
HAL Id: hal-01976256
https://inria.hal.science/hal-01976256

Preprint submitted on 9 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detector monitoring with artificial neural networks at
the CMS experiment at the CERN Large Hadron

Collider
Adrian Alan Pol, Gianluca Cerminara, Cécile Germain, Maurizio Pierini,

Agrima Seth

To cite this version:
Adrian Alan Pol, Gianluca Cerminara, Cécile Germain, Maurizio Pierini, Agrima Seth. Detector
monitoring with artificial neural networks at the CMS experiment at the CERN Large Hadron Collider.
2019. �hal-01976256�

https://inria.hal.science/hal-01976256
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Detector monitoring with artificial neural networks at the
CMS experiment at the CERN Large Hadron Collider

Adrian Alan Pol · Gianluca Cerminara · Cecile Germain · Maurizio

Pierini · Agrima Seth

Received: date / Accepted: date

Abstract Reliable data quality monitoring is a key as-

set in delivering collision data suitable for physics anal-

ysis in any modern large-scale High Energy Physics ex-

periment. This paper focuses on the use of artificial neu-

ral networks for supervised and semi-supervised prob-

lems related to the identification of anomalies in the

data collected by the CMS muon detectors. We use deep

neural networks to analyze LHC collision data, repre-

sented as images organized geographically. We train a

classifier capable of detecting the known anomalous be-

haviors with unprecedented efficiency and explore the

usage of convolutional autoencoders to extend anomaly

detection capabilities to unforeseen failure modes. A

generalization of this strategy could pave the way to

the automation of the data quality assessment process

for present and future high-energy physics experiments.

Keywords High Energy Physics · Large Hadron

Collider · Compact Muon Solenoid ·Machine Learning ·
Data Quality Monitoring · Artificial Neural Networks

1 Introduction

The Compact Muon Solenoid (CMS) experiment is a

general purpose particle physics detector operating at
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Université Paris-Saclay

Maurizio Pierini
CERN

Agrima Seth
CERN

the CERN Large Hadron Collider [1] (LHC). Data col-

lected with the CMS detector are used in many aspects

of modern particle physics, notably the discovery [2]

and characterization [3] of the Higgs boson.

The CMS detector is described in details in [4], to-

gether with a definition of the used coordinate system

and the relevant kinematic variables. In CMS, muons

are measured with detection planes instrumented with

four detector technologies: drift tubes (DTs), cathode

strip chambers, resistive plate chambers, and gas elec-

tron multipliers. A detailed description of the CMS

muon detectors can be found in [5].

Within the CMS Collaboration, physics analysis are

performed on good data, selected by imposing stringent

quality criteria. During data taking, a subset of the col-

lected statistics is processed in real time, to create a set

of histograms filled with a certain critical quantities.

Statistical tests are performed to compare these his-

tograms to a set of predefined reference, representing

the typical detector response during normal operation

conditions. Using the histogram comparison and the

outcome of the tests, expert shifters acknowledge the

alarms and may decide to intervene (up to stopping

the data taking), depending on the evaluation of the

problem severity. The knowledge of the LHC running

conditions and of the history of possible issues identified

in the past, are key ingredients in this decision process.

Details on the infrastructure used for this Data Qual-

ity Monitoring (DQM) are given in [6]. The two main

domains of the monitoring chain are:

– online monitoring, which provides live feedback on

the quality of the data while they are being ac-

quired, allowing the operator crew to react to un-

foreseen issues identified by the monitoring applica-

tion;
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– offline monitoring, designed to certify the quality

of the data collected and stored on disk using cen-

tralized processing (referred to as the event recon-

struction, which converts detector hits into a list of

detected particles, each associated with an energy

and direction).

These two validation steps differ in three main aspects:

– the latency of the evaluation process; online moni-

toring is requested to identify anomalies in quasi real

time to allow the operators to intervene promptly

while the offline procedure has a typical timescale

of several days,

– the fraction of the data which they have access to;

online processing runs at a rate of 100 Hz, corre-

sponding to approximately 0.1% of the data writ-

ten to disk for analysis, while the offline processing

takes as input the full set of events accepted by the

trigger system (∼ 1 kHz of data),

– the granularity of the monitored detector compo-

nents; while offline monitoring requires identifying

only overall status of the detector components, on-

line should determine faulty subdetector elements.

Despite their specific characteristics, these two steps

rely on the same anomaly detection strategy: the scrutiny

of a long list of predefined histograms, selected to de-

tect a set of known failure modes. These histograms

are monitored by detector experts, who compare each

distribution to a corresponding reference, derived from

good data in line with predetermined validation guide-

lines.

This two-layer monitoring protocol was adopted by

the CMS Collaboration for LHC Run I (2010-2012) and

in Run II (2015-2018). The ever increasing detector

complexity, monitoring data volumes and the necessity

to cope with different LHC running scenarios call for an

increasing level of automation of the applications in the

future. Already, the amount of histograms to monitor

is challenging for a single shifter, while the number of

histograms to monitor increases every time a new fail-

ure mode is identified and consequently added to the

list of known potential problems. Furthermore, the hu-

man intervention and currently implemented tests re-

quire collecting a substantial amount of data, implying

a detection delay. Last but not least, the cost in terms

of human resources is substantial i.e. the 24/7 DQM

shifter and the expert personnel responsible for updat-

ing the good data references and related instructions.

