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Abstract

The evaluation of conjunctive queries is hard both with re-
spect to its combined complexity (NP-complete) and its pa-
rameterized complexity (W[1]-complete). It becomes trac-
table (PTIME for combined complexity, FPT for parame-
terized complexity), when the underlying graphs of the con-
junctive queries have bounded tree-width [2]. We show that,
in some sense, this is optimal both with respect to combined
and parameterized complexity: For every class C of graphs,
the evaluation of all conjunctive queries whose underlying
graph is in C is tractable if, and only if, C has bounded
tree-width.
A technical result of independent interest is that the colored
grid homomorphism problem is NP-complete and, if param-
eterized by the grid size, W[1]-complete.

1. Introduction

Conjunctive queries are relational database queries expres-
sed by formulas of first-order logic that are of the form

∃y1 . . .∃yl(α1 ∧ . . . ∧ αn),

where the αi are atomic formulas. Conjunctive queries are
fundamental for relational database systems, and they are
the queries appearing most frequently in practice. The con-
junctive query evaluation problem is the following: Given
a finite relational structure (or database instance) A and a
conjunctive query ϕ(x1, . . . , xk), compute the set ϕ(A) :=
{(a1, . . . , ak) | A |= ϕ(a1, . . . , ak)}. In the complexity theo-
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retic analysis of this paper, we will focus on the associated
decision problem of whether ϕ(A) is empty or not.

We will measure the complexity of query evaluation in two
different ways. The most straightforward measure, where
the complexity is measured simply in terms of the input
size, i.e. size of the structure A plus length of the formula
ϕ, is called the combined complexity of the query evaluation
problem [14]. Chandra and Merlin [1] proved in 1977 that
the combined complexity of conjunctive query evaluation is
NP-complete. However, the main factor responsible for the
high complexity of the problem is the length of the input
formula and not the size of the database. This does not fit
the practical situation very well, because usually one evalu-
ates a short query against a large database. It is easy to see
that conjunctive (and, more general, first-oder) queries can

always be evaluated in time ||A||O(||ϕ||), where ||A|| denotes
the size of the input structure A and ||ϕ|| the length of the
formula ϕ. Thus conjunctive query evaluation is possible
in time polynomial in the structure size. However, even for
short queries ϕ, say, of length ||ϕ|| = 10, ||A||||ϕ|| is not a
feasible complexity. Yannakakis [16] was the first to sug-
gest that parameterized complexity might be an appropriate
way to measure the complexity of database query evaluation.
We say that the query evaluation problem is fixed-parameter
tractable (FPT) if there is a computable function f : N→ N
and a constant c > 0 such that the problem can be solved
in time f(||ϕ||) · nc. The idea is that we can disregard the
dependence on the formula length as long as it does not ap-
pear in the exponent of the structure size. Of course, the
notion of fixed-parameter tractability is only another math-
ematical abstraction of “practical tractability”, but in the
situation of query evaluation it seems to be the most ap-
propriate abstraction. Unfortunately, it turns out that the
parameterized complexity of conjunctive query evaluation
is W[1]-complete and thus most likely not fixed-parameter
tractable; this result, observed by Papadimitriou and Yan-
nakakis [11], can be seen as the parameterized analogue of
the NP-completeness of the combined complexity.

