ¢ and a > r. In this case,

(B—=2(a—7r)t)V(B—(2a—71)t)V (c—at) sup (8—2(a—r)t) V(58— at)

sup =
t<T 2 t<T 2
B—at BV (B—al)
= sup = ,
t<T 2 2

where the second equality comes from the fact that the maximum of § — 2(a — r)t is attained
for t = 0, and the function 8 — at takes the same value at time ¢ = 0. Assuming

V(B —al
5(52“) <n<B, (B.14)
it follows from (B.I0) that the probability of the event Q& converges to 1, where

O ={ sup |e®(Zf —2{)| <K"}.
t<T'log K

On this event, a similar computation as in Case 1 entails

su log(1+ZtIl(0gK) —B < K" su Ka’t n C/
er | logk N7 18K ter (gK  _ gentar) | logK
- - xtlogK K 4
[ K 2Kt c oK 1
< < -
- logK?ggxgogK—i_logK - [logK—i_logK]7

where we used the fact that K7t = o(KP*9), since n < 8 and that zfj,, - > CKPHavnt —
CKPtat since ¢ = .

Case 2(a): ¢=f, a>r and a > 0. In this case, we can choose any n € (8/2,8) and deduce

log 1+2ZK —
the convergence of sup,<p % — B¢] to 0.

Case 2(b): ¢ = f, a > r and a < 0. In this case, Assumption (B.l]) is equivalent to
infi<r (B + (a V r)t) = infi<p (5 + at) > 0, which is satisfied if and only if T' < 8/|a|. Now, for
such T, one can find 7 satisfying (B.14)), so we can again conclude.

Step 3: gluing parts together. The remaining cases not covered by the previous steps are

°TZO,a>2r,c<BandT2T*:25—0.

a—2r">

or<0,a>r,c<6,c+ﬁandTZT*Zi’bi;?

7]
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In both cases, we recall that T > ¢*, where ¢* is the first time where 8 + rt crosses ¢ + at. So
we can fix 71 € (¢*,7%) and apply Case 1(c) or Case 1(e) of Step 1 to obtain the convergence in
probability in L>°([0,T}]) of log(1 + thl{ogK)/ log K to By = (B +rt) V (c+ at). In particular, for
all € > 0, on an event Q4 with probability converging to 1, K¢tefi—= < Z& log K < Ketalite
for K large enough.

Now, on Qé( , standard coupling arguments show that, for all ¢ > 0, ZtK < Z:,Ifl log K+t = ZtK ,

where ZK is a BPIg(b,d,a,c+aTl)—e, c+aTy—¢) and ZX isa BPIg (b, d, a,c+aTi+e, c+aT)+e).
Hence, we can apply Case 2(a) or 2(b) of Step 2 to ZX and ZX to obtain the convergence of
log(1 + Zt[fogK)/logK toc—e+a(Ti +t) and of log(1 + ZK  ,)/log K to c+e+a(T; +t) on
[0, — T1]. Note that, in the case where a < 0, Assumption requires that T < ¢/|a|. We
can choose £ > 0 small enough to have T' < (¢ — ¢)/|a|. In this case, we have T'— T < %,
so we can indeed apply Case 2(b) to Z* on the time interval [0,T — T].

Since € > 0 is arbitrary, Markov’s property allows to conclude. O

Our next goal is to extend Theorem to the case where 8 = 0 or 8 > 0 without assum-

ing nor ¢ < .

We first consider the case where ¢ >  in Lemma [B:4] It shows that the population instan-
taneously (on the time scale log K) reaches a population size of order K¢. We can use Markov’s
property at time € log K and comparison techniques in a similar way as in Step 3 of Theorem
to reduce the problem to the case ¢ < 3.

Lemma B.4 (Initial growth for strong immigration) Assume that § < c. Then, for all
e>0and alla > |r|V |al,

: K —a +ae)
Kl_l)I_IFlOOIP’(ZdOgK € [K% K%)= 1.