We believe that introducing machine learning into the

CMS DQM process will help with those challenges.

This work focuses on the online monitoring. We con-

centrate on the application of deep learning techniques,

and specifically image-like processing [7] for the au-

tomation of detector level monitoring. While the main

focus of this work is on improving detection specificity

and sensitivity, the proposed approach could come with

practical advantages in operation being based on less

astringent assumption on the nature of the anomalies.

As a concrete example we use real data recorded

by the CMS DT chambers of the muon spectrometer

during the data-taking campaign of the LHC Run II.

The main aspects of this work are:

– we exploit the geographical information of the detec-

tor assessing the (mis)behavior with high-granularity

and then combining the results to probe different

detector components;

– we detect different types of anomalies affecting the

detector at different scales (ranging from a few chan-

nels to collective behaviors of big portion of the DT

system) by combining different algorithms;

– we show that image-like processing achieves consid-

erably better performance with respect to the cur-

rent threshold-based DQM test (later called the pro-

duction algorithm) and allows to tune the working

point in terms of specificity (depending on the de-

ployment strategy).

Although the experimental demonstration of the re-

sults presented in this paper is tied to the specificities of

the DT subdetector, the procedure that we discuss have

a potentially broader application scope. Mainly because

the typical issues encountered with other subdetectors

are analogous. This possibility is currently under in-

vestigation for other detector components of the CMS

experiment.

The remainder of the paper is organized as follows.

Sections 2 and 3 present in more details the problem

that we want to solve and describe the utilized data set.

Section 4 reviews the current state of the art in the ma-

chine learning domain of failure detection. Sections 5, 6

and 7 present three complementary approaches to the

problem. Section 8 describes and discusses the results.

2 The CMS Drift Tube muon system

An illustration of the internal structure of a DT cham-

ber is shown in Fig. 1. Each chamber, on average 2 ×
2.5 m in size, consists of 12 layers of drift tubes. Layers

are arranged in three groups of four, each containing a

variable number of tubes, up to 96. The middle group

measures the coordinate along the direction parallel to

the beam and the two outer groups measure the per-

pendicular coordinate. Each tube corresponds to one

readout channel (briefly referred to as channel in the

rest of the paper). Particles carrying an electromag-

netic charge and traversing a tube release an electronic



Detector monitoring with artificial neural networks at the CMS experiment at the CERN Large Hadron Collider 3

Fig. 1 Schematic view of the one DT chamber showing the
position and orientation of the tubes. From [8].

Fig. 2 Magnified view of the CMS detector showing the
wheel structure. The muon chambers are represented by the
white volumes while the red volumes represent the iron return
yoke.

signal by ionizing the gas in the tube (a hit). By com-

bining the information provided by the channels, one

can determine the trajectory of the particle crossing

the chamber.

The chamber numbering schema follows that of the

iron of the yoke, consisting in five wheels (see Fig. 2)

along the z-axis, each one divided into 12 azimuthal sec-

tors (see Fig. 3). The wheels are numbered from −2 to

+2, sorted according to global CMS z-axis, with wheel 0

situated in the central region around the proton-proton

collision point. The sector numbering is assigned in an

anti-clockwise sense when looking at the detector from

the positive z-axis, starting from the vertically-oriented

sector on the positive-x side in the CMS coordinate sys-

tem (sector 1). Chambers are arranged in four stations

at different radii, named MB1, MB2, MB3 and MB4.

The first and the fourth stations are mounted on the

inner and outer face of the yoke respectively; the re-

maining two are located in slots within the iron. Each

station consists of 12 chambers (one per sector) except

for MB4 (which contains 14 chambers). The total num-

ber of chambers is then 5× (3× 12 + 14) = 250.

Fig. 3 Numbering schema of the sector and stations of DT
chambers in one wheel. From [8].

3 The data set, monitoring strategy, and

preprocessing

3.1 The occupancy matrix

CMS data are organized in acquisition runs (or just

runs in CMS jargon), corresponding to a given setup

both of the CMS detector and of LHC accelerator. Runs

are denoted by integers, increasing with time. Their du-

ration is varying from as little as few seconds to as much

as several hours.

Each run is divided into luminosity sections (LSs), a

time interval corresponding to a fixed number of proton-

beam orbits in the LHC and amounting to approxi-

mately 23 seconds, numbered progressively from 1 at

the start of each run. Each LS can be identified uniquely

by specifying the LS number and the run number. The

beam intensity (also referred to as luminosity) varies

along each run, resulting in a varying number of proton-

proton collision data (the events).