The results mentioned in the previous paragraph show that
conjunctive query evaluation is hard both with respect to
its combined complexity and its parameterized complexity.
Therefore, it is natural to look for classes of conjunctive
queries for which the evaluation is tractable. The archetypal
result of this form, due to Yannakakis [15], states that the
evaluation of acyclic conjunctive queries is possible in poly-
nomial time (and therefore both tractable in the classical
sense of combined complexity and fixed-parameter tractable).
This result has been improved in several ways.
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One of the approaches for finding tractable queries is the
following: With every conjunctive query ϕ we associate its
underlying graph Gϕ whose vertices are the variables of ϕ,
with an edge between two variables x and y if there is an
atom of ϕ that contains both x and y. Then the hope is
that the evaluation of a query is easy if its underlying graph
is “simple”. Tree-width, measuring the similarity of a graph
with a tree, turns out to be a good notion of simplicity.
Chekuri and Rajaraman [2] have proved that evaluation of
conjunctive queries of bounded tree-width is possible in poly-
nomial time. (The result is presented here using a differ-
ent formalization due to Kolaitis and Vardi [10]). Gottlob,
Leone, and Scarcello [7] showed that this problem is actu-
ally LOGCFL-complete, for each fixed tree-width k. Other,
similar approaches are based on the underlying hypergraph
of a query. Appropriate notions of simplicity of queries ob-
tained this way are bounded query-width [2] and bounded
hypertree-width [8]. Although these notions are equivalent
to bounded tree-width when the schema of the database is
considered as fixed, the hypergraph based approach leads to
more general classes of queries when the schema is not fixed
(see [8] for a comparison of the different approaches).

In this paper, we focus on the graph based approach. We
show that Chekuri and Rajaraman’s result is optimal both
with respect to combined complexity and parameterized com-
plexity. Under the complexity theoretic assumption that
FPT 6= W[1], which can be seen as the analogue of PTIME 6=
NP in the parameterized world, we show that for every class
C of graphs the following three statements are equivalent:

(1) The evaluation of all conjunctive queries whose under-
lying graph is in C is fixed-parameter tractable.

(2) The evaluation of all conjunctive queries whose under-
lying graph is in C is in polynomial time.

(3) The class C has bounded tree-width.

To prove this, we show that if C does not have bounded
tree-width, the evaluation problem for conjunctive queries
whose underlying graph is in C is W[1]-complete. This also
yields a nice dichotomy: Either the evaluation problem for
queries with underlying graph in C is W[1]-complete, or it
is fixed-parameter tractable.

Another noteworthy aspect of this result is that the equiva-
lence between (2) and (3) that is only concerned with clas-
sical complexity theory is proved under an assumption from
parameterized complexity theory. Under the weaker as-
sumption that PTIME 6= NP, we can only prove the equiva-
lence of statements (2) and (3) for all classes of graphs that
are closed under taking minors.

In the last section of the paper, we extend our results to
the existential fragment of first-order logic by showing that
tractability of query evaluation is linked to an expressive
power limited by the number of variables.

The main ingredient of our proofs is of independent tech-
nical interest: We show that the colored grid homomor-
phism problem, asking whether a given 2-colored grid can
be mapped homomorphically to a given colored graph is
NP-complete and, if parameterized by the grid size, W[1]-
complete. We also prove a similar result for directed grids.
These results are linked to tree-width by the deep Excluded
Grid Theorem due to Robertson and Seymour [12].

2. Preliminaries

Relational Structures. A vocabulary is a finite set of re-
lation symbols. The arity of a vocabulary is the maximum
of the arities of all relations symbols it contains. In the fol-
lowing, τ always denotes a vocabulary. E always denotes
a binary relation symbol and C1, C2, . . . denote unary rela-
tion symbols. A τ -structure A consists of a non-empty set
A, called the universe of A, and a relation RA ⊆ Ar for
each r-ary relation symbol R ∈ τ . In this paper we only
consider finite structures. If C is a class of structures, C[τ ]
denotes the subclass of all τ -structures in C. If A is a τ -
structure and B ⊆ A, then 〈B〉A denotes the substructure
induced by A on B, i.e. the τ -structure B with universe B
and RB = RA ∩ Br for every r-ary R ∈ τ . A graph is
an {E}-structure G = (G,EG), where the binary relation
EG is symmetric and anti-reflexive (i.e. graphs are undi-
rected and loop-free). A directed graph is an {E}-structure
D = (D,ED), where ED is anti-reflexive. A c-colored graph,
for a c ≥ 1, is an {E,C1, . . . , Cc}-structure G, where (G,EG)
is a graph and CG1 , . . . , C

G
c are disjoint sets (possibly empty)

whose union is G. If G is a c-colored graph and a ∈ G we
define the mapping colG : G → {1, . . . , c} by colG(a) = i if
a ∈ CGi . The distance dG(a, b) between two points a, b in
a graph or colored graph is the length of the shortest path
from a to b.
For m,n ≥ 1, the (m,n)-grid is the graph Gm,n with uni-
verse Gm,n := {1, . . . ,m} × {1, . . . , n} and edge relation

EGm,n :=
{(

(i, j), (i′, j′)
)
∈ G2

m,n

∣∣∣
(i = i′ and |j − j′| = 1)

or (|i− i′| = 1 and j = j′)
}
.