Proof We give the proof in the case where r # a, r # 0 and a # 2r. The extension to the
other cases is straightforward. Using Lemma there exists a positive constant C' such that

ctie—elrvial) < E(ZEKIOgK) < ogetelrivial)
and Var(Z gog ) < CKet@rlviahs - The result follows from Chebyshev’s inequality. O
Let us now state our general result with ¢ < 3.
Theorem B.5 Let (Z5K,t > 0) be a BPIk(b,d,a,c, ) process with ¢ < 3 and assume either

K
B >0 orc # 0. The process (k’g(HZtlogK)

og K ,t > 0> converges when K tends to infinity in

probability in L>=([0,T]) for all T > 0 to the continuous deterministic function B given by
(G) if >0, B:t— (B+rt)V(c+at)VO;

(i) if B=0,c<0anda>0, B:t~ ((rva)(t—lc/a))Vo0;

(iii) if B=0,c<0anda <0, B :trs0.

Note that, in case (i), when r >0, one can remove VO from the definition of B;.
In addition, in the case where ¢ # 0 or a # 0, for all compact interval I C Ry which does
not intersect the support of 3,

. K _ _
Jm P (Zflogx =0, VteI) =1. (B.15)
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The case 8 = ¢ = 0 could be deduced from the previous result using comparison argument,
but is not useful here.

: (o) :
,,,,,,,,,,,,,,,,,,,,, 1 e e
c+at B+t
c+at
ime time time

(a):c<fB=0,0<a<r (b)r0<c<f,r<a<0 (c)e<0<p,r<0<a

Figure B.1: llustration of Theorem . (a): Initially B = 0, but thanks to immigration, the population
is revived. Once this happens, the growth rate v being larger than a, immigration have a negligible effect
after time |c|/a. (b): After time (8 —c)/(a—r), the dynamics is driven by mutation before getting extinct
when By = 0. (c): We observe a local extinction before the population is revived thanks to incoming
mutations.

Remark B.6 Note that point (i) in Theorem means that, at least for small t > 0, either
B = c and then B(t) = B+ (rVa)t or B > c and then B(t) = B+rt. This explains Equation (2.9)
in Corollary[2.5

Proof The proof combines Theorem [B:I] with a series of lemmas and extensive use of Markov’s
property. The proofs of the lemmas are given at the end of the section.

Proof of (iii). Theorem [B.5| (iii) follows directly from the next lemma. Note that it also proves
that (B.15]) holds true in case (iii) for all I C [0,T].

Lemma B.7 (Non emergence of any new population) Assume that 8 =0 and ¢ < 0. Let
us consider T'> 0 such that —|c| +aT < 0. Then:

lim P( ZK = o,vt < TlogK) ~1. (B.16)
K—4o00

Proof of (ii). We need to combine Theorem and Lemma with the next two lemmas.

Lemma B.8 (Emergence of a new population) Assume that § =0, that c = —¢ withe > 0
and that a > 0 (so that the immigration rate starts being positive at time to = £log K ). Then,
foralln > (1V %”)5,

: /2 K _ _
Jim P(KP-1<zE | <KT-1) =1 (B.17)

The second lemma is valid for all values of ¢ < 3, r and a. It gives uniform estimates on the
modulus of continuity of log(1 + thl(ogK)/ log K.

Lemma B.9 (continuity of the exponent) Let (ZX,t > 0) be a BPIk(b,d,a,c,3) with ¢ <
B. Then, there exists a constant ¢ = ¢(b,d, a) such that, for all e > 0,

lim IP’(Vt € [0,elog K], KP~% — 1< zK < gB+e _ 1) — 1
K—+oco
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We proceed as follows. Fix € > 0 and apply Lemma on the time interval [0,¢;] with
t1 = |c|/a —e. We deduce that

log(l + Ztll(ogK)

=0, Vtel0,t B.18
lOgK ? 6[71} ( )

on an event QI with probability converging to 1 and, since 3; = 0 if and only if ¢ < |c|/a, (B.15)
is proved in case (ii). Applying Markov’s property at time 1 log K on Q. Since Ztlflog k=0
and ¢+ aty < 0, we can apply Lemma [B.8| to deduce that

log(1 + Z(It(ﬁ-éa) log K¢)

log K

€ (ce, ce)

with probability converging to 1 for constants §,c > 0 and ¢ < oo independent of € and K. In
addition, Lemma [B.9] implies that, with probability converging to 1,
log(l + ZtIl<ogK)
sup

