
HAL Id: hal-01977266
https://inria.hal.science/hal-01977266v2

Submitted on 6 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Link Scheduling in Wireless Networks
Jean-Claude Bermond, Dorian Mazauric, Vishal Misra, Philippe Nain

To cite this version:
Jean-Claude Bermond, Dorian Mazauric, Vishal Misra, Philippe Nain. Distributed Link Scheduling
in Wireless Networks. Discrete Mathematics, Algorithms and Applications, 2020, 12 (5), pp.1-38.
�10.1142/S1793830920500585 �. �hal-01977266v2�

https://inria.hal.science/hal-01977266v2
https://hal.archives-ouvertes.fr

Distributed Link Scheduling in Wireless Networks∗

Jean-Claude Bermond
Université Côte d’Azur-CNRS-Inria-I3S,

2004 Route des Lucioles, B.P. 93, F-06902, Sophia Antipolis, France
jean-claude.bermond@inria.fr

Dorian Mazauric
Université Côte d’Azur-Inria,

2004 Route des Lucioles, B.P. 93, F-06902, Sophia Antipolis, France
dorian.mazauric@inria.fr

Vishal Misra
Dept. Computer Science, Columbia University, New York, NY, USA

misra@cs.columbia.edu

Philippe Nain
Inria, ENS de Lyon/LIP,

46 avenue d’Italie, 69364, Lyon, France
philippe.nain@inria.fr

April 6, 2020

Abstract

This work investigates distributed transmission scheduling in wireless networks. Due to
interference constraints, “neighboring links” cannot be simultaneously activated, otherwise
transmissions will fail. Here, we consider any binary model of interference. We use the model
described by Bui, Sanghavi, and Srikant in [7, 27]. We assume that time is slotted and during
each slot there are two phases: one control phase in which a link scheduling algorithm determines
a set of non interfering links to be activated, and a data phase in which data is sent through these
links. We assume random arrivals on each link during each slot, so that a queue is associated
to each link. Since nodes do not have a global knowledge of the queues sizes, our aim (like
in [7, 27]) is to design a distributed link scheduling algorithm. To be efficient the control phase
should be as short as possible; this is done by exchanging control messages during a constant
number of mini-slots (constant overhead).
In this paper, we design the first fully distributed local algorithm with the following properties:
it works for any arbitrary binary interference model; it has a constant overhead (independent of
the size of the network and the values of the queues), and it does not require any knowledge of
the queue-lengths. We prove that this algorithm gives a maximal set of active links, where for

∗This work has been supported by ANR program ?Investments for the Future? under reference ANR-11-LABX-
0031-01.

1

any non-active link there exists at least one active link in its interference set. We also establish
sufficient conditions for stability under general Markovian assumptions. Finally, the performance
of our algorithm (throughput, stability) is investigated and compared via simulations to that of
previously proposed schemes.

Keywords: Wireless network ; Link scheduling algorithm ; Binary interference ; Distributed
algorithm ; Stability ; Graph.

1 Introduction

Link scheduling is a key issue in communication networks as it drastically impacts the overall
performance of the system (throughput, delay, etc.). It has received a lot of attention for both
wired and wireless networks (radio, ad hoc network, sensor network, etc.) - see Section 3 for prior
influential work in this area. In a wireless network, an additional difficulty arises from the existence of
physical interference, as only transmissions which do not interfere with each one another over a given
period of time should be scheduled. There are three main classes of interference models: protocols
and geometric models [1, 15], in which a geometric notion of interference is used, SINR-based
models [10], in which correct message reception at a receiver is driven by the experienced SINR
(Signal-to-Interference-plus-Noise-Ratio) value, and graph-based models.
In this paper, built on a preliminary work by the authors in [3], we use the graph-based binary
interference model (see e.g. [4, 7, 14, 38]). The transmission network is modeled by a graph (undi-
rected or directed), where transmissions may only occur between two neighboring nodes. The
interference is modeled by a binary symmetric relation between the links of the network (edges of the
undirected graph or arcs of the directed graph) which indicates which pairs of links interfere. This
model is only an approximation of the reality and is sometimes considered as simplistic; in practice,
the SINR model is often used instead. But due to its mathematical tractability, the binary interfer-
ence model has been extensively used for the analysis of protocols and networks. We refer the reader
to [32, 33] for an evaluation of the accuracy of variuous interference models; for instance, it is shown
that the binary interference model is accurate in highly directional antenna settings with obstructions.

We assume that time is slotted. Each time-slot (or simply slot) is composed of two phases: one
control phase, in which a link scheduling algorithm determines a set of non-interfering links to
be activated, and a data phase, in which data is sent through the links. We also assume that
the message arrival process to each link of the network is stochastic, whose characteristics are not
necessarily known to the network designers. As a result, a scheduling algorithm has to determine the
set(s) of active links as a function of current and past arrivals. A queue is associated to each link.
An efficient link scheduling algorithm should activate a set of non-interfering links that will yield
the better performance in terms of throughput and delay; a well-known algorithm consists in ac-
tivating (non-interfering) links such that the sum of their queue sizes (backlogs) is the largest possible.

A well-known example of binary interference is the primary node interference model (see [22]), where
only links that do not share a common node can be active at the same time. A matching is a set of
links in a graph without common nodes. So, in the primary node interference model, links can be
simultaneously activated in the same slot only if they form a matching of the corresponding graph.
Consider, for example, the four-node square grid network represented in Figure 1. Here, in each slot,
we can simultaneously activate either the two vertical links of the matching 1 (Figure 1(a)) or the

2

two horizontal links of the matching 2 (Figure 1(b)). Note that it is also possible to only activate
a single link in this network; however, it is more efficient to design maximal sets of active links
which correspond in that case to a maximal matching. Figure 2(a) shows a matching in a larger
grid. In the primary node interference model, activating a set of non-interfering links such that the
sum of the sizes of their queues is the largest possible, corresponds to finding a maximum matching.
Centralized algorithms have been proposed to solve this problem both for random [37, 36, 31, 28]
and deterministic arrivals [19].

(a) Matching 1

(b) Matching 2

Figure 1: Scheduling
algorithm for grid for
d = 0.

(b) Induced matching(a) Matching

Figure 2: Two admissible schedules (se-
lected active links for transmission repre-
sented by solid bold blue lines).

e

d = 0

d = 1

Figure 3: Interference sets of a
link e for d = 0 and d = 1.

Another binary interference model is the 802.11 interference model or distance-2 matching problem
(see [38, 4, 2, 20]): here two links interfere if the first one contains a node adjacent to one of the
second link. An induced matching M in a graph G is a matching, where no two edges of M are
joined by an edge of G. Therefore, a set of non-interfering link form an induced matching (see
examples in Figure 2(b)).
The problem of finding a maximum induced matching in a graph is NP-Complete [35, 8] and it
remains NP-Complete even for very special graphs (for 3-regular planar graphs for instance). So, in
that case the problem of finding a set of non-interfering links maximizing the sum of backlogs is in
general hard to solve, even in a centralized way.

Centralized algorithms make their decisions based on a total knowledge of the network, in particular,
on the current link queue-sizes. While it is reasonable to assume some knowledge of the network,
like its topology and the interference set (which remains stable during the use of the network), it is
not realistic to assume a global knowledge of the link backlogs. Our aim (like in [7, 27]) is to design
a distributed link scheduling algorithm which does not require any knowledge of the link backlogs.
In passing, note that devising a distributed algorithm based on a full knowledge of the system state
is very difficult to achieve due to the interference. Actually, acquiring this information is at least as
much complicated as devising a decentralized link scheduling algorithm, which is the objective of
this paper. In addition, exchanging messages with a central unit in a distributed setting will be
both energy consuming and will generate high communication overheads, which will in turn affect
the performance.
Finally, as noted by many authors, to be efficient the control phase should be as short as possible,
thereby implying that exchange of control messages should be done during a constant number of
mini-slots (constant overhead).

There are two different classes of scheduling algorithms for wireless networks: contention or random
algorithms and collision-free (deterministic) algorithms. Algorithms in the former class may achieve

3

throughput optimality/near throughput optimality in terms of optimizing the wireless network
resources (a precise mathematical is given by Tassiulas et al. [37] in the context of wireline networks)
both without any local information [18, 30, 29] or with partial local information [26, 17, 16] but at
the expense of some requirements (e.g. perfect carrier sense information) not available in practice.
Throughput optimality is typically obtained at the expense of high latencies due, primarily, to the
back-off mechanisms that are used to establish the optimality [34]. Algorithms in the second class
will in general induce lower latencies than algorithms in the former class, in particular because they
are collision-free, but it is extremely challenging to come up with any throughput optimality result
for them. In this paper, we will focus on the class of deterministic collision-free algorithms.

Many (collision-free) distributed algorithms which have been proposed yield communication over-
heads which increase with the size of the network (see e.g. [6, 12, 25]). In particular, [14] presents a
distributed algorithm valid for any binary interference model but at the expense of a non-constant
overhead (which increases with the size of the network). The need for distributed algorithms with a
small constant overhead has been emphasized in [7, 27], where a distributed algorithm with a constant
overhead depending on the quality of the desired approximation is described; however, it is only valid
for the primary node interference model. An overview of the algorithms in [7, 14] is given in Section 3.

Under these considerations, we make the following contributions to the general problem:

• we propose, to the best of our knowledge, the first distributed transmission algorithm – called
AlgoLog– (Section 4) which:

– holds for any binary interference model;

– has a communication overhead independent of the size of the network;

– gives a maximal set of active links, where for any non-active link there exists at least one
active link in its interference set;

– requires no explicit knowledge of the queue sizes.

• we formally prove some salient properties of AlgoLog and compute design tradeoffs. In
particular, we show that the overhead grows logarithmically with the maximum node degree1

(Section 4).

• under Markovian assumptions for the arrivals, we identify (Section 5) a set of admissible arrival
rates at the links for which the system is stable, a result directly related to the achievable
throughput.

• we investigate the performance of AlgoLog via simulations (Section 6).

Our algorithm uses a coloring of the links (such that two links with the same color do not interfere),
which implies a knowledge of the binary interference. This knowledge can be acquired when the
network is built, and remains unchanged during the use of the network.
Also observe that the “link model” above, which is commonly used in the literature (see e.g. [7, 9]),
is idealized since in practice only nodes, and not links, can run a link scheduling algorithm. Indeed,
a wireless link is immaterial and does not have any computing or sensing capability. The link model

1From a practical standpoint, this presents a more attractive design tradeoff since node degree is bounded by
physical layer characteristics whereas the network size can be unbounded.

4

is often preferred to the node model as it allows the obtention of generic results, and as binary
interference is only defined between links. In addition to the contributions in Section 4-6, we show
in Section 7 how AlgoLog can be emulated if buffers are located in the nodes.

First, notation and model are introduced in Section 2 and algorithms in [7, 14] are discussed in
Section 3.

2 Definitions, notation, network and interference models

Throughout the paper N := {0, 1, . . .} is the set of nonnegative integers and N∗ := N− {0}.
The network is modeled as a graph G = (V,E), where a link exists between two nodes (or vertices)
u ∈ V and v ∈ V if both nodes are within transmission range of one another. If the graph is
undirected the link will correspond to the edge {u, v}. If the graph is directed the link will correspond
to the arc (u, v) if u is the sender and v is the receiver. In practice the networks are symmetric
digraphs, such that if there exists an arc (u, v), then there exists also the arc (v, u).
Due to interference, not all links can successfully transmit messages in the same slot. Here, we use
the so-called Binary Symmetric Interference model. In such a model, to each link e is associated a
set of interfering links, denoted by I(e). Note that due to symmetry, if e′ belongs to I(e), then e
belongs to I(e′). We assume that e does not beling to I(e).
The (distributed) link scheduling algorithm proposed in Section 4 applies to any kind of transmission
graph (directed or undirected) and interference sets I(e), e ∈ E. However, for the sake of both
simplicity and concreteness in the examples, we will mainly consider undirected graphs with the
d-interference model (with d fixed in N) defined below. Here d(u, v) is the distance in G between u
and v, that is the length of a shortest path between these two nodes.