If m = n, then we call Gm,n a square grid.
A homomorphism from a τ -structure A to a τ -structure
B is a mapping h : A → B such that for every R ∈ τ
and (a1, . . . , ar) ∈ RA we have (h(a1), . . . , h(ar)) ∈ RB.
HOM(A,B) is the set of all homomorphisms from A to B.
For every class C of structures, we consider the following
problem:

C-Homomorphism
Input: Structures A ∈ C, B.

Problem: Is there a homomorphism from A
to B.

It is well known that Graph-Homomorphism is NP-com-
plete (where Graph denotes the class of all graphs).

Parameterized complexity. A parameterized problem is
a set P ⊆ Σ∗×Π∗, where Σ and Π are finite alphabets. We
usually represent a parameterized problem P in the following
form:

Input: I ∈ Σ∗.
Parameter: π ∈ Π∗

Problem: Decide if (I, π) ∈ P .

In this paper, we always have Π = {0, 1} and consider the
parameters π ∈ Π∗ as natural numbers (in binary).
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Definition 1. A parameterized problem P ⊆ Σ∗ × Π∗ is
fixed-parameter tractable if there is a computable function
f : Π∗ → N, a constant c ∈ N and an algorithm that, given
(I, π) ∈ Σ∗ ×Π∗, decides if (I, π) ∈ P in time f(π)|I|c.
FPT denote the class of all fixed-parameter tractable pa-
rameterized problems.

Definition 2. Let P ⊆ Σ∗ ×Π∗ and P ′ ⊆ (Σ′)∗ × (Π′)∗ be
parameterized problems.

(1) A parameterized T-reduction from P to P ′ is an al-
gorithm with an oracle for P ′ that solves any instance
(x, y) of P in time f(|y|) · |x|c in such a way that for all
questions “(x′, y′) ∈ P ′?” to the oracle we have |y′| ≤
g(|y|) (for computable functions f, g : N → N and a
constant c ∈ N). P is fixed-parameter T-reducible to

P ′ (we write P ≤fp
T P ′), if there is a parameterized

T-reduction from P to P ′.

(2) A parameterized m-reduction from P to P ′ is an al-
gorithm that computes for every instance (x, y) of P
an instance (x′, y′) of P ′ in time f(|y|) · |x|c such that
|y′| ≤ g(|y|) and (x, y) ∈ P if, and only if, (x′, y′) ∈ P ′
(for computable functions f, g : N → N and a con-
stant c ∈ N). P is fixed-parameter m-reducible to P ′

(we write P ≤fp
m P ′), if there is a parameterized m-

reduction from P to P ′.

Observe that ≤fp
T and ≤fp

m are transitive and that P ≤fp
m P ′

implies P ≤fp
T P ′. Furthermore, if P ≤fp

T P ′ and P ′ ∈
FPT then P ∈ FPT. We define hardness and completeness
of parameterized problems for a parameterized complexity
class (under parameterized m- or T-reductions) in the usual
way. If we do not specify the reduction-type in a hardness-
result, we always refer to m-reductions.
Downey and Fellows defined a hierarchy W[1] ⊆W[2] ⊆ · · ·
of parameterized complexity classes, and they conjecture
that this hierarchy is strict and that FPT is strictly con-
tained in W[1]. The classes of the W-hierarchy are defined
in terms of a parameterized version of the satisfiability prob-
lem for bounded-depth Boolean circuits. We refer the reader
to [4] for the technical definitions. In this paper, we are only
interested in the class W[1], which can be seen as an ana-
logue of NP in parameterized complexity theory. Our results
are based on the following Theorem 1.
Remember that the Clique-problem is one of the basic NP-
complete problems [9]:

Clique
Input: Graph G, integer k ≥ 1.