< /e (B.19)
te(t,t1+0¢] log K

for a constant ¢ > ¢ independent of ¢ and K.
Using the comparison trick of Step 3 of the proof of Theorem after time (¢; +9) log K, we
can then apply Theoremto prove that, with probability converging to 1, for all ¢t € [t;+d¢e, T],

10g(1 + ZtlfogK)

ce+ (rVa)(t—1t; —de) < liminf

K—+00 logK
log(1 + ZX&
< lim sup 8l tlog ) <ce+ (rVva)(t—1t —de). (B.20)
K—+o00 log K

We conclude combining (B.18)), (B.19) and (B.20]) and letting ¢ — 0.

Proof of (i). Note that, when r > 0, Point (i) has been already proved in Theorem [B.]]
Similarly, if » < 0, a > 0 and ¢ + a3/|r| > 0, Point (i) also follows directly from Theorem [B.]]
In these two cases, (B.15)) is also trivial. We divide our study of the remaining cases in four.

Case (a): r<0,a<0orr <0, a=0and ¢ < 0. In this case, we combine the previous
lemmas with the next one, similarly to the proof of (ii). Note that we need to use Lemma (1)
if ¢+ aB/|r| < 0, Lemma [B.10] (ii) if ¢ + aB/|r| > 0. If ¢ + aB/|r| = 0, we use a comparison
between ZX and a BPIk(b,d,a,c —¢,3) and a BPIg(b,d,a,c+¢,8V (c+ ¢)), for which the
previous cases apply, and let € — 0.

Lemma B.10 (Extinction) Assume that r < 0.
(i) Asume also that ¢ <0 and ¢+ af/|r| < 0. Then for all n > 0 small enough,

lim P(vt e [(ﬁ ) log K, (2 1 2n) log K|, zF=0) =1. (B.21)

K—s+o0 | 7|

(ii) Assume also that ¢+ aB/|r| >0 and a < 0. Then for alln >0 and T > n,
c

C
I IP’(Vt [ i) logK, (£ 4+ 1)1 K] 7K :o) —1. B.22
A P E (g + ) los K (0 + T) log K, 2, (B.22)
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Ir| a’

Case (b): r <0,a>0, ¢c<0and & < 4 This corresponds to Figure (c). In this case,
we combine as above Theorem Lemma, Lemma [B.7] and Lemma [B7§

Case (¢): 7 <0, a >0, c<0 and % = % This can be treated using comparisons between

ZE and BPIk(b,d,a,c — ¢, ) and BPI(b,d,a,c+¢c,3V (c+¢)) and letting € — 0.

Case (d): 7 < 0, ¢ = a = 0. This can be treated using comparisons between ZX and
BPIk(b,d,0,—¢,3) and BPIk(b,d,0,e,5V ¢) and letting ¢ — 0. O

Proof of Lemma Since the rate of immigration is upper bounded by KcV(ctal) on
[0, T'log K], the probability that a migrant arrives during this time interval is upper bounded by
TKV(c+aT) Jog K which tends to 0 when K — +o00. The lemma is proved. O

Proof of Lemma The number of immigrant families which arrived during the time interval
[0, %5 log K] and which survived up to time %5 log K is, by thinning, a Poisson random variable
with parameter

This formula is obtained by (A.4]), where the probability of keeping a family immigrated at time
t is the fraction in the above expression.
In the case where r > 0,

%ElogK €
A > r/ Kettgr > T
b 0 2ab

In the case where r < 0,

2 Jog K
A> 4t bKQT‘E/ B P S
- 0 ~ 2d(a+1r|)
Therefore,
: 2
i P (2 %) o
For the upper bound, it follows from (B.2|) that
ali if r <a,
E (Zg 1ogK) < ‘{ff logK ifr—a,
Iﬁf: if r > a.
Therefore, (B17) follows from Markov’s inequality and the choice n > (1 V 2 )e. O

Proof of Lemma The number of immigrant families which arrive during the time interval
[0,elog K] and which survive up to time ¢log K is a Poisson random variable with parameter