For each chamber k in a given run, the current

DQM infrastructure [9] records an occupancy matrix

Ck, which contains the total number of particle hits

at each channel for a given LS or set of consecutive

LSs. The occupancy matrix can be viewed as a varying

size two-dimensional array organized along layer (row)

and channel (column) indices:

Ck = {xki,j ; 1 ≤ i ≤ l, 0 ≤ j < ni},

where l = 12 is the number of layers and ni is the

number of channels in layer i. In general, we label the

chambers and their components as Ck and xki,j . For sim-

plicity, we omit the k index when discussing problems

related to individual chambers, until Section 6. Figure 4

shows examples of occupancy matrices, represented as

two-dimensional occupancy plots. The utilized data set

consists of 21000 occupancy matrices for the 250 cham-

bers.
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A

B

C

Fig. 4 Example of visualization of input data for three DT
chambers. The data in (A) manifest the expected behavior
in spite of having a dead channel in layer 1. The produc-
tion algorithm regards this instance as non-problematic. The
chamber shown in the plot in (B) instead shows regions of
low occupancy across the 12 layers and should be classified
as faulty. According to the run log, this effect was induced by
a transient problem with the detector electronic. (C) suffers
from a region in layer 1 with lower efficiency, which should
be identified as anomalous. The production algorithm classify
the chamber in (B) as anomalous. However it is not sensitive
enough to flag the chamber in (C).

3.2 Monitoring strategy

The anomaly detection method currently used in the

online monitoring production system targets a specific

failure scenario: a region of cells not providing any elec-

tronic signal, large enough to affect the track recon-

struction in the chamber. This is by far the most fre-

quent issue, usually related to transient problems in the

readout electronics. Examples of this kind of failures are

shown in Fig. 4 B and C. These kinds of occupancy plots

are created accumulating data in time. Once in a while,

the plot filling process is reset, to increase sensitivity

to problems occurring during the run. The production

algorithm evaluates samples per chamber. Although it

quantifies the fault severity on the basis of the fraction

of affected channels, it does not identify specific faulty

layers.

The novel approach proposed in this work goes be-

yond the functionalities of the current production al-

gorithm. Starting from the identification of layers with

under-performing cells, it provides effective identifica-

tion of faulty chambers. Moreover, it exploits the geo-

graphical information of the layer and chamber position

to identify different kind of failures. To this purpose,

three complementary approaches are considered:

– Local: data collected in each layer are treated inde-

pendently from the others. As for the production

algorithm, this approach regards chambers which

have occupancy of hits with small variance between

neighboring channels as expected behavior and tar-

gets a well known list of problems with a supervised

approach. Chambers which have dead, inefficient or

noisy regions, are considered problematic. We ex-

plore this approach in Section 5.

– Regional: we extend the local approach to account

for intra-chamber problems, to be applied whenever

faults are spotted only when the information about

all layers within one chamber is present. For this

purpose, we simultaneously consider all layers in a

chamber, but each chamber is considered indepen-

dently from the others, Section 6.

– Global: we simultaneously use the information of all

the chambers for a given run. The position of the

chamber in the CMS detector (uniquely determined

by the wheel, station, and sector numbers) impacts

expected occupancy distribution of the channel hits.

This approach is described in Section 7.

3.3 Preprocessing

A common data set preprocessing procedure is used for

the three studies (for visual interpretation, see Fig. 5).

– Standardization of the chamber data: the number

of channels x in a layer varies not only within the

chamber but also depends on the chamber position

in the detector. This quantity falls between 47 and

96. We enforce a fixed-input dimensionality by ap-

plying a layer-by-layer one dimensional linear inter-

polation to match the size of the smallest layer s

in data set. The smallest layer is chosen to simplify

our models later in this study. Starting from the

recorded matrix xij , a standardized matrix x̃i,j is

defined as:

x̃i,j = frac(α)(xi,bαc − xi,dαe) + xi,bαc.

where α is an interpolation point, defined by α =

j ni

ns
. We verified that this method doesn’t compro-

mise sensitivity to very small problematic regions

despite a small reduction in the amplitude and sharp-

ness of the anomalies.
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– Smoothing: according to CMS DT experts, misbe-

having channels are problematic only when a spa-

tially contiguous cluster of them is observed. In-

stead, isolated misbehaving channels are not consid-

ered a problem. To take this into account the one

dimensional median filter is applied:

x̂i,j = med(xi,j , xi,j+1, xi,j+2).

– Normalization: the occupancy of the chambers in

the input data set depends on the integration time

and on the LHC beam configuration and intensity

i.e. on the number of LSs spanned when creating

the image and corresponding luminosity. The nor-

malization strategy depends on the need for compar-

ing data across chambers or across runs: the precise

procedure used in the two approaches is described

in Sections 5 and 6, respectively.

4 Machine learning for DQM anomaly

detection

In this section we briefly discuss machine learning anomaly

detection techniques in light of both the operational

condition and the a priori knowledge of the data. Ma-

chine learning presents several advantages over the cur-

rently adopted procedure as the decision function can

be learned from collected data. In the future, it might

be possible to bypass human intervention when the al-

gorithm decision is not controversial and only invoke

the shifters opinion for intermediate questionable cases.