Problem: Decide if G has a k-clique.

Its parameterized version

Parameterized Clique
Input: Graph G, integer k ≥ 1.

Parameter: k
Problem: Decide if G has a k-clique.

plays a similar role in parameterized complexity theory.

Theorem 1 (Downey and Fellows [3]).
Parameterized Clique is W[1]-complete (under parame-
terized m-reductions).

For any class C of structures, consider the following param-
eterized version of the homomorphism problem:

Parameterized C-Homomorphism
Input: Structures A ∈ C, B.

Parameter: ||A||
Problem: Decide if there is a homomorphism

from A to B.

Parameterized C-Homomorphism is in W[1] for every C.
By a trivial reduction from Parameterized Clique, it can
be seen that Parameterized Graph-Homomorphism is
W[1]-complete. The following lemma will be needed later:

Lemma 2. Let C be a class of structures. Then the follow-
ing problem is fixed-parameter T-reducible to Parameter-
ized C-Homomorphism.

Parameterized C-Homomorphism Construction
Input: Structures A ∈ C and B.

Parameter: ||A||
Problem: Decide if there is a homomorphism

from A to B and, if this is the case,
compute such a homomorphism.

Proof: Given A ∈ C and B, we first check if there is a
homomorphism from A to B. If this is not the case, we
reject.
Otherwise, if |B| ≤ |A| we can find a homomorphism from
A to B by exhaustive search, the time this requires can be
bounded by a function only depending on ||A||. If |B| > |A|,
there is a b ∈ B such that there is a homomorphism from
A to 〈B \ {b}〉B. By simply testing all b, we can find such
a b and remove it from B. We repeat this procedure until
we arrive at a substructure B′ ⊆ B of size at most |A| such
that there still is a homomorphism from A to B′. Now we
can find such a homomorphism by exhaustive search. 2

Corollary 3. If Parameterized C-Homomorphism is in
FPT then Parameterized C-Homomorphism Construc-
tion is also in FPT.

Remark 1. In problems like Parameterized C-Homo-
morphism, the class C is not necessarily computable. When
we say that Parameterized C-Homomorphism is in FPT
for a non-computable C, we mean that there is a computable
function f : N → N, a constant c ≥ 1, and an algorithm
that, given structures A and B, decides if there is a homo-
morphism from A to B in time f(||A||) · ||B||c if A happens
to be in C. If A 6∈ C, the answer given by the algorithm may
be wrong. (However, since f is computable we can always
assume that the algorithm stops after g(||A||) · ||B||c steps,
for some computable function g.) Similarly, we can define
what it means that Parameterized C-Homomorphism is
W[1]-complete under parameterized m-reductions or param-
eterized T-reductions.

Tree-decompositions and minors. A tree is an acyclic
graph. A tree-decomposition of a τ -structure A is a pair
(T , (Bt)t∈T ), where T is a tree and (Bt)t∈T a family of sub-
sets of A (the blocks of the decomposition) such that
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(1) For every a ∈ A, the set {t ∈ T | a ∈ Bt} is non-empty
and connected in T (that is, induces a subtree).

(2) For every R ∈ τ and all ā ∈ RA there is a t ∈ T such
that ā ∈ Bt.

The width of a tree-decomposition (T , (Bt)t∈T ) is max{|Bt| |
t ∈ T}−1. The tree-width tw(A) of A is the minimum taken
over the widths of all tree-decompositions of A.
A class C of structures has bounded tree-width if there is a
k such that tw(A) ≤ k for all A ∈ C.
A minor of a graph G is a graph H that is obtained from
a subgraph of G by contracting edges. Equivalently, H is
a minor of G if there is a mapping µ : H → Pow(G) such
that for all a ∈ H the subgraph 〈µ(a)〉G is connected, and
for all (a, b) ∈ EH there are a′ ∈ µ(a), b′ ∈ µ(b) such that
(a′, b′) ∈ EG . We call µ a minor map from H to G. We write
H � G to denote that H is a minor of G and µ : H � G to
denote that µ is a minor map from H to G.
The connection between grids and tree-width is made by the
following deep Excluded Grid Theorem:

Theorem 4 (Robertson and Seymour [12]). Let C be
a class of graphs. Then C has bounded tree-width if, and only
if, there is a grid that is not a minor of any graph in C.