K (al+1/2)e

elog K
A< / Keedt < KP——— .
0 |a| + 1/2
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The maximal size of each families (immigrant or present at time 0) on the time interval [0, € log K]
is bounded by the size at time clog K of a Yule process with birth rate b, i.e. a geometric
random variable G; with parameter K, independently for each immigrant families. Hence,
with probability converging to 1,

KB+(lal+3/4)e

sup  zF< Y G < gAT(alvirhe (B.23)
t€]0,e log K] i—1

For the lower bound, we observe that Z/ is bigger than a linear pure death process BP(0,d, 3).
For each of the | K h_ 1] initial individuals, the probability of survival up to time €log K is K —de,
hence, with probability converging to 1, infic(gc10g K] ZE > K A=2de  Hence the lemma is proved
with ¢ = (2d) V (|a| + b+ 1). O

Proof of Lemma We first prove (i). Using the same argument as in the proof of
Lemma [B.7], we can prove that the probability of the event I" that a migrant arrives during the
time interval [0, 7T log K] converges to 0. Therefore, on the complementary event I'“ and on this
time interval, the process ZX is a BP(b, d, K®) and, using , its extinction time Teyt satisfies,
for all t < T'log K,

- bert —

re’t K7
P(Texe > ;1) <1 -— (1 d> .

Thus, for t = nlog K with 1 > /|r|, there exists a constant C' such that

P(Tey > nlog K) < P(T) 4+ C K~I'+5 0,
K—+o0

Now, let us prove (ii). Using Markov’s property and Theorem we can assume without
loss of generality that ¢ < 8 < n|r|/4. Note that assuming ¢ + af/|r| > 0 implies that a > r. In
addition, we can prove as above that, with a probability converging to 1, there is no new immi-
grant arriving in the population between times (¢/|a| +n/2)log K and (¢/|a| + T') log K. Hence
we only need to check that all the families that descend from each of the individuals initially
present in the population and of all immigrants which arrive before time (¢/|a| 4+ n/2)log K are
extinct before time (¢/|a| + n)log K. Using (A.4)), each of these families has a probability to
survive longer than a time (1/2)log K which is smaller than 2K ~""/2 (for K large enough).
Since the number of these families is equal to K plus a Poisson random variable of parameter
Ke fo(c/‘aHn/Q) log K cas g < K¢/a, we deduce that it is smaller that K"/3 with probability con-
verging to 1. Hence, on this event, the probability that at least one of these families survives up
to time (c¢/|a| + n)log K is smaller than

r/3
(1 ~ 2K*”|T|/2)Kn K00,

This concludes the proof of Lemma O
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C Logistic birth and death process with immigration

C.1 One-dimensional case

We consider here a one-dimensional logistic birth and death process with individual birth rate b
and individual death rate d4+Ck/K when the population size is k and immigration at predictable
rate y(t) > 0 at time t. We denote by LBDIk (b, d,C, ) the law of this process. We consider a
specific initial condition in the next result. Recall that r = b — d.

Lemma C.1 Assume that (Z,t > 0) follows the law LBDIk (b,d,C,~) withb>d. Let T >0
and assume that y(t) < K= for all t € [0,T log K] for some a > 0.

K
(1) IfZT0 € [%—6,%—}—6] for some € > 0, then

K

lim P(Vte[o Tlog K], Z[t{ € [g2e,g+25}> _ 1

K—+4o00

K
(ii) For all e,e’ > 0, there exists T(e,e") < 400 such that for all initial condition ZTO > e we
have that

K
im P ZT(a’a')e[T—2e’r+2e’} -1
K—+oo K C 70 o

Proof This result is related to the problem of exit from a domain of [Freidlin-Wentzell| and
can be proved with standard arguments as in [4, 6]. The only difficulty comes from the additional
immigration rate (smaller than K'~¢ for all ¢ € [0, 7 log K1), which is negligible with respect to
the reproduction rate (of order K'), but this can be handled for example adapting the proof of [5]
Prop. 4.2]. O

C.2 Two-dimensional case

C.2.1 Transfer birth-death process with immigration

We consider a two-dimensional transfer process with immigration (V;¥, Z/);>0, with transition
rates from (n,m) € N? to