∀e = {u1, u2} ∈ E, I(e) = {{v1, v2} ∈ E \ {e},∃i, j ∈ {1, 2}, d(ui, vj) ≤ d}. (1)

In other words, two links interfere if one node of the first link is located at distance at most d
in G from a node of the second link. As said in the introduction, two particular cases have been
mainly studied in the literature. The case d = 0 is known as the primary node (or node exclusive)
interference model. In this model, two links interfere if they are incident, so that an admissible
schedule forms a matching of the transmission graph G, namely, a set of links without common nodes
(Figure 2(a)). The more realistic model with d = 1 is known as the 802.11 interference model. In
this model, two nodes may communicate only if their neighbors are not involved in a communication.
Said otherwise, in graph theory an admissible schedule is called an induced matching of G, namely
a matching where no two edges of M are joined by an edge of G (Figure 2(b)). Two instances of
binary interference sets are represented in Figure 3 for these two models: when d = 0 (respectively
d = 1) messages are successfully transmitted on link e during a slot if all links other than link e
within the first circle (respectively second circle) remain silent in that slot.
We assume that time is slotted and denote by slot t the time interval [t, t+ 1), t ∈ N∗. Transmissions
on different links are synchronized and the unit of information to be transmitted between two nodes
is called a message. We denote by c(e) ∈ N∗ the capacity of link e ∈ E, defined as the maximum
number of messages that can be transmitted on link e in a slot.
Link e ∈ E is equipped with a buffer of size B(e) ∈ N∗ messages called buffer e. We denote by qt(e)
the weight of link e, defined as the number of messages in buffer e, at the beginning of slot t, waiting
to be transmitted on link e. If link e is allowed to transmit messages in slot t, it will (successfully)

5

I(e) Links interfering with link e, excluding e

d d- interference model defined by (1)

d = 0 Primary node interference model

d = 1 802.11 node interference model

c(e) Capacity of link e (in number of messages/slot)

B(e) Size of buffer e (in number of messages; B(e) ∈ [1,∞])

qt(e) Weight of link e (= number of messages in buffer e)
at beginning of slot t

C Number of colors

wt(e) Virtual weight of link e at beginning of slot t
function of qt(e) and C (8)

νt(e) = (νt(e, 1), . . . , νt(e, T)) Control vector of link e in slot t

S Number of control sub-phases in a slot

T + 1 Number of mini-slots in a sub-phase

K ≥ 2 Number of possible intervals for the virtual weights

L Initial value of the last interval

Table 1: Glossary of main notation.

transmit min(c(e), qt(e)) messages in that slot. A link e ∈ E is said to be busy in slot t if buffer e is
non-empty at the beginning of slot t or, equivalently, if qt(e) > 0.
The purpose of a link scheduling algorithm is to identify an admissible schedule in each slot, namely,
a set of non-interfering busy links. Furthermore we want to insure the stability of the system. At this
time, we do not need to specify the queue length of the weights {qt(e)}t, e ∈ E. Such a model will
be introduced in Section 5 when we study the stability of the distributed link scheduling proposed
in Section 4.

3 Related works

In this section, we briefly review two algorithms proposed in [14] and [7], respectively. They are
both distributed but the algorithm in [14] does not admit a constant overhead, whereas the one
described in [7] is valid only for the primary node interference model (d = 0).
In the algorithm described in [14], for each time-slot t ≥ 1 there are a control phase and a data phase,
like in our modeling (Section 2). Before each control phase, composed of T mini-slots, each link
e ∈ E is undetermined, and chooses a backoff value t(e), 1 ≤ t(e) ≤ T . In this context undetermined
means that the link does not know if it will be active or inactive during the data phase of the current
slot. If link e receives a message (from a link in I(e)) during a mini-slot t, 1 ≤ t ≤ t(e)− 1, then
e becomes inactive. Otherwise e sends a control message during mini-slot t(e) and if it does not
receive a message, then e becomes active (e is inactive otherwise). At the end, a valid set of active
links is computed, allowed to send messages during the data phase. This simple algorithm is valid
for any interference set, but the choice of the backoff value t(e), for any link e ∈ E, is a function of
the weights of links located in its interference set I(e) and function of the weights of links located in
interference set of each e′ ∈ I(e). More precisely t(e) depends on the weights of links belonging to

6

the set I(e) ∪ {e′′ : e′′ ∈ I(e′) for some e′ ∈ I(e)}. Thus, at each time slot t ≥ 1, each link has to
update the weights of links located in its 2d− neighborhood (links at distance at most 2d from e),
if we have an interference model based on distance d. Therefore the overhead is not constant and
furthermore one has to obtain this information, which, due to interference, is a problem as difficult
as the transmission scheduling problem.
The algorithm described in [7], Augmenting Paths Algorithm, has a constant overhead but it is
specific to the primary node interference model (d = 0). It uses the “augmenting path tool” developed
for matching theory [21] and which is used to find polynomial centralized algorithms to determine
maximum matchings. In that case, at each slot t ≥ 1, a valid set of active links is a matching of the
transmission graph G = (V,E). The main idea of Augmenting Paths Algorithm, is to compute, at
a slot t+ 1 > 1, a matching of G from the matching of G found at slot t. In [7], it is proved that, if
2k + 1 is the maximum length of the augmenting paths, the algorithm needs a constant overhead of
order 4k + 2 and achieves k

k+2 of the capacity region (a refined analysis of their algorithm can be

shown to give a tighter bound of k
k+1).

Moreover at the beginning of each slot t ≥ 1, each node v ∈ V becomes seed with a constant
probability p. A seed is a node allowed to start an alternating path. In [7], it is not described how to
compute p analytically. Finally it is necessary to precise that the augmenting path technique works
only for matchings in graphs and so this algorithm is specific to the primary node interference model
(d = 0), not the more realistic one. Recall that the problem of determining a maximum matching
(if the interference model is defined by d = 0) can be done in polynomial time with a centralized
algorithm, but for interference models defined by d ≥ 1, determining a maximum valid set of links is
an NP-complete problem. In Section 6.2 we compare via simulations the performance of Augmenting
Paths Algorithm to the performance of our distributed algorithm, proposed in Section 4, for a
square grid composed of 121 nodes.

4 Presentation of AlgoLog

4.1 Aim of the control phase

In this section, we propose a distributed link scheduling algorithm - called AlgoLog - with a constant
communication overhead which is valid for any binary interference model. (Recall that for the sake
of simplicity, we will only consider binary d-interference sets as defined Equation (1).) This is in
contrast with the algorithm proposed in [14] whose communication overhead increases with the size
of the network, and with the algorithm proposed in [7, 27] which works only for the primary node
interference model (d = 0, see Section 2).
Link scheduling algorithms proposed in the literature like those in [7, 14] require exchanges of
information between nodes (typically, any node needs to know the number of pending messages of
its neighbors) which is in itself a difficult task due to interference. Our algorithm does not require
any exchange of information between nodes and is therefore fully distributed.
In AlgoLog the time is slotted, with slot t referring to the time interval [t, t+ 1). A slot is composed
of two different phases, a control phase followed by a data phase. The aim of the control phase is to
determine all links – called active links – which will be allowed to send messages in the data phase
of slot t. At slot t, a link e ∈ E is said busy if qt(e) > 0. Links with qt(e) = 0 will not participate
in the control phase. Our first goal is to ensure that all active links form a maximal admissible
schedule, i.e. to determine a maximal set E′of non-interfering busy links (a set is maximal if a busy
link in E − E′ cannot be activated without interfering with a link in E′). To do that, AlgoLog will

7

use interference as information. Indeed, when a signal is sent on a link e ∈ E, every link e′ ∈ I(e)
hears it.
In addition to finding a maximal admissible schedule, AlgoLog activates all links whose virtual
weights are local maximum (see just after the definition of a virtual weight which is related to the
values of qt(e)/c(e)).

4.2 Virtual weights and their binary representation

Throughout the paper W is a fixed nonnegative integer whose role and value will be discussed later
on. To each link e ∈ E, we associate an integer wt(e) at the beginning of slot t ≥ 1 – called the
virtual weight of link e at time t – defined precisely in Section 4.5 (see (9)).
The mapping e→ wt(e) will satisfy the following properties: for all t ≥ 1,

wt(e) ∈ {0, 1, . . . ,W},

wt(e) = 0 if and only if qt(e) = 0, (2)

and two interfering busy links at time t will have different virtual weights namely,

if qt(e) > 0 and qt(e
′) > 0 then wt(e

′) 6= wt(e) for all e′ ∈ I(e), e ∈ E. (3)

There are two main reasons for working with virtual weights, and not with the actual weights: one
is to impose that two interfering busy links at time t will have different (virtual) weights, a feature
that AlgoLog will use, and the other one is to parametrize (through W) the duration of the control
phase, typically to limit its duration - see Section 4.5.

Since the virtual weights {wt(e), e ∈ E} always lie in the set {0, 1, . . . ,W}, we may (and will) identify
wt(e) with its binary representation the (so-called) control vector νt(e) defined by

νt(e) = (νt(e, 1), . . . , νt(e, T)) ∈ {0, 1}T , (4)

where binary numbers νt(e, 1), . . . , νt(e, T) enter the decomposition of wt(e) in base 2, namely,

wt(e) =

T∑
i=1

2T−iνt(e, i), (5)

with T := min{q ∈ N∗ : W ≤ 2q − 1}. Alternatively,

T = dlog2(W + 1)e, (6)

with dxe the smallest integer greater than or equal to x. Table 3 shows the control vectors associated
to values of wt(e) between 1 and 15 (here T = 4).

8

Require: wt(e).
Ensure: return active (s(e) = A) or inactive (s(e) = I).

1: e computes νt(e, i), i = 1, . . . , T
2: s(e) = I if wt(e) = 0 otherwise s(e) = U (wt(e) > 0)
3: for j = 1, . . . , S do
4: for i = 1, . . . , T do
5: if s(e) = U and νt,e(i) = 1 then
6: e sends a signal (heard by links in I(e))
7: if e does not hear any signal then
8: s(e) = A
9: if s(e) = U , νt(e, i) = 0, and e hears a signal then

10: s(e) = PI
11: if s(e) = A then
12: e sends a signal (of synchronization)
13: if s(e) = PI and e does not receive a signal then
14: s(e) = U
15: if s(e) = PI and e receives a signal then
16: s(e) = I
17: return s(e)

Table 2: Control phase of AlgoLog at link e ∈ E in slot t.

4.3 The algoritm AlgoLog

The control phase is composed of S ≥ 1 successive sub-phases labeled j = 1, . . . , S with a mini-slot
of synchronization between two consecutive sub-phases. We will see later that we can choose S = T ,
so that the parameter T , or equivalently W from (6), controls the duration of the control phase.
At the end of the control phase a link will be in one of the two final states: active (state A)
or inactive (state I). However, during the running of the algorithm a link can also be in one of
the two other temporary states: undetermined (state U) or potentially inactive (state PI).
During a sub-phase an undetermined link may become either definitely active or potentially inactive.
The objective of the mini-slot of synchronization between two sub-phases is to determine which
potentially inactive links will become definitely inactive; the others will become undetermined and
will participate in the next sub-phase.
We can now describe precisely the algorithm which is also represented in pseudocode in Table 2,
where s(e) ∈ {A, I, U, PI} gives the state of link e. The reader can also follow the running of the
algorithm in the examples in Figures 6-8. In Figure 6 the graph consists of a cycle with 9 links (with
d = 0); to make the figure more readable we have repeated the first node u at the end. In Figure 7
the graph is a grid with 16 nodes and 24 links (with d = 0), and in Figure 8 the graph is a random
graph with 48 nodes and 91 links (with d = 1). The random graph has been generated using the
method described in Section 6.3. Active links are indicated with thick bold blue lines, inactive links
with thin dashed red lines, undetermined links with thin black lines, and potentially inactive links
with dashed black lines.
At the beginning of the algorithm (line 2) link e marks itself as inactive if wt(e) = 0 and as
undetermined otherwise (wt(e) > 0). Each sub-phase is divided itself into T (so-called) mini-slots,

9

labeled i = 1, . . . , T . Each link e undetermined at the beginning of the mini-slot i does the following
in the mini-slot i:

• (lines 5-8) if νt(e, i) = 1, link e sends a signal (which will be heard by all links in I(e)). If
link e does not hear anything from other links during mini-slot i, it marks itself as active,
otherwise it stays undetermined;

• (lines 9-10) if νt(e, i) = 0, link e does not transmit in mini-slot i. If link e does not hear
anything from other links during mini-slot i, then it stays undetermined; otherwise it marks
itself as potentially inactive.

Figure 4 describes the four transitions previously detailed.

Undetermined
(state U)

Potentially Inactive
(state PI)

Active
(state A)

e sends a signal and
does not hear anything

e sends a signal and
hears something

e does not transmit and
does not hear anything

e does not transmit and
hears something

Figure 4: The four transitions and the three states in one sub-phase of AlgoLog for a link e.

In Figure 6 at the beginning of the algorithm the last link is inactive (thin dashed red line) as
qt(e) = 0 and all the other links are undetermined (solid black lines). Here T = 4 and the 4 mini-slots
of sub-phase 1 are indicated in lines (d)-(g). At the end of the 4th mini-slot only link 5 is active
(represented by a solid bold blue line), the others being potentially inactive or inactive (for the last
link).

AlgoLog could stop after the end of the first sub-phase (line 10 with j = 1 and i = T) since, by
construction, all active links form an admissible schedule. It is however possible that this admissible
schedule is not maximal. Such a situation is depicted in Figure 6 (for d = 0), where at the end of
mini-slot T (in this example T = 4) only link 5 is active and the others are potentially inactive
(or inactive). But we will see that in this example, at the end of the S subphases of Algolog, links
1, 3, 5, 7 are active yielding a maximal admissible schedule (Figure 6 (n)).