3. Grid homomorphism

For c ≥ 1, let c-Grid be the class of all c-colored square
grids. We shall prove that c-Grid Homomorphism is NP-
complete and Parameterized c-Grid Homomorphism is
W[1]-complete for every c ≥ 2.
Before we show this, we observe that 1-Grid Homomor-
phism is trivially in PTIME, because as a bi-partite graph
every grid has a homomorphism to a single edge. We also
observe that, as an instance of the general Homomorphism
problem for relational structures, c-Grid Homomorphism
is contained in NP, and its parameterized version is con-
tained in W[1]. Thus we just have to prove hardness. Of
course it suffices to consider the case c = 2 (which, by the
way, is considerably harder than c ≥ 3).
Let n ≥ 6 be even. We let Sn be the 2-colored (n× n)-grid
with (cf. Figure 1(a))

CSn1 :=
{

(1, 1), (1, 2), (1, n), (2, 1), (4, 1), (n, 1)
}

∪
{

(i, j) ∈ Sn
∣∣∣ i+ j ≥ n+ 4,

(
(i+ j − n) ≡ 0 (mod 4)

or (i+ j − n) ≡ 1 (mod 4)
)}
,

CSn2 :=Sn \ CSn1 .

The first major step in the proof of our completeness results
is the following lemma:

Lemma 5. HOM(Sn,Sn) = {id} (i.e. the only homomor-
phism from Sn to Sn is the identity).

The proof requires some preparation. For every m ≥ 1 we let
Pm be the 2-colored path with universe Pm := {1, . . . ,m},
edge relation EPm :=

{
(i, j)

∣∣ |i− j| = 1
}

, and

CPm
1 :=

{
i ∈ Pm

∣∣ i ≡ 1 (mod 4) or i ≡ 2 (mod 4)
}
,

CPm
2 :=Pm \ CPm

1 .

1 − 1 − 2 − 2 − 2 − 2 − 2 − 1
| | | | | | | |
1 − 2 − 2 − 2 − 2 − 2 − 2 − 2
| | | | | | | |
2 − 2 − 2 − 2 − 2 − 2 − 2 − 2
| | | | | | | |
1 − 2 − 2 − 2 − 2 − 2 − 2 − 1
| | | | | | | |
2 − 2 − 2 − 2 − 2 − 2 − 1 − 1
| | | | | | | |
2 − 2 − 2 − 2 − 2 − 1 − 1 − 2
| | | | | | | |
2 − 2 − 2 − 2 − 1 − 1 − 2 − 2
| | | | | | | |
1 − 2 − 2 − 1 − 1 − 2 − 2 − 1

(a) The colored grid S8

1 − 2 − 3 − 4 − 3 − 4 − 3 − 2
| | | | | | | |
2 − 3 − 4 − 3 − 4 − 3 − 4 − 3
| | | | | | | |
3 − 4 − 3 − 4 − 3 − 4 − 3 − 4
| | | | | | | |
2 − 3 − 4 − 3 − 4 − 3 − 4 − 5
| | | | | | | |
3 − 4 − 3 − 4 − 3 − 4 − 5 − 6
| | | | | | | |
4 − 3 − 4 − 3 − 4 − 5 − 6 − 7
| | | | | | | |
3 − 4 − 3 − 4 − 5 − 6 − 7 − 8
| | | | | | | |
2 − 3 − 4 − 5 − 6 − 7 − 8 − 9

(b) The colored grid S ′8

Figure 1.