(n + 1,m) with rate nbf (w,t) + & (w, 1),
(n — 1,m) with rate nd (w,t),

(

(n, with rate md% (w, ),

nm

n—+m’

)
)
n,m + 1) with rate mb¥ (w,t) + & (w, 1),
)
)

(n —1,m+1) with rate 7 (w, t)

with C' > 0 and predictable rates 7 ,bK d; ,'yK : Q2 x Ry — Ry. Remark that transfer only
occurs from population Y to population ZX.
We denote by TBDIK(bf,df,bg,df,TK,le,fyf) the law of (YK, ZK).
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Lemma C.2 Assume that (Y%, ZK)>o follows the law TBDIk (b, df bk, dit 75 K 4K
and that there exist constants by, dy, by, do, 7 > 0 such that for some s > 0,

sup (b1 (£) = bl + 165 () = ball + [ldf* (2) — du | + [|dZ' (¢) — da]
te[0,slog K]

+ @) =7l + i O + e @l ——0 (C.1)
K—4o00
in probability. Let S :=1r9 — 11 4+ T.

(i) Assume S > 0, that Y& > KP for some B > 0 and that nY & < ZE < Y for some n > 0.
Then, there exists T =T(n) < oo and p > 0 such that for s > 0 small enough,

Kl—lg—loop (}/Sll{ogK < K_szgogK) =1 <C2)

(ii) Assume S <0, that ZI > KP for some 8 > 0 and that nZ& < Y& < ZE for some n > 0.
Then, there exists T =T(n) < oo and p > 0 such that for s > 0 small enough,

Kl—lf—r&-loop (ZﬁogK < K_Sp}/;lli)gK) =1 (03)

Lemma (i) says that, if the population Y¥ is initially dominant and if the population Z%
has a positive fitness and is initially not negligible, after a short time on the time-scale log K,
YK becomes negligible with respect to Z%. For the proof, we refer to Lemma (iii).

C.2.2 Logistic transfer birth-death process with immigration

We consider a two-dimensional logistic transfer process with immigration (Y%, ZX);>0, with
transition rates from (n,m) € N2 to

(n + 1,m) with rate nbf (w, ) + & (w, 1),

C
(n —1,m) with rate n [df(w,t) + ?(n + m)} ,
(n,m + 1) with rate mbk (w,t) + 12 (w, t),

(n,m — 1) with rate m [d?(w,t) + %(n + m)] ,

nm

(n —1,m + 1) with rate 75 (w, t) ,
n+m

with C' > 0 and predictable rates 75, bZK , dlK ,%»K : 2 x Ry — Ry. Remark that transfer only
occurs from population Y to population Z¥.

We denote by LT BDI (b, als, bk dlf C, 75 v 4 the law of (YE, ZK).
Lemma C.3 (Competition) Assume that (Y, ZK) o follows the law

LTBDIK(b{(,d{(,bg(,dé(,C’, TK,’le,’yg() and that there exist constants by, dy,ba,do, 7 > 0 such
that for some s > 0, the convergence (C.1)) is satisfied.
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(i) Assume thatry :=by—dy >0, r9 :=bo—dy >0, S :=ro—r1+7 > 0 and % € [%1 —e, X+ E]

K
for some ¢ > 0 and 270 > me for some m > 0. Then, for all € > 0, there ewists
T =T(m,e,e") < oo such that

K
/T

ZK € [g—e’,g+e’}> =1.

K K
(ii) Assume that r1 > 0, ro > 0, S < 0 and Y% > me for some e,m > 0 and ZTO €
(2 —e,% +¢]. Then, for alle’ > 0 there exists T =T (m,e,e') < oo such that

lim P (quf <K,
K—+o00

YK 1 1
lim P [7— Al ] 7K < K. ) =
KHHJrrloo (K < C C’+€ T=e5

K
(iii) Assume thatry > 0,712 <0, S >0 and X -+ 6 [— —& &+ E] for some e >0 cmd > me
for some m > 0. Then there exists a constant p > 0 such that, for all s >0 small enough,

lim P (Y

K00 slog K < K= ZslogK’ ZslogK < Kl—sp’ ) =1 (C4)

In Lemma (iii), the initial population Y¥ is resident and after invasion, the population
Z" becomes dominant but not resident, as can be seen from the exponent 1 — sp in (C.4).