An example of this approach is discussed in [10] in
the context of the CMS offline monitoring. The high

data dimensionality precludes simple parametric den-

sity estimation of the normal behavior. This leaves an

extremely wide range of methods such as one-class Sup-

port Vector Machine (µ-SVM) [11], Isolation Forest [12,

13] and different flavors of deep learning. For a general

survey see [14].

Anomaly detection techniques usually assume rarity

of abnormal events (considered as outliers with respect

to the normal generating process) and/or lack of a com-

plete set of representative examples of all possible be-

haviors. If such representative examples are available,

anomaly detection reduces to binary classification (su-

pervised learning), with possibly the help of various re-

sampling methods [15] or reformulation of the objective

function [16] for dealing with class imbalance.

In our case, supervised learning is clearly a valid

option as specific anomalous scenarios were extensively

studied. The CMS DQM framework keeps copious archives

of subdetector-specific quality-related quantities, e.g.

A

B

C

D

Fig. 5 Example of two kinds of input sample preprocessing.
(A) acquired (raw) values, (B) standardizing each layer di-
rectly from raw values using linear interpolation. (C) smooth-
ing the raw values data with median filter (D) standardiz-
ing each layer from smoothed data. In (C), the isolated low-
occupancy spot in layer 1, corresponding to a dead channel,
is discarded.

the DT occupancy plots. Moreover, the imbalance be-

tween good and bad data is not extreme, with a typical

rate of anomalies reaching the 10% level. These anoma-

lies are then frequent enough for a sizable set of them

to be used for supervised training.

However, there is a good motivation for a semi-

supervised anomaly detection approach. Beside the deep

learning methods that will be discussed at the end of

this section, we experiment with the two reference meth-

ods, which are variants of one-class classification: µ-

SVM and Isolation Forest. µ-SVM estimates the sup-

port of the data distribution by a non-linear (kernel)

transform of the data space (as in all SVM techniques)

and by identifying the hyperplane that maximizes the

separation of the training data from the origin. Ac-

cordingly, µ-SVM has the important property of be-

ing a novelty detection algorithm: once trained, it is
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not sensitive to the frequency of anomalies. However,

the implicit prior of kernel-based classification is that

the function to be learned is smooth such that general-

ization can be achieved by local interpolation between

neighboring training examples. As argued at length by

Bengio et al. (for instance in [17] and [18]), this as-

sumption is questionable for high data dimensionality.

An alternative is the Isolation Forest, which copes with

the curse of dimensionality by relying only on the prin-

ciple of isolation of outliers in a random recursive par-

titioning of the feature space along the axes and tree

ensembles. The Isolation Forest algorithm does not rely

on any distance or density measure, but assumes that

anomalies can be isolated in the native feature space.

Besides being highly scalable to large data sets, Isola-

tion Forest offers some possibility of interpretation.

Classical fully unsupervised approaches based on

neighborhood (e.g. k nearest neighbors), topological den-

sity estimation (Local Outlier Factor and its variants)

or clustering (for a detailed presentation, see [19]) are

not relevant here. These algorithms have quadratic com-

plexity and poorly perform in high dimensions, because

of data sparsity (in high dimensions, all pairs of points

become almost equidistant) [20]. Moreover, a simple ge-

ometric (e.g. Euclidean) distance in the feature space

does not define a similarity metric. For instance, the

distance between examples A and B in Fig. 4 is dom-

inated by the contribution of well-behaving channels.

The similarity function, or equivalently the adequate

representation, must be learned from the data.

This representation learning view [18] points towards

deep learning, as it should remain sensitive to the local

geometric relationship in the data related to the under-

lying apparatus. Convolutional networks [21] integrate

the basic knowledge of merely the topological structure

of the input dimensions and learn the optimal filters

that minimize the objective error.

A more ambitious goal is to extract an explanatory

representation of the anomalies with latent variables,

in a probabilistic framework (e.g. restricted Boltzmann

machines, or variational autoencoders [22]), where the

learned representation is the posterior distribution of

the latent variables given an observed input. However,

even the inference step with these representations may

suffer from high computational cost, and requires some

further feature construction.

The alternative is the trade-off between interpretabil-

ity and simplicity by learning a direct encoding, typ-

ically as a neural network based autoencoder, which

is a parametric map from inputs to their representa-

tion. Although it has been argued that, even for ba-

sic neural networks, most of the training is devoted to

learning a compressed representation [23,24], autoen-

coders are particularly suitable for anomaly detection.

When trained on the inliers, testing on unseen faulty

sample tend to yield sub-optimal representations, indi-

cating that a sample is likely generated by a different

process. In order to go beyond simple dimensionality

reduction while preventing over-fitting, various flavors

of regularization are proposed (the literature being con-

siderable, we give only some entry points):

– sparse autoencoders [25] penalize the output of the

hidden unit activations or the bias;

– denoising autoencoders [26] robustify the mapping

by requiring it to be insensitive to small random

perturbations;

– contractive autoencoders [27] pursue the same goal,

by penalizing analytically the sensitivity of learned

features in a data-driven interpretation of the Tan-

gent Propagation algorithm [28].