To enforce an admissible schedule to be maximal, the following is done: at the end of all the sub-
phases, but the last one, each active link transmits a signal, called a synchronization signal (lines
11-12). All potentially inactive links that do not hear anything during this additional mini-slot
mark themselves as undetermined (lines 13-14); the other potentially inactive links (i.e. those that
do hear something from neighbor(s)) are marked inactive (lines 15-16). AlgoLog then enters the
second sub-phase (line 4 with j = 2, i = 1) and the previous process is repeated until the end of
the S-th sub-phase (line 17 with j = S and i = T).
Figure 5 describes the transitions previously detailed.

10

Inactive
(state I)

Active
(state A)

e sends a signal
of synchronisation

Potentially Inactive
(state PI)

e receives a signal
of synchronisation

e does not
hear anythingUndetermined

(state U)

Figure 5: Synchronisation.

We will show in Proposition 2 that property (3) together with the choice for S = T implies that
AlgoLog always generates a maximal admissible schedule.

In Figure 6 (h), during the mini-slot of synchronization links 4 and 6 become inactive the other
links 1, 2, 3, 7, 8 becoming undetermined. After the first four mini-slots of sub-phase 2 (Figure 6
(i)-(l)), links 3 and 7 become active links and 1, 2, 8 are potentially inactive. During the mini-slot of
synchronization (Figure 6 (m)) links 2, 8 become inactive and link 1 undetermined. At the end of
the next sub-phase (Figure 6 (n)) link 1 becomes active.

11

u
3

u
2 89 3 099 9

u
3

u
2 11 3 132 2

u
9

u
5 1313 9 01514 14

u
1

u
0 11 111 1

u
0

u
11 011 1

u u
00 11 1

u u
10 0

u
1

u
0 11 1

u u

u
0

u
11 0

u u

u u

u u

uu

(d) mini-slot 1 of sub-phase 1

(e) mini-slot 2 of sub-phase 1

(f) mini-slot 3 of sub-phase 1

(g) mini-slot 4 of sub-phase 1

(h) mini-slot of synchronisation

(i) mini-slot 1 of sub-phase 2

(j) mini-slot 2 of sub-phase 2

(k) mini-slot 3 of sub-phase 2

(l) mini-slot 4 of sub-phase 2

(m) mini-slot of synchronisation

(n) after sub-phase 3

(a) weights

(b) colors

(c) virtual weights

1

1 11

Figure 6: Output of AlgoLog for a cycle composed of 9 links for d = 0, C = 3, K = 5, L = 4,
W = 15, and T = 4. Active links are indicated with thick bold blue lines, inactive links with thin
dashed red lines, undetermined links with thin black lines, and potentially inactive links with dashed
black lines.

37

28

45

12849 21
18

94

25

101 106

2621114
78

27

6

12

135 27 131

13922 184

1

3

2

33 3
1

1

1

1 2

444
1

4

3

2

1 2 1
33 3

13

11

18

5119 11
5

37

9

41 42

121248
29

12

3

6

53 10 53
5511 59

0

0

0

10 0
0

1

0

1 1

001
0

0

0

0

1 0 1
10 1

0

1 0

0

0 0

1

1
1 1

1

0 1

0

0
0 1

1

0 0

0

1

0

1

0

1

0

1
1

1

1

1

(d) mini-slot 1 of sub-phase 1 (f) mini-slot 3 of sub-phase 1

(g) mini-slot 4 of sub-phase 1 h) mini-slot 5 of sub-phase 1
(k) mini-slot of synchronisation (l) after sub-phase 2

(a) weights (b) colors (c) virtual weights (e) mini-slot 2 of sub-phase 1

(i) mini-slot 6 of sub-phase 1

Figure 7: Output of AlgoLog for a grid composed of 24 links for d = 0, C = 4, K = 15, L = 140,
W = 60, and T = 6.

12

(a) mini-slot 1 of sub-phase 1

0

1

0

0

0

0

0

1

0

0

0

0
0

0

0
0

0

000

0

0

0 0

0 0

0
00

0
0

0
0 0

0

0
0

0 0 0

0
0

0

0

0 0 0 0

0

0

0

0 0

0

0

0
0

0 0

1

1

1

1

1 1

1
1

1
1

1

1
1

1

1

1

1

1

1

1 0

1

1

1

1

1

11

1
1 0

1

0

1

0 0

1
0

1
1

0

1
0

0

1

0

0

1

0

0

1

0

0

0

0

00

0
1

1 0

1 0

1

0

0
1

1

0

0

(b) mini-slot 2 of sub-phase 1

(c) mini-slot 3 of sub-phase 1 (d) induced matching found by the algorithm

Figure 8: Output of AlgoLog for a graph composed of 91 links for d = 1.

4.4 Data phase

All active links at the end of the control phase of a slot transmit during the data phase of that slot.
More specifically, if link e is active in slot t as the result of the control phase of AlgoLog, then it
will transmit min(qt(e), c(e)) messages during the data phase of that slot.

4.5 Definition of the virtual weights

Recall that we want that two interfering links have different virtual weights. Furthermore, to enhance
the performance of AlgoLog (stability, delay, ...), we want as much as possible to schedule links
with the highest backlogs or, by fairness to links with small bandwidth, links with the highest ratios
qt(e)/c(e) in slot t (t ≥ 1).
To overcome the problem that interfering links may have the same virtual weights, we will use an
admissible coloring of the links, which consists in associating to each link e a color χ(e) so that any
two interfering links have different colors. Let C be the number of colors of such an admissible
coloring. We have χ(e) ∈ {1, 2, . . . , C}. We will see in Section 4.7 how to compute or approximate
the minimum value for C in the d-interference model. Figure 6 (b) shows an admissible coloring of a
cycle graph with 9 links with C = 3 and Figure 7 (b) an admissible coloring of the grid with C = 4
colors, both within the primary node interference model (d = 0).
In addition, in order to ensure that links with the same virtual weights are selected in an equitable
manner, we will use a time-dependent coloring, which associates to each link e in slot t ≥ 1 a color
χt(e) ∈ {1, 2, . . . , C} defined by:

χt(e) = (χ(e) + t− 1) mod(C) e ∈ E, t ≥ 1, (7)

where p mod(C) = p− Cb(p− 1)/Cc for any integer p ≥ 1, so that p mod(C) ∈ {1, 2, . . . , C}.

13

As the initial coloring χ1 := (χ(e), e ∈ E) is admissible, χt := (χt(e), e ∈ E) is also an admissible
coloring for all t ≥ 2. We state this fact as a lemma:

Lemma 1 If e and e′ are interfering links, then χt(e) 6= χt(e
′) for all t ≥ 1.

From now on we will work under the following assumption.

Assumption 1 (Initial coloring) The initial coloring χ(e), e ∈ E, is known and fixed throughout.

To insure that links with the highest ratios qt(e)/c(e) will have more chance to be scheduled in slot
t, to each link e with a positive weight (i.e. qt(e) > 0) we will assign the virtual weight wt(e) defined
as

wt(e) =

{
Cg(qt(e)/c(e)) + χt(e) if qt(e) > 0
0 if qt(e) = 0.

(8)

The mapping g is defined as follows: [0,∞) is partitioned into K ≥ 2 (necessarily) disjoint sets
I0, . . . , IK−1, where I0 ∪ · · · ∪ IK−2 = {x, x ≤ L} and IK−1 = {x, x > L} with 0 ≤ L <∞. Then,

g(x) = k if x ∈ Ik for k = 0, 1, . . . ,K − 1.

In summary, either qt(e) = 0 and then wt(e) = 0, or qt(e) > 0 and

wt(e) = C

K−1∑
k=0

k 1{qt(e)/c(e) ∈ Ik}+ χt(e) ∈ {1, . . . , CK}. (9)

Note that there is no need to select L ≥ maxe∈E B(e)/c(e) since maxe∈E qt(e)/c(e) ≤ maxe∈E B(e)/c(e)
for all t. Also notice that, as k ≤ K − 1 then wt(e) ≤ C(K − 1) + C = CK for all t, so that the
maximum virtual weight W satisfies

W = CK. (10)

From (6) and (10), we obtain
T = log2(dCK + 1e). (11)

For the first example of the cycle (cf. Figure 6 and Table 3), we choose L = 4, K = 5, intervals
Ik = (k, k + 1] for k = 0, 1, 2, 3 and I4 = (4,∞). For the example of the grid (Figure 7) we choose
L = 140, K = 15 and Ik = (10k, 10k + 10] for 0 ≤ k ≤ 13 and I14 = (140,∞).

The following lemma shows that property in Eq. (3) holds.

Lemma 2 Let e, e′ ∈ E be two busy interfering links in slot t ≥ 1. Then, wt(e) 6= wt(e
′).

Proof. Fix t ≥ 1. There exist j and k such that bqt(e)/c(e)c ∈ Ij and bqt(e′)/c(e′)c ∈ Ik.
Assume that j 6= k. Then (cf. (8))

|wt(e)− wt(e′)| = |C(j − k)− (χt(e
′)− χt(e))|

≥ C|j − k| − |χt(e′)− χt(e)| (Hint:|a− b| ≥ |a| − |b|)
≥ C|j − k| − (C − 1) (12)

≥ 1,

where (12) follows from the fact that 1 ≤ χt(e), χt(e′) ≤ C. Hence, wt(e) 6= wt(e
′). Now, assume

that j = k. We have (cf. (8)) wt(e) − wt(e′) = χt(e) − χt(e′). Therefore, as χt(e) 6= χt(e
′) by

Lemma 1, we get that wt(e) 6= wt(e
′).

14

qt(e)/c(e) χt(e) wt(e) νt(e, 1) νt(e, 2) νt(e, 3) νt(e, 4)

(0,1] 1 1 0 0 0 1

(0,1] 2 2 0 0 1 0

(0,1] 3 3 0 0 1 1

(1,2] 1 4 0 1 0 0

(1,2] 2 5 0 1 0 1

(1,2] 3 6 0 1 1 0

(2,3] 1 7 0 1 1 1

(2,3] 2 8 1 0 0 0

(2,3] 3 9 1 0 0 1

(3,4] 1 10 1 0 1 0

(3,4] 2 11 1 0 1 1

(3,4] 3 12 1 1 0 0

> 4 1 13 1 1 0 1

> 4 2 14 1 1 1 0

> 4 3 15 1 1 1 1

Table 3: (wt(e), νt(e)) for all entries (qt(e)/c(e), χt(e)) for C = 3, K = 5, L = 4, and W = 15.

4.6 AlgoLog generates a maximal schedule

We will first show that AlgoLog activates all links whose virtual weights are local maximum, and then
AlgoLog generates a maximal admissible schedule. We say that a busy link e is a local maximum in
slot t ≥ 1, if wt(e) > wt(e

′) for all e′ ∈ I(e). Note that, by Lemma 2, wt(e) 6= wt(e
′) for e′ ∈ I(e),

which justifies the strict inequality in the definition of a local maximum.

Proposition 1 A local maximum link is always active at the end of a control phase of AlgoLog.
More precisely, it is already active at the end of sub-phase 1.

Proof.
Assume that link e is local maximum and that it is not active at the end of mini-slot T of sub-phase
1. So it is either PI (potentially inactive) or U (undertermined) at the end of mini-slot T of sub-phase
1. If link e has become PI in mini-slot i, 1 ≤ i ≤ T , that is due to the existence of a link e′ ∈ I(e)
such that link e′ is U at the beginning of mini-slot i and coordinate i of their control vectors satisfy
νt(e

′, i) = 1 and νt(e, i) = 0. If link e is U, let i be the last mini-slot in which e has sent a message;
as it stayed U there exists a link e′ ∈ I(e) such that link e′ is U at the beginning of mini-slot i and
coordinate i of their control vectors satisfy νt(e

′, i) = 1 and νt(e, i) = 1. But, as wt(e) > wt(e
′),

in both cases there exists an ` < i such that νt(e, `) = 1 and νt(e
′, `) = 0 and so at mini-slot `, e′

should have become PI, yielding a contradiction.