Proof  Let us first prove (i). By Condition (C.1)), the proofs of [I] or [9, Ch. 11| can be
easily adapted to prove that, when %(YOK , Z{) converges in probability to (yo,20) € (0,00)?,
the process (Y&, ZK) converges in probability in L (R, ) to the solution (y(t),z(t)) of the
dynamical system

loc

(C.5)

{y =y(m-Cly+2) -7/

Z z(rg—C’(y—i-z))—i-Ty@fz.

In our frequency-dependent case with constant competition, invasion implies fixation [I, Section
3.3.1], so that, for all (yo, 20) € (0,00)%, (y(t),z(t)) converges when ¢t — +oo to (0,79/C) (since
S > 0). The lemma follows from this result as in [4, Thm. 3(b)].

The proof of (ii) follows the same arguments.

Let us turn to the proof of (iii). First, we remark that, for y(t), z(¢) solution to (C.5),
p(t) = y(t)/2(t) solves p = —Sp when (y,z) solves (C.5). Hence, if y(0) € [F —¢, % +¢] and
2(0) = me,

T1/0+5675t

me

p(t) <
In particular, there exists ¢ such that, for all ¢ > tg, y(t) < %z(t). Therefore, 2/z < ro+|ra|/2 =
re/2 < 0 for all t > ty. Therefore, (y(t),z(t)) converges to (0,0) for ¢ — +oo. In addition, for
any 1 > 0, there exists ¢, large enough such that the solutions at time ¢, of the dynamical system
issued from any initial condition in [% —e, 4+ 5] X [me, 00), belongs to a compact subset of
Cyp={(y,2) € B(0,n);0 <y/z <n}.
We deduce that there exists a compact subset of C; 5, containing (Y;f]{ /K, Zt{f /K) with a
probability close to 1 for K large enough. In particular, there exists a constant £ > 0 such that

i <YtK > kK, ZK > HK) 1 (C.6)
m m K—+o0
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After time t,), we can construct a coupling between the stochastic population processes as follows:
for all ¢ smaller than ngit the first exit time of Adh(KCay) by (YE, ZK),

A<y <Al+1}, A}<zE, <AP+ 1,

where AY = A} = Yt{f VA3 = A} = thnf , A% has law BP(by,d;+71+4Cn), A' has law BP(by,d; +
7/(1+27)), A% has law BP(bg, ds+4Cn), A3 has law BP(by+271n/(1+27),d2), and the random
variables I} and I3 count, in Y and ZX respectively, the number of individuals alive at time
t +t, born from immigrant individuals which arrived in the population after time ¢,. Note that
all theses processes are not necessarily independent.

Using domination of immigrant population by Yule processes as in the proof of Lemma
we can prove as in (with 8 = 0) that, for s > 0 small enough,

. 1 3 1-a/2) _
Jim P (Vt <slogK, ' + I} <K ) —1 (C.7)

Let us first prove that T: 267’7‘“ > slog K with probability converging to 1. We first need to check
that (Y%, Z) € B(0,2n) for all t < slog K with probability converging to 1. Because of (C.7)),
it is enough to prove that

Plrsnic) (Teat (A1) < Topic (A1) —— 1

and similarly for A3, where Ty (A?) is the extinction time of A* and Ty (A?) is the first time ¢
such that A! > M. It is classical to prove that, for A ~ BP(b,d) with b < d,

n k
Pr(Text(A) < Th(A)) = ()"~ ()

so the result follows.

The second steps consists in proving that V;X < 2nZK for all t € [t,, t,+ slog K]. Recall that
kK < thf < 1.57]ng with high probability. Using (C.6|), we can apply Lemma to obtain
that, for s > 0 small enough and all &’ > 0, for all ¢t < slog K,

Al < (1 + &) Abelr—r/(+2m)t

A7 > (1 — &) Age(ramtont, €5

We choose n > 0 and ¢’ > 0 small enough so that r; — 7/(1 +2n) < ry —4Cn and 1.5(1 +¢') <
2(1 —¢’) . Hence, with probability converging to 1, for all ¢t < slog K,
Vi, < Ap <201 =& nAger /0 < onZK

So we have proved that Tfj;it > slog K with probability converging to 1.
In addition, it follows from (C.8)) that

Y;Iftn <2nexp ((ri —ra —7/(1+ 2n) + 4Cn)t) Ztlitn.