In fact, denoising and contractive autoencoders learn

density models implicitly, through the estimation of

statistics or through a generative procedure [29].

5 Local approach: detecting faulty behavior

within a layer

5.1 Motivation

The first experiment concentrates on training a clas-

sifier to identify local problems, i.e. considering each

layer independently from the others. This approach en-

force the expert knowledge of what is currently con-

sidered correct or anomalous and probes the detector

with higher granularity than the production algorithm.

The goal is to identify regions of channels not register-

ing any hits (called dead channels in detector jargon),

or having lower detection efficiency (hence lower hit

counts with respect to the neighboring ones in the same

layer) or being dominated by electronic noise (called

noisy channels). These are by far the most frequent

failure modes. The local approach can be considered

as an initial benchmark comparing fully supervised,

semi-supervised and unsupervised methods, and spe-

cific algorithms in each category, before embarking in

full-fledged anomaly detection. Moreover, the local ap-

proach, if successful, can be further exploited as a pre-

processing step for filtering these trivial faults before

attempting to detect more elusive ones.

Given the locality restriction of this approach, con-

textual information is not accessible. As a consequence

of this, a model based on this strategy will not be able

to spot, for example, a faulty layer in which occupancy

is decreased uniformly with respect to neighboring lay-
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ers. We acknowledge this limitation and address it in

Section 6.

5.2 Data set and methods

After having applied the standardization procedure (see

Section 3.3), a layer is represented as a single row of an

occupancy matrix:

Xi = (x̃i,1, x̃i,2, . . . , x̃i,47).

The available data set consists of 21000 chambers cor-

responding to 228480 individual layers.

Hit counts in a layer are normalized to a [0, 1] range,

dividing them by the maximum of the occupancy value

in the layer:

ẋi,j =
x̃i,j

max(Xi)
.

The need for normalization comes from the intrinsic

variation of the occupancy, which depends on the spa-

tial position of the chamber (as described in more detail

in Section 7) and on the integration time of the analyzed

image.

In this experiment, we compare the performances of

the following:

– unsupervised learning with (a) a simple statistical

indicator, the variance within the layer, and (b)

an image processing technique, namely the maxi-

mum value of the vector obtained by applying a

variant of an edge detection Sobel filter [30]: Si =

max(
[
−1 0 1

]
∗Xi).

– semi-supervised learning, with (c) Isolation Forest,

and (d) µ-SVM.

– supervised learning, with (e) a fully connected shal-

low neural network (SNN), and (f) a convolutional

neural network (CNN);

The ground truth is established by field experts on

a random subset of the data set, by visually inspecting

the input sample before any preprocessing: 5668 layers

were labeled as good and 612 as bad. The 9,75% fault

rate is a faithful representation of the real problem at

hand. With this ratio, both anomaly and outlier detec-

tion approach can be considered. Out of this set 1134

good and 123 bad examples are reserved to compose the

test set corresponding to 20% of the labeled layers. The

remaining examples are used for training and validation

for the semi-supervised and supervised methods.

The Isolation Forest and µ-SVM models are cross-

validated using five stratified data set folds to search for

their corresponding optimal hyper-parameters. Subse-

quently, the Isolation Forest is retrained using those

hyper-parameters (100 base estimators in the ensem-

ble) on the full unlabeled data set, while µ-SVM (RBF

Outputs

8 hidden units

90 hidden units

10@9x1 feature maps

10@45x1 feature 
maps

47x1 input

3x1 convolutions

5x1 max pooling

Flatten

Fully connected

Fully connected

Fig. 6 Architecture of the convolutional neural network
model used to target the local strategy.

kernel, ν of 0.4, γ of 0.1) is retrained using only nega-

tive class examples. The architecture of the CNN model

with one dimensional convolution layers used for this

problem is shown in Fig. 6. Rectified linear units are

chosen as activation functions for inner-layer nodes,

while the softmax function is used for the output nodes.

The model is trained using the Adam [31] optimizer

and early stopping mechanism monitoring validation

set (set to 20% of data set) with patience set to 32

epochs. The model is implemented in Keras [32], using

TensorFlow [33] as a backend.

The SNN model consists of one hidden fully-connected

layer with 16 units (chosen to approximately match

number of parameters in the CNN). As for CNN, it

uses rectified linear unit as activation function of the

hidden nodes and the softmax function is used for the

output nodes. This model is primarily introduced to

obtain a term of comparison for the CNN.