In essence, Proposition 1 says that links with ‘large’ weights (from a local point of view) will be
more likely to be scheduled for transmission since the virtual weight of a link is a non-decreasing
function of its weight (see (8) and (9)).
The statement in Proposition 1 should however be interpreted with care. In particular, it does not
imply that, in any slot t, AlgoLog always finds a maximum schedule that is one for which the sum

15

of the virtual weights of the activated links is maximized. To illustrate this point, consider a path
composed of three links: e1, e2, and e3. Let us suppose we have the primary node interference
model (d = 0); so C = 2. Assume that the virtual weights satisfy: wt(e2) > wt(e1) = wt(e3) but
wt(e1) +wt(e3) > wt(e2). As a result, AlgoLog will only activate link e2 (which is a local maximum)
in slot t (note that this schedule is maximal). Note, however, that a maximum schedule consists of
link e1 and e3 as wt(e1) + wt(e3) > wt(e2), thereby showing that AlgoLog does not always find a
maximum schedule. Note also that the situation might be worse with the real weights. Indeed we
can have, by equation 8, wt(e) > wt(e

′), if χt(e) > χt(e
′) and qt(e)/c(e) and qt(e

′)/c(e′) belong to
the same interval although qt(e

′)/c(e′) might be considerably larger than qt(e)/c(e).
The above example shows that AlgoLog will not allow the network to operate at its maximum
throughput (defined as the average number of transmissions per slot). Indeed, in the example above,
it would be more efficient to activate links e1 and e3 instead of link e2 (the throughput can be the
double if qt(e2) = qt(e1) = qt(e3) and χt(e2) = 2 and χt(e1) = χt(e3) = 1). This is of course not
surprising as this is the price to pay for using a decentralized scheduling algorithm like AlgoLog.

We now prove that AlgoLog finds a maximal schedule when S ≥ T , namely, a schedule with the
property that each inactive busy link in E is such that there is (at least) one active link in its
interference set.

Proposition 2 Let S ≥ T = log2(dCK + 1e). For each slot t ≥ 1 and for every e ∈ E such that
qt(e) > 0, there exists at least one link e′ ∈ I(e) ∪ {e} such that e′ is active at the end of the control
phase of slot t.

Proof. Consider an arbitrary slot t and an arbitrary link e such that wt(e) > 0 (i.e. e is busy).

• If e is active at the end of the control phase of t, then the result is proved by taking e′ = e.

• If e is inactive at the end of the control phase of t, that is due to the fact that, when e became
inactive (during a mini-slot of synchronization), there was some link e′ ∈ I(e) active, and the
proposition is proved with e′.

• If e is neither active nor inactive at the end of the control phase of slot t, then it is U
(undetermined) at the end of all sub-phases (after the mini-slot of synchronization). We will
see that if the number S of sub-phases satisfies S ≥ T this case cannot happen. More precisely,
we will prove that in any sub-phase j, j = 1, . . . , S, there exists a link which became PI no
sooner than in mini-slot 2 + S − j. In particular, at the end of sub-phase 1, there exists a link
which became PI no sooner than in mini-slot S + 1, which yields a contradiction when S ≥ T .

First, let us see how a link f can be PI or U at the end of mini-slot T of any sub-phase. The reader
can follow the proof on the example of Figure 9, where AlgoLog is applied to a path with 5 links,
labeled e1, e2, e3, e4, e5, d = 0,W = 8, and T = 3.

Case 1: Let f be PI at the end of mini-slot T of a sub-phase and let i(f) be the mini-slot of this
sub-phase in which f became PI. The latter is due to the existence of a link f ′ ∈ I(f) which, at
mini-slot i(f), was U with the i(f) coordinate of its control vector given by vt(f

′, i(f)) = 1 (while
vt(f, i(f)) = 0). Hence, f ′ will be PI, U or A at the end of the sub-phase. Note that, if f = e,
then f ′ cannot be A, as otherwise e would become inactive during the mini-slot of synchronization,

16

101 110 111010 100

1 1 10 1
(c) mini-slot 1 of sub-phase 1

(a) path composed of 5 edges

(b) control vectors

e1 e2 e3 e4 e5

0 1 10
(d) mini-slot 2 of sub-phase 1

0 10
(e) mini-slot 3 of sub-phase 1

(f) mini-slot of synchronisation
1

(g) mini-slot 1 of sub-phase 2
10 1

(h) mini-slot 2 of sub-phase 2
00

(i) mini-slot 3 of sub-phase 2
10

(j) mini-slot of synchronisation
1

Figure 9: Example showing the necessity of S ≥ T in Proposition 2. Active links are indicated with
thick bold blue lines, inactive links with thin dashed red lines, undetermined links with thin black
lines, and potentially inactive links with dashed black lines.

implying that it would be inactive at the end of the control phase of t, thereby contradicting the
assumption that it is U or PI at the end of the control phase of t.
In the example of Figure 9 it is the case in the sub-phase 1 for link e1 (respectively e3, e4) which
became PI at mini-slot 1 (respectively 2, 3) or in sub-phase 2 for links e1 and e2.

Case 2: Let f be U at the end of mini-slot T of some sub-phase and let i(f) be the last mini-slot of
this sub-phase in which link f has sent a signal. We claim that it is due to the existence of a link
f ′ ∈ I(f) which became PI in a mini-slot i(f ′) > i(f). Indeed, if link f is U at the end of mini-slot
T then it was U at mini-slot i(f). But the latter is due to another undetermined link f ′ ∈ I(f),
which also sent a signal during mini-slot i(f). Let vt(f) and vt(f

′) be the control vectors of f and
f ′, respectively.
First, note they have the same coordinates for i = 1, . . . , i(f). To see why, suppose that for some
i < i(f), vt(f, i) and vt(f

′, i) differ; then, as both links f and f ′ were U, the one with the coordinate
0 should have become PI due to the other one, and so could not have been U at mini-slot i(f).
Now, since wt(f) 6= wt(f

′) from Lemma 2, there is a mini-slot l > i(f), where vt(f, l) and vt(f
′, l)

differ. However, as i(f) was the last mini-slot in which f sent a signal, we have vt(f, l) = 0 and
so vt(f

′, l) = 1. But f being U at the end of mini-slot T , this is possible only if, at mini slot l, f ′

is PI. Therefore, f ′ became PI at some mini-slot i(f ′) > i(f) as, at mini-slot i(f), it was U with
coordinate 1.
In the example of Figure 9, this situation shows up for link f = e2 at the end of sub-phase 1.
Indeed, e2 sent its last signal in mini-slot 1 and stayed U in this mini-slot due to link f ′ = e3. Here,
vt(e2, 3) = 0 and vt(e3, 3) = 1; but e3F and so e2 stays U at mini-slot 3.

Recall that we suppose e is U or PI at the end of mini-slot T of all sub-phases. Consider a sub-phase

17

j.

• If e is U at the end of mini-slot T of sub-phase j and if ij1 is the last mini-slot of this sub-phase

j in which link e has sent a signal, then by Case 2 there exists a link ej2 ∈ I(e) which became

PI in a mini-slot ij2 > ij1 ≥ 1, and as a result ij2 ≥ 2.

• If e is PI at the end of mini-slot T of sub-phase j and ij1 denotes the mini-slot in which e

became PI, then, by Case 1, there exists a link ej2 ∈ I(e) which is PI or U at the end of mini-slot

T of sub-phase j, with the ij1-th coordinate of its control vector equal to 1 (or, equivalently,

ej2 has sent a signal at mini-slot ij1). As we noted in Case 1, ej2 cannot be A, as otherwise e
would be inactive at the end of the sub-phase j (due to the synchronization slot), and so will
be Inactive at the end of control phase of t.

• If ej2 is U and ij2 is the last mini-slot of this sub-phase j in which link ej2 has sent a signal,

then, by Case 2 there exists a link ej3 ∈ I(ej2) which became PI at a mini-slot ij3 > ij2 ≥ i
j
1, so

that ij3 ≥ 2.

• If ej2 is PI, as the ij1-th coordinate of its control vector is equal to 1, it became PI at a mini-slot

ij2 > ij1 ≥ 1, and so ij2 ≥ 2. Furthermore, there exists by Case 1 a link ej3 ∈ I(ej2) which is PI
or U or A at the end of mini-slot T of sub-phase j.

• If ej3 is A, we stop with the sequence e, ej2, e
j
3. That is the case of sub-phase 2 in the example

of Figure 9, with the sequence e1, e2, e3 respectively PI, PI, A.

Otherwise, as ej3 is PI (respectively U), there exists by Case 1 (respectively 2) a link ej4 ∈ I(ej3)

which is A, PI or U. If ej4 is A, we stop with the sequence e, ej2, e
j
3, e

j
4; otherwise we continue

the process with ej4 until we find an active link. In the sub-phase 1 in the example of Figure 9,
we get the sequence e1, e2, e3, e4, e5 respectively PI, U, PI, PI, A.

Summarizing the above construction, we have created at the end of mini-slot T of any sub-phase j a
sequence of links Sj = (e = ej1, e

j
2, . . . , e

j
kj
, ejkj+1) which satisfies the following properties:

(i) link ejm is U or PI for m = 1, . . . , kj − 1 ; link ejkj is PI and link ejkj+1 is A.

(ii) link ejm+1 ∈ I(ejm) for m = 1, . . . , kj .

(iii) If ejm is U and ijm is the last mini-slot in which ejm has sent a signal, then ejm+1 is PI and

became PI at a mini-slot ijm+1 > ijm.

(iv) If ejm is PI and became PI at the mini-slot ijm, then ejm+1 has sent a signal in mini-slot ijm.

Properties (iii) and (iv) imply the following property:

(v) Suppose ejm and ejm′ became PI respectively at mini-slots ijm and ijm′ ; then if m′ > m, ijm′ > ijm.
(Said otherwise, a link becomes PI at a mini-slot strictly greater than the mini-slot, where the
preceding PI link in the sequence became PI).

It suffices to prove (v) for two consecutive PI links in the sequence. Suppose ejm became PI at
mini-slot ijm. If the next PI link is ejm+1, then by property (iv), as ejm+1 has sent a signal in

18

mini-slot ijm, it becomes PI at a mini-slot ijm+1 > ijm. If the link ejm+1 is U, then ejm+2 is PI

and is the first PI link after ejm; by property (iv) ejm+1 has sent a signal in mini-slot ijm and so

has sent its last signal in the mini-slot ijm+1 ≥ ijm. By property (iii) applied to ejm+1 we have

ijm+2 > ijm+1 ≥ ijm.

We now have all the ingredients to prove by induction on S − j the following claim, which will
imply that there exists a link which became PI in sub-phase 1 at a mini-slot at least S + 1, giving a
contradiction when S ≥ T .

Claim 1 At sub-phase j, there exists a sequence Sj as described above whose last PI link ejkj became

PI at a mini-slot ijkj ≥ 2 + S − j.

Proof. The claim is true for j = S (S − j = 0). In fact, for any j, ijkj ≥ 2; indeed we have seen that

either e2j is PI and then i(ej2) ≥ 2 or e2j is U and then i(ej3) ≥ 2. By property (v) it follows that the
last link became PI at a mini-slot ≥ 2.
Assume that the claim is true for j and let us prove that it is still true for (j−1) (induction on S− j).
The induction assumption implies that there exists a sequence Sj = (e = ej1, e

j
2, . . . , e

j
kj
, ejkj+1) whose

last PI link ejkj became PI at a mini-slot ijkj ≥ 2 + S − j. Consider the same sequence at sub-phase

j − 1. Link ejkj+1 (which was A at the end of sub-phase j) cannot be A at the end of the sub-phase

j − 1, otherwise during the synchronization slot of sub-phase j − 1, link ejkj would have become

Inactive and would have not participated in sub-phase j. If link ejkj+1 is PI at the end of mini-slot

T of sub-phase j − 1, then by property (v) it became PI at a mini-slot ij−1kj+1
> ijkj ≥ 2 + S − j. If

link ejkj+1 is U at the end of mini-slot T of sub-phase j − 1, then by Case 2, there exists a link ej−1kj+2

which became PI at a mini-slot ij−1kj+2
> ijkj ≥ 2 + S − j.

The construction previously described generates a sequence Sj−1 = (e = ej1, e
j
2, . . . , e

j
kj
, ejkj+1, . . . , e

j−1
kj−1+1)

satisfying all the properties (i)-(iv), and which contains a link (either ejkj+1 or ejkj+2) which became

PI at a slot > 2 + S − j. Therefore, by property (v), the last link of Sj−1 also became PI at a
mini-slot ij−1kj−1

≥ 2 + S − (j − 1).

We are now in position to conclude the proof of the proposition. By the claim above, there exists
at sub-phase 1 a PI link e1k1 which became PI at a mini-slot i1k1 ≥ S + 1. However, in a sub-phase
there are exactly T mini-slots, which yields a contradiction when S ≥ T . This completes the proof.
In the example of Figure 9 one can see that we need S ≥ 3; indeed, after sub-phase 2 there is no
active link in I(e1) ∪ {e1}.