Introducing 0 < p < —(ry —r2 — 7/(1 4 2n) +4Cn) and choosing t = slog K —t,, and n < £/2,
we deduce ((C.4]). O
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D Algorithmic construction of the slopes of §(t)

We defined in Theorem [2.1] the times sj of change of resident or dominant populations. For
algorithmic purpose , it is useful to characterize all the times t; where the functions Sy(t) change
their slopes. The successive slopes are given in the next result which stems from Corollary [2:3]
The next formula (D.2)) is explained after the statement of the theorem. We define

52 (£) := Se(t) g, (1)>0 or (8(t)=0 and o1 (t)=0) (D.1)

Theorem D.1 Under the same assumptions as in Theorem the limit B(t) is continuous
and piecewise affine and can be constructed recursively as follows: assume that, for some k > 0,
we have constructed times 0 = tg < t1 < ... < tx < Tp and integers 6’0,...,%_1 such that
(B(t),t € [ti,tit1]) is affine and £*(t) = L, for all t € [t;, tiy1) for all0 < i <k —1. Recall that,
since tp < To, we have Card(Argmazy<,<pBe(ti)) € {1,2} for all 0 <i < k.

Then

Be (tr) — Be(tr) ~
the1 =t + [ inf ke 0L st S (t4) > S, (0,65 0,0
kil = Lk ( {zg(tﬁ)—stﬁ(e;a;e@) # ¢ (tkt) > St (6,05 44,0)

A inf { _gé((i’;lr);e s.t. By(ty) > 0 and X9 (tp+) < 0}
i { Bulte) — Bt oy oy Bt) > Boa(t) — a

S0y (trt) = St (€6, £,6) 15, 4,50
and 22_1(tk+) - §tk+(€5a ézé)ﬂﬂz(tkbo > 0}

1 — By (tk)

A inf

L 30 (k) > 0 and By (t) < 1}) (D.2)

and, for allt € [0,tg+1 — L),
Bo(t +tr) = Be(ty) + X(tp+)t, YO<{<L. (D.3)
It follows from Corollary [2.3] that
S+ = ﬂ{ﬁ%(tk):l;%(k?,} S(y; ) + ﬂ{%(tk)a or £,5>3} S(y; ).

and X9 (t;+) is defined from X(tx+) as in (D.1)), and Sy(tx+) is defined using (2.9) replacing
gtk by gtk+'

Note that the slope in (D.3) only depends on the vector 3(t;). Hence these formula make
possible exact numerical simulation of 4(¢). In the definition (D.2) of ¢541,

1. the first infimum corresponds to the first time where another component of () intersects
By, () (change of resident or dominant population),

2. the second one to the first time where a component of 3(¢) hits 0 (extinction of a subpop-
ulation),

o1



3. the third one to the first time where immigration due to mutations becomes dominant in
the dynamics of one coordinate of 3(t),

4. the fourth one to the first time where Sy () hits 1 when Sy (¢x) < 1 (transition from
dominant to resident for trait ¢}.0).

The smallest of the four infima in (D.2)) gives the nature of the next event.
The third infimum involves only traits £§ whose initial dynamics (after time t;) is not driven
by mutations, i.e. such that 5,1 (tx) < Be¢(tx) + «. In this case,

Eg(tk-f—) = §tk+(£(57 gzé)ﬂﬁe(%)x)‘
When 20| (t5+) > Spot (£6, £0) g, (1,)>0, the time where the curve By (ty)+t St (40, Ge0) g, (1)>0

crosses By_1(tx) +t X0  (tx+) — « is then given b Belty) =Be (tr) + .
Be-1(tr) + ¢35 (tx+) BV DY S )=S0y (.670) 15,01 o0
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