Unlike what was done for the other models, we do

not apply the smoothing preprocessing step described

in Section 3.3 for CNN nor SNN models, in order to

allow them to learn their filters. Additionally, we weight

our negative S0 and positive S1 samples to account for

class imbalance. The weight λψ for a sample in class

ψ ∈ {0, 1} is defined by

λψ =
|S|

2 · |Sψ|

where S = S0∪S1. We discuss the results in Section 8.1.
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6 Regional approach: detecting unusual

behavior within a chamber

6.1 Motivation

In normal conditions, healthy chambers show similar

occupancy levels in neighboring layers. The four central

chambers have a different behavior due to their differ-

ent orientation (see Section 2). The regional approach

exploits the relative occupancy patterns of the layers

within a chamber. For example, it aims at detecting

failure modes where the occupancy of hits decreases

uniformly in a specific layer or set of layers. Typical

examples of these kind of failures are problems related

with the high-voltage bias of the drift cells. The voltage

distribution system is organized by layers and a lower

value w.r.t to the nominal operation point would re-

sult in lower detector efficiency and, as a consequence,

lower absolute occupancy in the affected region. Fig-

ure 7 shows an example of such an occurrence, where

layer 9 is misbehaving. The production algorithm and

the local models of Section 5 are not conceived to detect

this type of anomalies.

6.2 Data set and methods

In the early stages of this work we observed that a

model capable of detecting regional anomalies cannot

be successfully trained if the local faults are not fil-

tered beforehand. Moreover, the available ∼ 500 labeled
images do not provide a sufficiently large training set.

Thus we start with a much larger data set (all the un-

labeled samples). We solve the labeling problem using

the score of the convolutional model presented in Sec-

tion 5 as an approximation of the ground truth. For

this, we choose a working point with 99% true positive

rate (to guarantee a large data set size) and 5% false

positive rate. Approximately 90% of the collected data

are labeled as good by online and offline monitoring ex-

perts. We then estimate the residual bad example con-

tamination to be ∼ 0.5%. We believe that the residual

contamination of problematic chambers is reduced to a

tolerable level. All chambers with any layer identified as

faulty are discarded. Chambers located in MB4 are dis-

carded as well, because of the lack of a middle group of

four layers, see Section 2. The above changes effectively

narrowed the training data set to 8441 matrices. The

smoothing and standardization procedures are applied

to all the layers C̃k within each chamber obtaining ma-

trices of shape 12 × 46. The occupancy of hits within

A

B

Fig. 7 Example of the impact on hit counting of different
voltages applied to layer 9. (A) shows the occupancy map
when operating the layer at 3200 V and (B) shows the effect
of operating at 3450 V. Both examples should be regarded
as anomalies. Since the values in both cases are not equal to
zero, the production algorithm considers those cases as non-
problematic.

one chamber are normalized using a min-max scaler:

Ċ =
C̃k −min(C̃k)

max(C̃k)−min(C̃k)
.

This normalized values to the [0, 1] range while retain-

ing the information about the relative occupancy be-

tween the layers.

In order to evaluate the model, we use the only la-

beled set for the class of anomalies that we want to

tackle: a subset of the data (runs 302634 and 304737-

304740), during which layer 9 of some chambers was

operating at a voltage lower than the nominal one (see

Fig. 7). In particular, the voltage was set to 3450 V

in runs 304737-304740 and to 3200 V in run 302634

while the standard operation point is 3550 or 3600 V

depending on the chamber. These settings result in an

absolute difference in hit counting, more pronounced for

the lower voltage settings, because the physics of gas

ionization by radiation. The chambers where all layers

operate at nominal conditions are considered as good in

the test.

In this experiment, the following semi-supervised

approaches are considered:

– simple bottleneck autoencoder with the representa-

tion layer equal to 20 units;

– convolutional autoencoder;

– denoising autoencoder in which we add additional

artificial noise to training samples;

– autoencoder with kernel L1 (10−5) sparsity regular-

ization in the hidden layers.
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A

20 hidden units
144 hidden units

4@12x3 feature 
maps

4@46x12 feature 
maps

46x12 input

4x4 convolutions

4x4 average pooling

Flatten

Fully connected

Fully connected

144 hidden units

4@12x3 feature 
maps

Reshape

4@46x12 feature 
maps

4x4 upsampling

46x12 output

3x1 convolutions

B

552 hidden units

Flatten

Fully connected

46x12 input

50 hidden units

20 hidden units

Fully connected Fully connected

Fully connected

50 hidden units

552 hidden units

Reshape

46x12 output

Fig. 8 Convolutional (A) and simple, denoising, sparse (B)
autoencoder models architecture used to target regional strat-
egy.

Similarly to the local approach we train the autoen-

coders using the Adam optimizer. Early stopping mech-

anism with the patience set to 32 epochs is adopted to

monitor validation set (20% of the total data set). All

models are implemented using the Keras library with

TensorFlow as a backend. The architecture of the model

is shown in Fig. 8. A and B for, respectively, the con-

volutional autoencoder and the other three models (for

which a common architecture is adopted). The bottle-

neck architecture is kept for both denoising and sparse

autoencoders in order to limit the amount of param-

eters to train. The parametric rectified linear unit is

used as the activation function on the hidden layers,

while the output layer uses the sigmoid function. All

models are instructed to minimize the mean squared

error (MSE) ε between original, ẋ, and reconstructed,

ẍ, samples:

εk =
1

ij

∑
i,j

(ẋki,j − ẍki,j)2.

We discuss the results in Section 8.2.