4.7 Setting the parameters of AlgoLog

Let us now address the communication overhead of AlgoLog, denoted by O, defined as the number
of mini-slots contained in the control phase of a slot. To obtain an admissible maximal schedule we
have to choose, by Proposition 2, S ≥ T . The best is to choose S = T . Therefore, there are S (= T)
sub-phases in the control phase plus S − 1 mini-slots of synchronization; furthermore each sub-phase
is composed of T mini-slots. Hence,

O = T 2 + T − 1 with T = log2(dCK + 1e). (13)

19

Parameters K and C directly impact the overhead of AlgoLog since the overhead is an increasing
function of the product C ·K, as shown in (13). We choose for C the smallest possible value (see
next paragraph). The choice of K is more delicate as, on one hand, we want a small K to reduce
the overhead but, on the other hand, we want a large K to ensure the finest possible discrimination
between the ratios qt(e)/c(e), a key feature for ensuring that (non-interfering) links with the highest
backlogs are scheduled first. One possible way to choose K consists in deciding a priori of an
upperbound for the overhead O, which in turns implies an upper-bound K0 on K. Then, if the ratio

qt(e)/c(e) is bounded by some constant B, we can choose K = K0 and L = B(K0−1)
K0

. Finally, we
divide the interval (O,L) into K0 − 1 intervals of the same length.

Computation of C. Recall that computing the minimum value of C consists in determining the
minimum number of colors needed to color the links in such a way that two interfering links have
different colors. In general, that is an NP-complete problem (in fact it corresponds to a coloring of
the vertices of the so called link-interference graph of G whose vertices represent the links of G, two
vertices being joined if the corresponding links interfere). In the d-interference model, there exists a
simple greedy algorithm to do this in linear time using 2∆(G)d+1 different colors [11], where ∆(G)
is the maximum degree in G. In the d-interference model, if G is a path composed of at least d+ 2
links, then we can use only d+ 2 colors. In particular, if d = 0 and G is a path then only two colors
are needed.
A particular interesting case is when the binary interference model is the primary interference model
(i.e. d = 0). In this case, the minimum value of C is the edge chromatic number of G (see [13]).
Vizing’s theorem [13] establishes that for any graph G, this number is either ∆(G) or ∆(G) + 1. A
constructive proof of Vizing’s theorem can be found in [24]. There also exists a polynomial time
algorithm to compute a valid coloring of the links by using at most ∆(G) + 1 colors, therefore giving
a +1 approximation. Finally, if G is bipartite then the edge chromatic number of G is exactly ∆(G);
therefore when d = 0, we have C = 2 for any path and C = 4 for any 2-dimensional grid.

5 Stability of AlgoLog

In this section, we address the stability (defined below) of AlgoLog when each link is equipped with
an infinite capacity buffer. Throughout, P and E denote the probability measure and the expectation
operator associated with it, respectively.
To make the model as general as possible, we assume that arrivals to links are modulated by a
discrete-time, aperiodic, irreducible, and homogeneous Markov chain Z := {zt, t ≥ 1}, taking values
in a countable and finite set R = {1, . . . , R}. Let π = (π(1), . . . , π(R)) be the stationary distribution
of Z, and let P = [P (i, j)]i,j∈R be its probability transition matrix, with Pi, j) := P(zt+1 = j | zt = i).
For a later use, recall that π = πP and that π(i) > 0 for all i ∈ R.

When zt = i, the arrivals to links in slot t are given by the stochastic sequence {At(e, i), e ∈ E},
with At(e, i) ∈ {0, 1, . . .} the number of arrivals to link e.

Let qt(e) be the number of pending messages in the buffer (of link) e at the beginning of slot t ≥ 1.
We denote by xt(e) the number of messages transmitted on link e in slot t, with xt(e) = 0 if link e is
inactive in slot t and xt(e) = min(qt(e), c(e)) if link e is active in slot t (note that in the latter case
qt(e) > 0 as otherwise link e cannot be active). The sequence {qt(e), t ≥ 1} satisfies the following

20

recursion: for each t ≥ 1 and each e ∈ E,

qt+1(e) = qt(e) +At(e, i)− xt(e), (14)

if zt = i. Notice that the definition of xt(e) implies that new messages joining buffer e in slot t are
not transmitted in this slot. We recall that the decision to activate or not a link in slot t is made by
AlgoLog, and this decision is a deterministic function of the virtual weight (wt(e), e ∈ E) at the
beginning of slot t, which, by (9), only depends on the queue-lengths vector qt := (qt(e), e ∈ E) and
on the coloring vector βt = (βt(e), e ∈ E).

We assume that:

A1 for every e ∈ E and i ∈ R, {At(e, i), t ≥ 1} is a sequence of independent and identically
distributed (iid) random variables. Define

a(e, i) = E[At(e, i)], for all e ∈ E, i ∈ R.

Moreover, for each e, the |R| iid sequences {At(e, i), t ≥ 1}, i ∈ R, are mutually independent.
Last, we assume that the sequences {At(e, i), e ∈ E, i ∈ R} and {At′(e, i), e ∈ E, i ∈ R} are
independent for t 6= t′;

A2 for each t ≥ 1,
m0 := max

e∈E,i∈R
a(e, i) <∞, (15)

and
σ0 := max

e∈E,f∈I(e)∪{e},i∈R
E[At(e, i)At(f, i)] <∞. (16)

Observe that A1 does not rule out correlated arrivals at links in the same slot.

To show the versatility of the arrival processes defined above, let us specialize the Markov chain Z
and assumption A1 above as follows. Assume that R = ×e∈ER(e), and that Z = {Z(e), e ∈ E}
with Z(e) = {zt(e), t ≥ 1}, zt(e) ∈ R(e), are |E| mutually independent, aperiodic irreducible,
homogeneous, and discrete-time Markov chains. Assume further that At(e, zt(e)) is the number of
arrivals to link e in slot t, and that {At(e, k), t ≥ 1, k ∈ R(e)} are |E| mutually iid sequences. In
other words, we assume that arrivals on each link are modulated by independent Markov chains.
Then, for each e ∈ E, {At(e, zt(e)), t ≥ 1} is the so-called Discrete-time Batch Markov Arrival
Process (D-BMAP) and these |E| D-BMAPs are mutually independent. If, in addition, we assume
that, for each e ∈ E, the set R(e) is a singleton, then these arrival processes are all independent iid
sequences.

Under assumption A1, the process Y := {yt := (qt, zt), t ≥ 2} is a discrete-time, homogeneous,
Markov chain on N|E| ×R. We further assume that (see Remark 1):

A3 the Markov chain Y is irreducible on N|E| ×R. This will hold, in particular, if P(At(e, i) =
k) > 0 for all k ≥ 0, e ∈ E, i ∈ R.

AlgoLog is stable if the Markov chain Y is positive recurrent [23]. In other words, queues do not
“build up” when AlgoLog is stable. Observe that the system is necessarily stable when all buffers

21

have finite capacity since in this case the state space is finite.

Let a(e) be the expected number of arrivals in link e in a slot. We have

a(e) =
∑
i∈R

a(e, i)π(i). (17)

The following lemma will be used in the proof of Proposition 3 and, more precisely, in the definition
of the Lyapounov function used to investigate the stability of the queue-lengths process {qt, t ≥ 1}.
For any row vector v, we denote by vTr its transpose; let 1 = (1, . . . , 1)Tr be the unit vector of
dimension R and I the R-by-R identity matrix.

Lemma 3 For each e ∈ E, the linear system of R equations and R unknowns, u(e, 1), . . . , u(e,R),
given by

(I−P)u(e) = (a(e)− a(e, 1), . . . , a(e)− a(e,R))Tr, (18)

has an infinite number of solution, with u(e) := (u(e, 1), . . . , u(e,R))T .

Proof. Fix e ∈ E. Since P is an irreducible, stochastic matrix, the R-by-R matrix I−P has rank
R− 1 (its eigenvalue 0 is simple, since 1 is a simple eigenvalue of P from Perron-Frobenius theorem)
and is therefore not invertible. As a result, either (18) has no solution or it has infinitely many
solutions. Let us show that the latter holds by exhibiting a solution.
Introduce the R-by-R matrix M whose first row is (1, . . . , 1) and ith row is the ith row of the matrix
I−P, for i = 2, . . . , R. Since M is invertible,2 the system

Mx = (θ, a(e)− a(e, 2), . . . , a− a(e,R))Tr, (19)

has a unique solution, where θ is an arbitrary real number. Expanding (19), we obtain with
x = (x1, . . . , xR)Tr,

xi −
R∑
j=1

P (i, j)xj = a(e)− a(e, i), i = 2, . . . , R. (20)

Multiplying now both sides of (20) by πi and summing up the resulting equations, gives

0 =

R∑
i=2

πixi −
R∑
j=1

(
R∑
i=2

P (i, j)π(i)

)
xj − a(e)

R∑
i=2

π(i) +

2∑
i=2

a(e, i)π(i). (21)

Using the identity π(j) =
∑R
i=1 P (i, j)π(i) for j = 1, . . . , R, resulting from the invariant measure

2Assume that M−1 does not exist. Since rows 2, . . . , R of M are linearly independent (as otherwise rank(I−P) <
R− 1), the non-invertibility of M implies that there exists a linear combination of rows 2, . . . , R of M equals to the
first row of M, i.e. equals to the vector (1, . . . , 1). Namely, there exit c2, . . . , cR such that 1 =

∑R
i=2 ciA(i, j) for

j = 1, . . . , R, where A = [A(i, j)] := I− P. Summing over j = 1, . . . , R gives R =
∑R

i=2 ci
∑R

j=1A(i, j) = 0 since∑R
j=1 A(i, j) = 0 for all i, which ends up with a contradiction. Therefore, M−1 exists.

22

equation π = πP, and (17), we get from (21)

0 =

R∑
i=2

πixi −
R∑
j=1

(π(j)− P (1, j)π(1))xj − a(1− π(1)) + a− a(e, 1)π(1)

= −π(1)

x1 − R∑
j=1

P (j, 1)xj − a+ a(e, 1)

 .

Since π(1) > 0, the above implies that

x1 −
R∑
j=1

P (j, 1)xj = a− a(e, 1). (22)

We then conclude from (20) and (22) that x is a solution of (18) (notice that we have actually
exhibited infinitely many solutions since θ is arbitrary), which concludes the proof.

Expanding (18) gives

u(e, i) =
∑
j∈R

P (i, j)u(e, j) + a(e)− a(e, i), i ∈ R, e ∈ E. (23)

The following sufficient stability condition holds:

Proposition 3 (Sufficient stability condition for single-hop communications) Under assump-
tions A1-A3 above, the arrival rate vector (a(e), e ∈ E) stabilizes AlgoLog if∑

f∈I(e)∪{e}

a(f)

c(f)
< 1, ∀e ∈ E, (24)

when c(e) = 1 for all e ∈ E, and if∑
f∈I(e)∪{e}

a(f)

c(f)
< min(1, L), ∀e ∈ E, (25)

when c(e) > 1 for at least one e ∈ E.

Recall that L ≥ 0 is a free parameter of AlgoLog- see Section 4.5. We see from (25) that selecting
L ≥ 1 will improve the stability condition when at least one c(e) is equal to 1.

Proof of Proposition 3. Consider the Lyapounov function

V (y) =
∑
e∈E

q(e)

c(e)

∑
f∈I(e)∪{e}

q(f)

c(f)
− 2

∑
e∈E

q(e)

c(e)

∑
f∈I(e)∪{e}

u(f, i)

c(f)
, (26)

y := (q, i) ∈ N|E| ×R, where q := (q(e) ∈ E), and for each f ∈ E, {u(f, i), i ∈ R} is any solution of
(18).

23

Notice that the first double summation in the right hand side of (26) is the Lyapounov function
used in [39, Section II-A].

Let us first show that V (y) is bounded from below, as required to apply Foster’s criterion. From
(26), we obtain

V (y) ≥

(∑
e∈E

q(e)

c(e)

)2

− 2
∑
e∈E

q(e)

c(e)

∑
f∈I(e)∪{e}

u(f, i)

c(f)
≥
∑
e∈E

q(e)

c(e)

(∑
e∈E

q(e)

c(e)
− u0

)
,

where u0 := 2 maxj∈R
∑
f∈E

|u(f,j)|
c(f) . Since u0 is finite (as, for each f ∈ E, u(f, j) is finite for all

j ∈ R and c(f) > 0, and the sets E and R are finite), the above shows that V (y) ≥ 0 for all vectors
q such that

∑
e∈E q(e)/c(e) ≥ u0. When

∑
e∈E q(e)/c(e) < u0 then all q(e) are bounded, and V (y)

is bounded from below. This shows that infy V (y) ≥ −∞.

To simplify the notation, we introduce the shorthand Ey[·] = E[· |Yt = y]. We will show that Foster’s
criterion [5, Theorem 1.1, p. 167], [23] applies to V (y), i.e. there exist a finite set S ⊂ N|E| ×R and
a constant ε > 0 such that D(y) := Ey[V (yt+1)− V (y)] < −ε for all y 6∈ S and supy∈S D(y) <∞.

