F. Calvo, M. Pérez-garcia, B. Mendoza-juez, and A. Martinez-gonzalez, A mathematical model for the glucose-lactate metabolism of in vitro cancer cells, Bull Math Biol, pp.1125-1142, 2012.

S. R. Elsden and T. Bauchop, The growth of micro-organisms in relation to their energy supply, J. Gen. Microbiol, vol.23, pp.457-469, 1960.

S. Benzekry, Contributions in mathematical oncology : When theory meets reality. HDR, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01658070

C. Cori, The carbohydrate metabolism of tumors ii. changes in the sugar, lactic acid, and co-combining power of blood passing through a tumor, J Biol Chem, vol.65, issue.2, pp.397-405, 1925.

A. Robert, . Gatenby, A. Curtis, M. Gravenmier, and . Siddique, Adaptation to stochastic temporal variations in intratumoral blood flow : the warburg effect as a bet hedging strategy, Bull Math Biol, 2017.

C. Chang, Metabolic competition in the tumor microenvironment is a driver of cancer progression, Cell, 2015.

H. J. Park, Acidic environment causes apoptosis by increasing caspase activity, British Journal of Cancer, 1999.

. Jiang, Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of 02 tension, Am J Physiol Cell Physiol, vol.271, issue.4, pp.1172-1180, 1996.

T. Pfeiffer, Cooperation and competition in the evolution of atpproducing pathways, Science, vol.292, issue.5516, pp.504-507, 2001.

P. Sonveaux, Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice, J. Clin. Invest, 2008.

A. Robert, R. J. Gatenby, and . Gillies, Why do cancers have high aerobic glycolysis ?, Nature reviews. Cancer, 2004.

G. L. Semenza, Targeting hif-1 for cancer therapy, Nat Rev Cancer, vol.3, pp.721-753, 2003.

A. Goldbeter, Au coeur des rythmes du vivant. la vie oscillatoire, 2018.

J. Pouysségur, J. Chiche, and M. C. Brahimi-horn, Tumour hypoxia induces a metabolic shift causing acidosis : a common feature in cancer, J. Cell Mol. Med, vol.14, 2010.

D. Raghavan-d-lindner, Intra-tumoral extra-cellular ph : a useful parameter of response to chemoterapy in syngeneic tumour lines, Br J Cancer, vol.100, pp.1287-91

M. Oense, M. Neijssel, and . Mattos, The energetics of baterial growth : a reassessment (microreview), Molecular Microbiology, pp.179-182, 1994.

O. Warbourg, On respiratory impairment in cancer cells, Science, vol.124, pp.269-70, 1956.

B. Perthame, Transport equations in biology, 2007.

B. Perthame, Some mathematical models of tumor growth, 2016.

C. Pouchol, Modelling interactions between tumour cells and supporting adipocytes in breast cancer, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01252122

T. Edward, . Gawlinski, A. Robert, and . Gatenby, The glycolytic phenotype in carcinogenesis and tumor invasion : Insights through mathematical models. Cancer Research, 2001.

A. M. Poff-thomas, N. Seyfried, R. E. Flores, and D. P. D'agostino, Cancer as a metabolic disease : implications for novel therapeutics, Carcinogenesis, vol.35, issue.3, pp.515-527, 2014.

A. C. Williams, An acidic environment leads to p53 dependent induction of apoptosis, Oncogene, vol.18, pp.3199-3204, 1999.