7 Global approach: detecting unusual behavior

using global information

7.1 Motivation

In the third approach, we aim at detecting anomalies

looking at the global ensemble of muon chambers, ex-

ploiting the dependency of the occupancy of each of

them on their position in the detector. We categorize

the chambers according to their position in the spec-

trometer and its impact on the occupancy pattern, ex-

ploiting the field knowledge to predetermine the classes

of chambers.

The expected occupancy pattern is mainly driven

by the proximity to the beam-collision point, at the

center of the detector. As a consequence, chambers in

different stations (see Section 2) will manifest a differ-

ent behavior. The rotational symmetry of the detector

geometry and of the collision events around the beam

axis is taken into account grouping chambers within

the same station, independently on the sector they be-

long to (see Section 2). Similarly chambers belonging

to the same station but in opposite wheels are consid-

ered alike. Additionally, the behavior of the chambers is

expected to be the same across different runs, modulo

the overall decrease of occupancy due to the decrease of

beam intensity across the fill. This leaves us with a cat-

egorization based on the chamber numbering schema,

where the station number and the absolute value of the

wheel number are the only relevant parameters.

The problem is clearly contextual, in the sense that

important explanatory attributes are not part of the

basic data features. Conditional anomaly detection [34]

has been proposed to deal with such a situation when

the relevance of external attributes is unknown. For in-

stance, if a set of environmental or technical attributes

are monitored that can impact the behavior of the de-

tector components. In our case, the spatial position of

the chambers are our only external attribute, and their

impact is assured by common understanding of the un-

derlying physics processes. Thus, we are back to a point

anomaly problem.

7.2 Methods

In this approach we use a bottleneck autoencoder sim-

ilar to that introduced in Section 6 (see Fig. 8), ex-

cept that the size of the bottleneck layer is reduced to

three units for visualization purposes. We also follow

the same preprocessing, training and validation proce-

dure. The goal of the study is to exploit the catego-

rization of the chambers based on their geographical

location to interpret the compressed representation of

the network.

Global faults are not tracked before by DT experts.

In absence of a global label, we only considered an un-

supervised method for this experiment. We discuss the

results in Section 8.3.
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8 Results and Discussion

8.1 Local approach

The performance of the various models on a held out

test data set can be seen in Fig. 9, where we show the

different receiver operating characteristic (ROC) curve.

Compared to statistical, image processing or other ma-

chine learning based solutions, supervised deep learn-

ing clearly outperforms the rest. Thanks to the lim-

ited number of parameters of the model, the training

converges to a satisfactory result (Fig. 10), despite the

number of training samples being small.

Although the Area Under Curve (AUC) of the fully-

connected shallow neural network is comparable to the

one of CNN, the latter is a better solution when re-

quiring maximum specificity (true negative rate (TNR),

aims at avoiding false positives) and sensitivity (true

positive rate (TPR), aims at avoiding false negatives).

The relatively good performance of the basic and unsu-

pervised variance method, compared to the poor results

of the filter, and the near optimal performance of the

SNN, show that the features to learn are not simple con-

trasts, although the superior performance of the CNN

demonstrate that the initial edge detection layer is use-

ful. The limited performance of Isolation Forest is likely

to come from the violation of its fundamental assump-

tion, that faults are rare (remember that the fault rate

is in the order of 10%) and homogeneous. The inferior

performance of the typical semi-supervised method (µ-

SVM) illustrates the well-known smoothness versus lo-

cality argument for deep learning [17,18]: the difficulty

to model the highly varying decision surfaces produced
by complex dependencies involving many factors.

As shown in the score distribution of Fig. 11, the

proposed architecture of the CNN model separates anoma-

lous layers significantly. This allows for great flexibility

in choosing the working point for deployment in pro-

duction in the CMS DQM. Depending on the cost of

type 1 and type 2 errors for the detector operators the

threshold can be set anywhere in [0.1, 0.9] score range.

When using the CNN for the selection of good samples

for training the regional algorithms, the working point

is chosen not to favor specificity nor sensitivity, with a

threshold equal to score 0.5.

The production algorithm targets a specific failure

scenario of dead regions and produces a chamber-wise

goodness assessment, without being capable of identi-

fying a specific problematic layer in the chamber. For

this reason we can not directly compare its performance

with our local approach. For the sake of benchmarking

our approach, we use our per-layer ground truth to la-

bel as bad any chamber with at least one problematic

Fig. 9 ROC curves for different models used in the local
approach. The Area Under the Curve (AUC) is quoted to
compare the performance.

Fig. 10 Loss function as a function of the number of epochs
in the training of the CNN model used for the local approach.
The two curves illustrate the behavor of the training and
validation data sets.

Fig. 11 Distribution of scores in local approach for the CNN
model.

layer. We then ask the production algorithm if it in-

dicates there is at least one faulty layer in a chamber.

With this per-chamber label, we are able to estimate the

specificity of the production algorithm to 91%, with a

sensitivity of only 26%.