With yt+1 = (qt+1, zt+1) and yt = (q, i) = y, we have

D(y) = Ey

∑
e∈E

qt+1(e)

c(e)

∑
f∈I(e)∪{e}

qt+1(f)

c(f)
−
∑
e∈E

q(e)

c(e)

∑
f∈I(e)∪{e}

q(f)

c(f)


−2Ey

∑
e∈E

qt+1(e)

c(e)

∑
f∈I(e)∪{e}

u(f, zt+1)

c(f)
−
∑
e∈E

q(e)

c(e)

∑
f∈I(e)∪{e}

u(f, i)

c(f)


= Ey

[∑
e∈E

qt+1(e)− q(e)
c(e)

∑
f∈I(e)∪{e}

qt+1(f)− q(f)

c(f)
− 2

∑
e∈E

q(e)

c(e)

∑
f∈I(e)∪{e}

q(f)

c(f)

+
∑
e∈E

qt+1(e)

c(e)

∑
f∈I(e)∪{e}

q(f)

c(f)
+
∑
e∈E

q(e)

c(e)

∑
f∈I(e)∪{e}

qt+1(f)

c(f)

]

−2Ey

[∑
e∈E

qt+1(e)− q(e)
c(e)

∑
f∈I(e)∪{e}

u(f, zt+1)

c(f)

+
∑
e∈E

q(e)

c(e)

∑
f∈I(e)∪{e}

u(f, zt+1)− u(f, i)

c(f)

]
.

From the set equality {(e, f) ∈ E2, f ∈ I(e) ∪ {e}} = {(e, f) ∈ E2, e ∈ I(f) ∪ {f}} which holds from
the symmetric conflict assumption, we see that∑

e∈E

qt+1(e)

c(e)

∑
f∈I(e)∪{e}

q(f)

c(f)
=
∑
e∈E

q(e)

c(e)

∑
f∈I(e)∪{e}

qt+1(f)

c(f)
,

which yields
D(y) = D1(y) +D2(y), (27)

24

with

D1(y) := Ey

∑
e∈E

qt+1(e)− q(e)
c(e)

∑
f∈I(e)∪{e}

(
qt+1(f)− q(f)

c(f)
− 2

u(f, zt+1)

c(f)

)
+2Ey

 ∑
e∈E:q(e)/c(e)≤L

q(e)

c(e)

∑
f∈I(e)∪{e}

(
qt+1(f)− q(f)

c(f)
− u(f, zt+1)− u(f, i)

c(f)

)
and

D2(y) := 2Ey

[∑
e∈E:q(e)/c(e)>L

q(e)

c(e)

×
∑

f∈I(e)∪{e}

(
qt+1(f)− q(f)

c(f)
− u(f, zt+1)− u(f, i)

c(f)

)]
.

We first show that there exists a constant b0 such that ∆1(y) < b0. By using (14), (17), and
0 ≤ xt(e) ≤ c(e) for all t, e ∈ E, we find

D1(y) ≤
∑
e∈E

∑
f∈I(e)∪{e}

(
E[At(e, i)At(f, i)]

c(e)c(f)
+
a(e, i)

c(e)
+
a(f, i)

c(f)
+ 1

)

+2 max
f∈E,z∈R

|u(f, i))|
∑
e∈E

(
a(e, i)

c(e)
+ 1

)∑
f∈E

1

c(f)

+2L
∑
e∈E

∑
f∈E

(
a(f, i)

c(f)
+ 1

)
+ 2 max

f∈E,i∈R
|u(f, i))|

∑
f∈E

1

c(f)


≤ |E|2

(
σ0
c20

+ 2
m0

c0
+ 1 + 2L

(
m0

c0
+ 1

))
+2
|E|2

c0

(
m0

c0
+ 1 + 2L

)
max

f∈E,i∈R
|u(f, i)| := b0, (28)

where we have set c0 = mine∈E c(e) > 0. The bound b0 in (28) is finite as |E|, L (defined in Section
4.5), m0, and σ0 are finite quantities (see (15) and (16)), and maxf∈E,i∈R |u(f, i)| <∞ since u(f, i)
is finite for all f ∈ E, i ∈ R, and that E and R are finite sets.

Let us now focus on D2(y), y = (q, i). From Ey[u(f, zt+1)] =
∑
j∈R P (i, j)u(f, j) = u(f, i)− a(f) +

25

a(f, i) (cf. (23) for the 2nd equality), D2(y) can be written as

D2(y) = 2
∑

e∈E:q(e)/c(e)>L

q(e)

c(e)

(∑
f∈I(e)∪{e}

1

c(f)

×

a(f, i)−
∑
j∈R

P (i, j)u(f, j) + u(f, i)

− ∑
f∈I(e)∪{e}

E[xt(f) |qt = q]

c(f)

)

= 2
∑

e∈E:q(e)/c(e)>L

q(e)

c(e)

 ∑
f∈I(e)∪{e}

a(f)

c(f)
−

∑
f∈I(e)∪{e}

E[xt(f) |qt = q]

c(f)

 . (29)

Define α = 1 if c(e) = 1 for all e ∈ E, and α = min(1, L) if c(e) < 1 for at least one e ∈ E. By
(24)-(25) there exists ε′ > 0 such that

∑
f∈I(e)∪{e} a(f)/c(f) < α− ε′. Therefore, by (29),

D2(y) ≤ 2
∑

e∈E:q(e)/c(e)>L

q(e)

c(e)

α− ε′ − ∑
f∈I(e)∪{e}

E[xt(f) |qt = q]

c(f)

 . (30)

Let us show that when q(e)/c(e) > L∑
f∈I(e)∪{e}

E[xt(f) |qt = q]

c(f)
≥ α. (31)

Assume first that c(e) = 1 for all e ∈ E. This implies that q(e) ≥ 1 (recall q(e) is an integer).
Proposition 2 then says that at least one link in I(e)∪{e} is active, namely, there exists f ∈ I(e)∪{e}
such that q(f) ≥ 1 and xt(f) = min(q(f), c(f)) = 1, which proves (31) with α = 1.
Assume now that c(f) > 1 for some f ∈ E. Because q(e)/c(e) > L, we may again invoke Proposition
2 to conclude that at least one link in I(e)∪{e} is active. If e is active then xt(e) = min(c(e), q(e)) ≥
min(c(e), c(e)L) = c(e) min(1, L) = αc(e) which proves (31). If e is not active then there exists
an active link in I(e), say f , with virtual weight, wt(f), larger than the virtual weight of e. If
wt(f) > wt(e), then q(f)/c(f) ∈ IK−1 by the definition of the virtual weights or, equivalently,
q(f)/c(f) > L and again (31) holds. Combining (30) and (31) yields

D2(y) ≤ −2ε′
∑

e∈E:q(e)/c(e)>L

q(e)

c(e)
. (32)

In summary, cf. (27), (28), and (32),

D(y) ≤ −2ε′
∑

e∈E:q(e)/c(e)>L

q(e)

c(e)
+ b0

= −2ε′
∑
e∈E

q(e)

c(e)
+ 2ε′

∑
e∈E:q(e)/c(e)≤L

q(e)

c(e)
+ b0

≤ −2ε′
∑
e∈E

q(e)

c(e)
+ 2ε′L|E|+ b0. (33)

26

Take ε > 0 and let M0 be any constant such that M0 >
2ε′L|E|+b0+ε

2ε′ . Let S = {q :
∑
e∈E q(e)/c(e) ≤

M0} × R; we conclude from (33) that D(y) ≤ −ε, for all y 6∈ S so that Foster’s criterion applies
with the finite set S, since clearly supy∈S D(y) <∞ as the set S is finite. This concludes the proof
since irreducibility and Foster’s criterion imply that the Markov chain Y is positive recurrent (i.e.
stable) [5, Lemma 1.1, p. 168].

Remark 1 Due to the generality of the network topology, the interference sets, the statistical
assumptions, and the behavior of AlgoLog it may be difficult to guarantee the irreducibility of the
Markov chain Y. If so, we can adopt the definition of stability in [37]. Theorem 3.1 in [37] ensures
that Proposition 3 holds for this alternative definition.

6 Numerical results

In this section, we investigate via simulations the performance of AlgoLog. More precisely, we
study the time evolution of the queue lengths over a certain time-window (number of slots). The
simulations have been carried out for path networks (Section 6.1), square grid networks (Section 6.2),
and random networks (Section 6.3). For each topology we investigate both the evolution of the
largest queue length and of the average queue length over tens of thousands of slots. In Section 6.1,
for path networks and d = 0, we compare the total sum of the weights of the links of the matching
found by AlgoLog in a given slot to the total sum of the weights of an optimal matching. In
Section 6.2, we compare the performance of AlgoLog to that of the Augmenting Paths Algorithm

for a grid topology. In Sections 6.1-6.2 results are obtained when the sufficient stability conditions
found in Proposition 3 are not met by all links. We did this to show that by no means conditions in
Proposition 3 are necessary, and to investigate the system behavior when (24)-(25) do not hold. In
contrast, these conditions hold in Section 6.3.

6.1 Path network

In this section, we consider a path network and the primary node interference model (d = 0). We
first study the ratio between the total sum of the weights (or queue lengths) of the links present
in the matching computed by AlgoLog and the total sum of the weights of the links present in an
optimal matching for centralized wireline network. Figure 10 displays this ratio for a path G = (V,E)
composed of |E| = 50 links for 1 000 tests. At each test, we assign a weight at every e ∈ E as follows:
P (qt(e) = i) = 1/51 for i = 0, 1, . . . , 50. Observe that, for each test, AlgoLog finds a matching
yielding a ratio larger than 0.80 and, in most experiments, this ratio is larger than 0.95.

We now investigate the evolution of the queue length at each buffer. We consider a path composed of
|E| = 100 links that we observe during 100 000 consecutive time slots. Since d = 0, we can take C = 2
(see discussion at the end of Section 4.7). With the initial coloring (χ1(1), χ1(2), χ1(3), . . . , χ1(100)) =
(1, 2, 1, . . . , 2), we have from (7) that (χt(1), χt(2), χt(3), . . . , χt(100)) is equal to (1, 2, 1, . . . , 2)
(respectively (2, 1, 2 . . . , 1)) if t is an odd (respectively even) integer. We take K = 1000, L = 999,
and the capacity of every link e ∈ E is c(e) = 18. The arrival process is an iid process defined as
follows: with probability p(e), c(e) messages join link e in a slot and with probability 1− p(e) no
message joins link e, so that a(e) = p(e)c(e). We assume that a(e) = a1 (respectively a(e) = a2) for
e = 1, 3, 5, . . . , 99 (respectively for e = 2, 4, 6, . . . , 100). Figures 12(a), 12(b), and 12(c) display the
largest queue length in each slot for pairs (a1, a2) = (16, 1), (a1, a2) = (12, 4), and (a1, a2) = (8, 8),

27

respectively. Notice that links 2, . . . , 99 do not meet the sufficient stability conditions in Proposition

3; indeed,
∑
f∈I(e)∪{e}

a(f)
c(f) = 33

18 when e is an even number and is equal to 1 when e is an odd

number. On the other hand, condition (24) holds for links 1 and 100.
In these figures, we observe that the size of the largest queue is always smaller than 400, 180, and
140, respectively. It is also worth noting that the network is stable in Figures 12(a)-12(c) in the
sense that the largest queue length does not increase as a function of t, despite the fact that the
sufficient stability condition (25) is not satisfied for all e ∈ E, as discussed above.
We finally investigate the impact of the value of K on the largest and average size of the queues
for a path composed of 100 links, with d = 0, C = 2, c(e) = 1 for all e ∈ E. The arrival process is
similar to that in Figures 12(a)-12(c) with a(e) = 0.75 (i.e. p(e) = 0.75) for e = 1, 3, 5, . . . , 99 and
a(e) = 0.2 (i.e. p(e) = 0.2) for e = 2, 4, 6, . . . , 100. Figure 11 displays the largest and the average
queue-length after 50 000 slots as a function of K for K = 2i for i = 0, 1, . . . , 7 and L = K − 1.
The plots illustrate the performance-overhead tradeoff of K, a higher K yielding a lower largest
and average queue lengths; however, most of the gains come with relatively small values of K. Here
too, the system appears to be stable although condition (24) in Proposition 3 is not satisfied as∑
f∈I(e)∪{e}

a(f)
c(f) = 1.15 when e is an odd number and

∑
f∈I(e)∪{e}

a(f)
c(f) = 1.7 when e is an even

number.

6.2 Square grid network

In this section, we compare the performance of AlgoLog to that of the Augmenting Paths Algo-

rithm proposed in [7]. The simulations have been carried out for a square grid G = (V,E) composed
of |V | = 121 nodes and |E| = 220 links (see Figure 13). For every link e ∈ E, the capacity of e is
c(e) = 1.

Figure 14 displays the evolution of the largest and average queue-lengths over 100 000 time-slots
under AlgoLog for d = 1, with C = 4, K = 1 000, and L = 999. The arrival rates (a(e), e ∈ E) are
reported in Figure 13 (the arrival process is the same as in Section 6.1, namely, with probability
p(e), 1 message joins link e and with probability 1 − p(e) no message joins link e in a slot; here
p(e) = 0.7 or p(e) = 0.1 as indicated in Figure 13). The minimum, maximum, and average values of∑
f∈I(e)∪{e}

a(f)
c(f) in (24) are given by 2.2, 5.9, and 5.412, respectively, thereby showing the sufficient

condition (24) does not hold. However, the numerical results indicate that the network appears to
be stable under theses arrival rates.