Another difference of our approach with respect to

the production one is the performance with low statis-
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Fig. 12 Stability of the proposed model and the production
algorithm as a function of time (number of lumisections) for
three different runs: 306777, 306793, 306794. The stability
test is performed every 10 LSs. The CNN: Total and Produc-
tion lines follow the total fraction of alarms generated by the
methods. Instead CNN: Emerging reports the fraction of new
alarms being generated by the CNN model w.r.t previous test
point.

tics i.e. at the beginning of a run. As seen in Fig. 12, our

CNN model gradually adds alarms until reaching sta-

bility. The production algorithm has the opposite be-

havior, generating a substantial fraction of false alarms

in the early stages of the run.

8.2 Regional approach

To assess the performance of a given ensemble of chan-

nels we take as anomaly indicator the quantity:

εki =
1

j

∑
j

(ẋki,j − ẍki,j)2 ,

i.e., the MSE between the original sample given as in-

put to the encoder (ẋki,j) and the output of the decoder

(ẍki,j). With the objective of identifying the problematic

region of the chamber, we exploit the granularity of the

autoencoder information computing the MSE values for

different set of channels. For example, we can compute

the MSE for all the channels corresponding to a given

read-out electronic board or, alternatively we can com-

pute it per layer when tackling potential failures of the

voltage distribution system.

We use this figure of merit on the sample with dif-

ferent voltage settings described in Section 6. Figure 13

shows good performance of all models, especially con-

volutional autoencoder. The distributions of the MSE

for a well behaving and a problematic layer are shown

in Fig. 14. The MSE distribution for layer 9 shows clear

separation for chambers operated at nominal and lower

voltages. For each εi value for a given example, a quanti-

tative assessment of the severity of a potential anomaly

can be derived quoting the corresponding p-value of the

Fig. 13 ROC and AUC of the different autoencoder models
used in regional approach. The discriminator between good
and anomalous samples is the ε in layer 9.

good example distribution. The separation is less pro-

nounced for the working point at 3450 V being closer

to the nominal setup. This reflects in the AUC values

reported in Fig. 13.

The production algorithm is not sensitive to the

type of faults described in this section since the hits in

layer 9 are non-zero values. Thinking about deployment

in the DQM infrastructure of the CMS experiment, the

best result would be obtained when applying the local

and regional models in a pipeline.

8.3 Global approach

Figure 15 shows an example of a low-dimensionality

representation of the chamber data clustering depend-

ing on the chamber position in the detector. The global

approach is then potentially capable to spot an unusual

behavior of DT chambers taking into account the ge-

ographical constraints. Ultimately, this could pave the

way to more flexible assessment by scoring per detector

region.

When investigating the representations for a specific

chamber across different runs (see Fig. 16), we notice

that the representations tend to cluster depending on

the number of problematic layers. Thanks to this fact,

the cumulative distribution of the compressed represen-

tation could be used to highlight the occurrence of new

anomalies or to associate an anomalous behavior to an

already known problem. This application could assist

experts in diagnosing transient and reoccurring issues.

9 Conclusions and Outlook

This paper shows how detector malfunctions can be

identified with high accuracy by a set of automatic pro-

cedures, based on machine learning. We considered the
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A

B

Fig. 14 MSE between reconstructed and input samples for
layer 3 (A) and layer 9 (B) for 3 categories of data for convo-
lutional autoencoder. Despite a problem in layer 9, all ε for
layer 3 are comparable for all chambers.

Fig. 15 Compressed representation of the chamber-level
data of the global model. The samples cluster according to
position in the detector. Here depending on the station num-
ber.

specific case of the DT muon chambers of the CMS ex-

periment. We developed a CNN-based classifier to spot

local misbehaviors of the kind currently targeted by the

existing CMS monitoring tools. We also showed that it

is possible to extract more information from the map of

electronic hits than the currently implemented statisti-

cal tests. In particular, we developed a strategy to spot

Fig. 16 Compressed representation of the chamber-level
data of the global model limited to only one chamber across
different runs with respect to number of faulty layers (scale).
The samples cluster according to similar behavior.

regional problems across layers in a detector chamber,

or globally, i.e., across chambers in the full muon de-

tector. These algorithms, based on autoencoders, will

offer a more robust anomaly detection strategy, not be-

ing defined as supervised classifiers of specific failure

modes. This approach allows to localize the origin of a

given anomaly, exploiting the granularity offered by the

use of MSE of the decoded image as a quantification of

the anomaly.

Currently, these algorithms have been integrated

into the CMS online DQM infrastructure and they are

being commissioned with the early data of the 2018

Run. The model could be further refined, e.g. integrat-

ing a mechanism of periodic retraining that would allow

to repeat alarms for known problems, or to adapt to the

long-term changes of the detector and beam conditions.

Since CNN is the basic ingredient in this study, and

since many monitored quantities in typical high-energy

physics experiments are based on 2D maps (e.g., de-

tector occupancy, detector synchronization, etc.), the

approach proposed in this paper could be extended be-

yond the presented use case. We hope that this case

study could serve as a concrete showcase and could mo-

tivate further DQM automation using machine learn-

ing.
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