Figures 15(a)-15(c) display the evolution of the largest and average queue-lengths over 50 000−200 000
time-slots under AlgoLog for C = 4, K = 1 000, and L = 999, and under the Augmenting Paths

Algorithm. As described in Section 3, the Augmenting Paths Algorithm has two input parameters:
k and p. Like in [7], the simulations have been carried out in Figures 15(a)-15(c) for {k = 2, p = 0.2},
{k = 3, p = 0.2}, and {k = 3, p = 0.1}, respectively. In Figure 15(a)-(c), d = 0 as the Augmenting

Paths Algorithm is only defined for the primary interference model. In Figure 15(a) (respectively
Figure 15(b), Figure 15(c)) the arrival rates are (λa(e), e ∈ E) with λ = 0.90 (respectively λ = 0.95,
λ = 0.97), where (a(e), e ∈ E) are given in Figure 14. The minimum, maximum, and average values

of
∑
f∈I(e)∪{e}

λa(f)
c(f) in (24) are given by 0.4λ, 1.9λ, and 1.771λ, respectively, Fso that (24) does

not hold for λ = 0.90, 0.95, 0.97. Again, it is worth noting from Figures 15(a)-15(c) that these
arrival rates stabilize the grid network although (24) is violated. We observe that the flexibility

28

0 100 200 300 400 500 600 700 800 900 1000

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

tests

1.00

0.80

Figure 10: Ratio between the sum of the weights
of the links of the matching found by AlgoLog

and the sum of the weights of the links of an
optimal matching for a path composed of 50 links
for 1 000 tests, d = 0, and P (qt(e) = i) = 1/51
for 0 ≤ i ≤ 50, e ∈ E.

0 1 2 3 4 5 6 7

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Figure 11: Largest and average queue length as
function of K = 2i for i = 0, 1, . . . , 7 after 10 000
slots for a path composed of 100 links for d = 0,
C = 2, L = K − 1, c(e) = 1, a(e) = 0.75 for odd
links and a(e) = 0.2 for even links.

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

0

50

100

150

200

250

300

350

steps

400

(a) (a1, a2) = (16, 1).

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

0

20

40

60

80

100

120

140

160

steps

180

(b) (a1, a2) = (12, 4).

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

0

20

40

60

80

100

120

steps

140

(c) (a1, a2) = (8, 8).

Figure 12: Evolution of the largest queue-length for a path network composed of 100 links for
AlgoLog during 50 000 slots for d = 0, C = 2, K = 1 000, L = 999, c(e) = 18, a(e) = a1 for odd
links and a(e) = a2 for even links.

29

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Figure 13: Grid network. Values near the links
give a(e) for all e ∈ E.

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

steps

Figure 14: Evolution of the largest and average
queue-lengths for the grid network in Fig. 13
under AlgoLog with d = 1, C = 4, K = 1 000,
L = 999.

steps

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0

20

40

60

80

100

120

(a) λ = 0.90

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

0

50

100

150

200

250

steps

300

(b) λ = 0.95

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

0

100

200

300

400

500

steps

600

(c) λ = 0.97

Figure 15: Evolution of the largest and average queue-lengths for a grid network composed of
121 nodes and 200 links under either the Augmenting Paths Algorithm (with k = 2, p = 0.2)
or AlgoLog (with d = 0, C = 4, K = 1 000, L = 999) with (c(e) = 1, e ∈ E) and (a(e), e ∈ E)
given in Fig. 13. Arrival rates are (λa(e), e ∈ E) with λ = 0.90, 0.95, 0.97 in Fig. 15(a)-15(c),
respectively, where (a(e), e ∈ E) are given in Fig. 13. Red straight lines represent Augmenting

Paths Algorithm and blue dotted lines represent AlgoLog.

30

of AlgoLog - in terms of working for arbitrary values of d as opposed to the Augmenting Paths

Algorithm which only works for d = 0 - comes at a price for high arrival rates, as can be seen in
Figure 15(c), where the Augmenting Paths Algorithm performs better than AlgoLog.

6.3 Random network

To conclude, we apply AlgoLog to a random network, generated as follows: given a square grid
G′ = (V,E′), we first delete link e with probability p for all e ∈ E, and then add a link with
probability q between any pair of nodes located within a given Euclidean distance. This process
yields a new (random) transmission graph G = (V,E). Figure 8 shows an instance of a random
graph composed of |V | = 48 nodes and |E| = 91 links.

The figure on the right displays the evolution of the largest
queue-length under AlgoLog for a random graph composed
of 200 nodes and 424 links. The parameters of AlgoLog are
d = 0, C = 20, K = 10 000, L = 9 999. For every e ∈ E,
c(e) = 20. The arrivals per slot on link e ∈ E are iid and
follow a uniform distribution in [0, κ(e)], with κ(e) ≤ 40. The
parameters (κ(e), e ∈ E) have been chosen so that the sufficient
stability conditions (25) hold.

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

0

5

10

15

20

25

30

35

40

steps

45

7 AlgoLog: from link scheduling to node scheduling

Up to now, we have focused on the link version of AlgoLog - referred to as the link model - following
in that the models used in the literature. On a theoretical point of view, the link model is natural, as
ultimately arrivals and buffers are positioned on the links. In practice, however, things are different
as all decisions are made by the nodes, and not by the links which are immaterial entities. There are
many ways to go from a link model to a node model, depending on the technology that is used. As
already noted in Section 1, most of the node models use a symmetric directed transmission graph,
so that links are directed. In the following, a directed link is called an arc. In the control phase of
AlgoLog, a link sends a (control) signal heard by all links interfering with e, namely, by all links in
I(e) (cf. line 6 of the pseudo-code of AlgoLog in Table 2); decisions are taken in each sub-phase
according to that. In a node model, nodes are in charge of the sending and hearing processes. We
could design some new algorithm(s) adapted to the node model, but this would imply to redo the
entire analysis. Instead, we prefer to indicate how to emulate the link model, so that all precedings
results can be reused. To this end, we will emulate a sub-phase of AlgoLog (cf. lines 5-10 in Table
2). However, this has to be done in a distributed manner and with the smallest possible signal
overhead.
We will show how to do it with for the version of AlgoLog where links are directed (arcs), and only
in the primary node interference model, where two arcs interfere if they share a common node.

7.1 Emulating lines 5-6 of AlgoLog

In the following, the wording ‘an arc e sending’ stands for ‘an arc e sending a signal’ (which happens
when s(e) = U and νt,e(i) = 1). To decide if an arc e sending becomes A (Active) or stays U

31

(undetermined) (and similarly to decide if an arc e = (u, v) not sending becomes PI (potentially
inactive) or stays U), node u has to know if there is another arc e′ sending and interfering with e.
Notice that, necessarily, node u knows if arc e′ = (u, v′) is sending. However, u does not know if
there are other arcs interfering with it. Therefore, order to apply Algolog at the node level, there
are two problems to address:

Problem 1: How can node u know that there is an arc e′ = (w, u) sending?

Problem 2: How can node u know that for each arc e = (u, v), there exists some arc e′ sending
with end node v, either of the form e′ = (v, w) or e′ = (w, v)?

The node version of AlgoLog is denoted AlgoLogNodes.

We first address Problem 1. If u does not hear any signal from its neighbors, then clearly there is
no sending arc e′ = (w, u). On the other hand, if u hears a signal from some node w, then it needs
to determine whether or not a signal is aimed to it.
From now on, we assume (Hypothesis H) that if, in the control phase, node u sends a signal to a
neighboring node v then v knows that u has sent a signal to it.

We now show how, under H, one can emulate, in the primary node model, a mini-slot i of sending
on the arc e = (u, v) by dividing it in two sub-mini-slots, denoted by i1 and i2, that is how one can
emulate the behavior of lines 5-6 of AlgoLog. As a result, the overhead will only be multiplied by
two. During sub-mini-slot i1 (of i) of AlgoLogNodes the following happens:

Sub-mini-slot i1: For each arc e = (u, v) such that s(e) = U and νt,e(i) = 1, then node u sends a
signal in the direction of node v, and v knows it thanks to H.

Within the sub-mini-slot i1, if node u detects a signal from some node w, then it knows that arc
e′ = (w, u) is sending and, therefore, interfering with all the arcs with origin u.

It remains to deal with interference of an arc e = (u, v) with some arc e′ due to node v, that is
Problem 2. To answer the problem we design sub-mini-slot i2 as follows:

Sub-mini-slot i2:

• Case 1: If in sub-mini-slot i1 node v has sent a signal, then v sends a signal (busy) to all of its
neighbors;

• Case 2: If in sub-mini-slot i1 node v has not sent a signal, but has heard a signal from at least
two of its neighbors, then v sends a signal (busy) to all of its neighbors;

• Case 3: If in sub-mini-slot i1 node v has not sent any signal and has heard a signal from
exactly one of its neighbors (say node u), then v sends a signal (busy) to all of its neighbors,
except to node u.

7.2 Emulating lines 7-10 of AlgoLog

After the two sub-mini-slots i1 and i2, a node u can determine for each arc e = (u, v) if there is an
arc sending and interfering with e. That happens exactly in the following three cases:

32

• Case a: In sub-mini-slot i1, u sends a signal to some node v′;

• Case b: In sub-mini-slot i1, node u hears a signal from some node w;

• Case c: In sub-mini-slot i2, node u hears a signal (busy) from node v.

Indeed, in these three cases there is an arc e′ sending and interfering with e = (u, v), namely, in
Case a e′ = (u, v′), in Case b e′ = (w, u), and in Case c e′ = (v,w) if the signal busy was sent in
sub-mini-slot i2 due to Case 1 or e′ = (w, v) if the signal busy was sent in sub-mini-slot i2 due to
Case 2 or Case 3. Furthermore, if we are not in one of Cases 1-3, then there is no arc interfering with e.

Depending on what happens in sub-mini-slots i1 and i2, a node u can know when there is an
interference between an arc e = (u, v) and another arc e′, so that it is able to make decisions which
exactly emulate decisions taken in the link model (cf. lines 7-10 in Figure 2). More precisely, for an
arc e = (u, v) with origin u and such that s(e) = U ,

• if e is sending (i.e. νt(f, i) = 1) and if there is no arc e′ sending and interfering with e, then
node u changes the state of e from U to A;

• if e is not sending (i.e. νt(f, i) = 0) and if there is an arc e′ sending and interfering with e,
then node u changes the state of e from U to PI.

As an illustration of the above, consider the oriented grid displayed in Figure 16. Here, we assume that
at the beginning of sub-mini-slot i, all the arcs are undetermined and five of them satisfy νt,e(i) = 1
namely (u1, u2), (u4, u7), (u5, u4), (u8, u7), and (u8, u9) and, so, are sending. In sub-mini-slot i1
(Figure 16(b)), u1 sends a signal to u2 (respectively u4 to u7, u5 to u4 and u8 both to u7 and u9). In
sub-mini-slot i2 (Figure 16(c)), according to Case 1, u1, u4, u5, u8 being involved in at least one trans-
mission send a signal (busy) to all of their neighbors; according to Case 2, u7 sends a signal (busy) to
all of its neighbors; according to Case 3, u2 (resp u9) sends a signal to all of its neighbors except u1
(resp u8); u3 and u6 do nothing. Cases 1-3 correspond to arcs labeled busy i ∈ {1, 2, 3} in Figure 16(c).

We now describe the decisions taken by the nodes after the sub-mini-slots i1 and i2, for the oriented
grid displayed in Figure 16(d). The state of an arc is represented by a dash line for PI (Potentially
Inactive), a solid line for U (Undetermined), and Blue bold for A (Active). For each arc e = (u, v),
the label ‘case x’ with x ∈ {a, b, c}, indicates for what reason node u knows that there is another arc
arc sending and interfering with e.

For sake of simplicity, let us only focus on nodes u1, u2, u3, and u5 in Figure 16(d). Start with node
u1. For the arc (u1, u4), by Case a, there is an interference with the sending arc (u1, u2). Therefore,
node u1 changes the state of the arc (u1, u4) from U to PI. For the arc (u1, u2), there is no arc
sending and interfering with it. Therefore, node u1 changes the state of the arc (u1, u2) from U to A.
Consider node u2. In sub mini-slot i1, it hears a signal from u1 and so it knows, by Case b, that the
arc (u1, u2) interferes with the three arcs (u2, u1) (u2, u3), and (u2, u5); as a result, u2 changes the
state of these three arcs from U to PI.
Consider now node u5. For the arcs (u5, u2), (u5, u6), and (u5, u8), node u5 knows, by Case a, that
the sending arc (u5, u4) interferes with them, and so node u5 changes its state from U to PI. For
the arc (u5, u4), node u5 has heard a signal busy from u4 in mini-slot i2, (Case 1 as u4 is sending in
min-slot i1 to u7); therefore, u5 does nothing for this arc (i.e. the state of (u5, u4) remains at U).

33

Finally, consider node u3. This node hears a signal from u2 in sub-mini-slot i2 (Case 3 as u2 heard
in sub-min-slot i1 a signal from u1). Therefore, by Case c, u3 knows that there is a sending arc
interfering in u2 with the arc (u3, u2); hence, it changes the state of (u3, u2) from U to PI. For the
arc (u3, u6), there is no arc sending interfering with it. Therefore, u3 does nothing for this arc (i.e.
the state of (u3, u6) remains at U).

7.3 Emulating lines 11-16 of AlgoLog

We can also emulate the synchronization slot (lines 11-12 of AlgoLog in Figure 2) with two sub-
mini-slots identical to the sub-mini-slots i1 and i2. Each node u will know, exactly as above, for an
arc e if there is an arc e′ sending and interfering with it (Cases a,b,c) and, therefore, can decide to
change the state of the arcs PI to U if there is no interference (emulating lines 13-14 of AlgoLog) or
to I if there is an interference (emulating lines 15-16 of AlgoLog).

Let us illustrate this process on Figure 16(e). In the first sub-mini-slot of synchronization, u1
(which knows that (u1, u2) is active) sends a signal of synchronization to u2. Then, in the second
sub-mini-slot of synchronization, u1 sends a signal busy (Case 1) and u2 sends a signal busy (Case 3).
Note that Case 2 does not appear in this example. Then, u1 will change the state of (u1, u4) from
PI to I as there is an interference with (u1, u2) (Case a). Node u2 will change the state of (u2, u1)
from PI to I, and u4 will change the state of (u4, u1) from PI to I as for these two arcs there is
an interference with (u1, u2) (Case b). Finally, due to the interference with (u1, u2) (Case c), u2
will change the state of (u2, u3) and (u2, u5) from PI to I and u3 and u5 will both change the state
of (u3, u2) and (u5, u2) from PI to I. All the other arcs of the figure which are PI will be changed to U .

Results obtained in Sections 7.1-7.3 are collected in the following proposition:

Proposition 4 Under the primary node interference model and under Hypothesis H, AlgoLogNodes
emulates the decisions made by AlgoLog (lines 5-16 in Figure 2).

8 Conclusion

We have devised the first (to the best of our knowledge) distributed algorithm - referred to as
AlgoLog- for the transmission scheduling problem in wireless networks with constant overhead and
arbitrary binary interference. We have proved that the set of active links at each slot is maximal.
We have proposed sufficient stability conditions and have investigated performance of AlgoLog via
simulations. We have also shown how the algorithm can be emulated at the node level in the primary
node interference model. In terms of future work, it would be interesting to design from scratch an
algorithm at the node level and to analyze it. Also, it would be interesting to establish a better
stability condition and, ideally, to characterize the entire stability region of AlgoLog.

9 Acknowledgements

The authors are grateful to Alain Jean-Marie for useful discussions during the course of this work. The
authors thank the referees for their helpful remarks and suggestions which have greatly contributed
to improving the paper.

34

(a) Symmetric oriented graph
and first bit of the control vector

(c) Sub-mini-slot i

(b) Sub-mini-slot i

(d) Decisions after sub-mini-slot i

1

2

busy 1

busy 1

busy 1
busy 2

busy 2

busy 3

busy 1

busy 1

busy 1

busy 1

busy 1

2

busy 1

busy 1

case b

case b
case b

case b

case b

case b

case bcase a

case c

case c

case c

case c

case c

case c

case b

case b

case b

case c

1u 2u 3u

4u 6u
5u

7u
8u

9u

1u 2u 3u

6
u

5u

8u 9
u

1

1

1

1

1

1u 2u 3u

4u 6u
5u

7u
8u

9u

signal

signal

signal

signal

signal

busy 3

busy 3

1u 2u 3u

4u 6u
5u

7u
8u

9u

busy 1

busy 1

4u

7u

(e) After sub-mini-slot of synchronisation

1u 2u 3u

4u 6u
5u

7u
8u

9u

Figure 16: Two sub-mini-slots and a sub-mini-slot of synchronisation of AlgoLogNodes (that emulates
AlgoLog) for an oriented grid network. Active links are indicated with thick bold blue lines, inactive
links with thin dashed red lines, undetermined links with thin black lines, and potentially inactive
links with dashed black lines.

35

References

[1] F. Baccelli and B. B laszczyszyn. Stochastic Geometry and Wireless Networks Volume II:
Applications. Now Publishers, 2010.

[2] H. Balakrishnan, C.L. Barrett, V.S.A. Kumar, M.V. Marathe, and S. Thite. The distance-2
matching problem and its relationship to the mac-layer capacity of ad hoc wireless networks.
IEEE, J. Selected Areas in Communication, 22(6):1069–1079, 2004.

[3] J-C. Bermond, D. Mazauric, V. Misra, and P. Nain. A distributed scheduling algorithm
for wireless networks with constant overhead and arbitrary binary interference. In ACM
SIGMETRICS Performance Evaluation Review, volume 38, pages 345–346, New York, NY,
USA, June 14-18 2010.

[4] V. Bonifaci, R. Klasing, P. Korteweg, L. Stougie, and A. Marchetti-Spaccamela. Data gathering
in wireless networks. In Arie Koster and Xavier Muñoz, editors, Graphs and Algorithms in
Communication Networks, Studies in Broadband, Optical, Wireless and Ad Hoc Networks,
pages 357–377. Springer-Verlag, 2010.

[5] P. Brémaud. Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues, volume 31
of Texts in Applied Mathematics. Springer, 1999.

[6] A. Brzezinski, G. Zussman, and E. Modiano. Enabling distributed throughput maximization in
wireless mesh networks: a partitioning approach. In Proc. ACM MobiCom, pages 26–37, Los
Angeles, CA, USA, September 24-29, 2006.

[7] L.X. Bui, S. Sanghavi, and R. Srikant. Distributed link scheduling with constant overhead.
IEEE/ACM Transactions on Networking, 17(5):1467–1480, 2009.

[8] K. Cameron. Induced matchings. Discrete Applied Mathematics, 24(1-3):97–102, 1989.

[9] P. Chaporkar, K. Kar, X. Luo, and S. Sarkar. Throughput and fairness guarantees through
maximal scheduling in wireless networks. IEEE Transactions on Information Theory, 54(2):572–
594, 2008.

[10] H. Chen, X. Xie, and H. Wu. A queue-aware scheduling algorithm for multihop relay wireless
cellular networks. In Proc. IEEE Mobile WiMAX Symposium, pages 63–68, Napa Valley, CA,
USA, July 9-10, 2009.

[11] R. Diestel. Graph Theory (Graduate Texts in Mathematics), 1997.

[12] A. Eryilmaz, O. Asuman, and E. Modiano. Polynomial complexity algorithms for full utilization
of multi-hop wireless networks. In Proc. IEEE INFOCOM, pages 499–507, Anchorage, AK,
USA, May 6-12, 2007.

[13] S. Fiorini and R.J. Wilson. Edge-colourings of graphs, volume 16 of Research Notes in
Mathematics. Pitman, 1977.

[14] A. Gupta, X. Lin, and R. Srikant. Low-complexity distributed scheduling algorithms for wireless
networks. IEEE/ACM Transactions on Networking, 17(6):1846–1859, December 2009.

36

[15] P. Gupta and P.R. Kumar. The capacity of wireless networks. IEEE Transactions on Information
Theory, 46(2):388–404, March 2000.

[16] L. Jiang, D. Shah, J. Shin, and J. Walrand. Distributed random access algorithm: scheduling and
congestion control. IEEE Transactions on Information Theory, 56(12):6182–6207, December
2010.

[17] L. Jiang and J. Walrand. A distributed CSMA algorithm for throughput and utility maximization
in a wireless networks. In Proc. 46th Allerton Conference on Communication, Control, and
Computing, Urbana-Champaign, IL, USA, 2008.

[18] L. Jiang and J. Walrand. Approaching throughput-optimality in distributed CSMA scheduling
algorithms with collisions. IEEE/ACM Transactions on Networking, 19(3):816–829, 2011.

[19] R. Klasing, N. Morales, and S. Pérennes. On the complexity of bandwidth allocation in radio
networks. Theoretical Computer Science, 406(3):225 – 239, 2008.

[20] V.S.A. Kumar, M. Marathe, S. Parthasarathy, and A. Srinivasan. End-to-end packet-scheduling
in wireless ad-hoc networks. In Proc. ACM-SIAM SODA, pages 1021–1030, New Orleans, LO,
USA, January 11-13, 2004.

[21] L. Lovász and M.D. Plummer. Matching Theory, volume 29 of Annals of Discrete Mathematics.
North-Holland, 1986.

[22] R. Mazumdar, G. Sharma, and N. Shroff. Maximum weighted matching with interference
constraints. in Proc. FAWN, Pisa, Italy, March 2006.

[23] S.P. Meyn and R.L. Tweedie. Markov Chains and Stochastic Stability. Springer-Verlag, 1993.

[24] J. Misra and D. Gries. A constructive proof of vizing’s theorem. Information Processing Letters,
41, 1992.

[25] E. Modiano, D. Shah, and G. Zussman. Maximizing throughput in wireless networks via
gossiping. In Proc. ACM SIGMETRICS - IFIP PERFORMANCE, volume 34, pages 27–38,
Saint Malo, France, June 26-30, 2006.

[26] S. Rajagopalan, D. Shah, and J. Shin. Network adiabatic theorem: an efficient randomized
protocol for contention resolution. In Proc. ACM SIGMETRICS - IFIP PERFORMANCE,
volume 37, pages 133–144, Seattle, WA, USA, June 15-19, 2009.

[27] S. Sanghavi, L. Bui, and R. Srikant. Distributed link scheduling with constant overhead. In
Proc. ACM SIGMETRICS, pages 313–324, San Diego, CA, USA, June 12-16, 2007.

[28] D. Shad and D. Wischik. Log-weight scheduling in switched networks. Queueing Systems
(QUESTA), 71(1–2):97–136, June 2012.

[29] D. Shah and J. Shin. Randomized scheduling algorithm for queueing networks. Ann. Appl.
Probab., 22(1):128–171, February 2012.

[30] D. Shah, J. Shin, and P. Tetali. Medium access using queues. In Proc. IEEE 52nd Annual
Symposium on Foundations of Computer Sciences (FOCS), Palm Springs, CA, USA, October
2011.

37

[31] D. Shah and D. Wischik. Switched networks with maximum weight policies: Fluid approximation
and multiplicative state space collapse. Ann. Appl. Probab., 22(1):70–127, February 2012.

[32] H. Shokri-Ghadikolaei, C. Fischione, and E. Modiano. On the accuracy of interference models
in wireless communications. In ICC 2016, IEEE international Conference on Communications,
pages 1–6, 05 2016.

[33] H. Shokri-Ghadikolaei, C. Fischione, and E. Modiano. Interference model similarity index
and its applications to mmwave networks: Extended version. IEEE Transactions on Wireless
Communications, 10 2017.

[34] F. Simatos, N. Bouman, and S. Borst. Lingering issues in distributed scheduling. In Proceedings
of the ACM SIGMETRICS/International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’13, pages 141–152, New York, NY, USA, 2013. ACM.

[35] L.J. Stockmeyer and V.V. Vazirani. NP-completeness of some generalizations of the maximum
matching problem. Information Processing Letters, 15(1):14–19, 1982.

[36] L. Tassiulas. Scheduling and performance limits of networks with constantly changing topology.
IEEE Transactions on Information Theory, 43(3):1067–1073, 1997.

[37] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems and
scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions
on Automatic Control, 37(12), December 1992.

[38] P-J. Wan. Multiflows in multihop wireless networks. In Proc. ACM MobiHoc, pages 85–94,
New Orleans, LO, USA, May 18-21, 2009.

[39] X. Wu, R. Srikant, and J.R. Perkins. Queue length stability of maximal greeedy schedules in
wireless networks. In Proc. of Information Theory and Applications Inaugural Workshop, San
Diego, CA, USA, February 6-10, 2006.

38

	Introduction
	Definitions, notation, network and interference models
	Related works
	Presentation of AlgoLog
	Aim of the control phase
	Virtual weights and their binary representation
	The algoritm AlgoLog
	Data phase
	Definition of the virtual weights
	 AlgoLog generates a maximal schedule
	Setting the parameters of AlgoLog

	Stability of AlgoLog
	Numerical results
	Path network
	Square grid network
	Random network

	AlgoLog: from link scheduling to node scheduling
	Emulating lines 5-6 of AlgoLog
	Emulating lines 7-10 of AlgoLog
	Emulating lines 11-16 of AlgoLog

	Conclusion
	Acknowledgements