Let X := {(1, 1), (2, 1), (4, 1), (n, 1), (1, n)}. We define a
mapping hn : Sn → Pn+1 by

hn((i, j)) :=



1 if (i, j) = (1, 1),

2 if (i, j) ∈ X \ {(1, 1)},
3 if (i, j) 6∈ X

and i+ j < n+ 4

and i+ j ≡ 0 (mod 2),

4 if (i, j) 6∈ X
and i+ j < n+ 4

and i+ j ≡ 1 (mod 2),

i+ j − n+ 1 if i+ j ≥ n+ 4

(cf. Figure 1(b)). It is easy to verify that

hn ∈ HOM(Sn,Pn+1).

Lemma 6. HOM(Sn,Pn+1) = {hn}.

Proof: Let h : Sn → Pn+1 be an arbitrary homomorphism.
We shall prove that h = hn. Let i1 := h((1, 1)). Then

i1 ∈ C
Pn+1
1 , and thus i1 ≡ 1 (mod 4) or i1 ≡ 2 (mod 4).

Case 1: i1 ≡ 1 (mod 4).
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Then h((1, 2)) = h((2, 1)) = i1 + 1. Since (4, 1), (n, 1),
and (1, n) are reachable in Sn from (2, 1) by paths of even
length whose inner vertices are all in CSn2 , we must have
h((4, 1)) = h((n, 1)) = h((1, n)) = i1 + 1. Similarly, all
(i, j) with (i, j) 6∈ X, i + j < n + 4, and i + j ≡ 0 (mod 2)
are reachable in Sn from (2, 1) by paths of odd length whose
inner vertices are all in CSn2 . Hence we have h((i, j)) = i1+2.
All (i, j) with (i, j) 6∈ X, i+j < n+4, and i+j ≡ 1 (mod 2)
are reachable in Sn from (2, 1) by paths of even length whose
inner vertices are all in CSn2 . Hence we have h((i, j)) = i1+3.
All (i, j) with (i, j) 6∈ X and i + j = n + 4 are reachable in
Sn from (2, 1) by paths of odd length whose inner vertices
are all in CSn2 . Hence we have h((i, j)) = i1 + 4. Now a
simple induction shows that for all (i, j) with i+ j ≥ n+ 4
we have h((i, j)) = i1 + i+ j − n.
Altogether, this shows that i1 = 1 and h = hn.

Case 2: i1 ≡ 2 (mod 4).
We argue similarly as in Case 1 with the direction of the
path reversed and show that i1 = n + 1. Then h((2, 1)) =
n, which implies 1 = colSn((2, 1)) = colPn(n). But this
immediately yields a contradiction since n ≡ 0 (mod 4) and
thus colPn(n) = 2. 2

We now define an (n + 1)-colored (n, n)-grid S ′n by letting

colS
′
n(a) = hn(a) for all a ∈ S′n = Sn.

Lemma 7. HOM(Sn,Sn) = HOM(S ′n,S ′n).

Proof: HOM(S ′n,S ′n) ⊆ HOM(Sn,Sn) is trivial. To see the
converse, let g : Sn → Sn be a homomorphism. Then for all

a ∈ Sn we have colS
′
n(g(a)) = hn(g(a)) = hn(a) = colS

′
n(a),

since hn ◦ g = hn by Lemma 6. 2

Proof (of Lemma 5): By the previous lemma, it suffices to
show that HOM(S ′n,S ′n) = {id}. So let h ∈ HOM(S ′n,S ′n).
We will repeatedly use the following observation, holding for
all a, b ∈ S′n:

dS
′
n(a, b) ≥ dS

′
n(h(a), h(b)) (1)

We have h((1, 1)) = (1, 1) and h((n, n)) = (n, n), because
(1, 1) and (n, n) are the only vertices of their respective col-
ors. Now we consider the vertices (n, 1) and (1, n). Since

they are the only vertices a ∈ CS
′
n

2 with dS
′
n((1, 1), a) ≤ n−1

and dS
′
n((n, n), a) ≤ n − 1, we have h((n, 1)), h((1, n)) ∈

{(n, 1), (1, n)}. Remember that (4, 1) ∈ CS
′
n

2 , and note that

dS
′
n((1, 1), (4, 1)) = 3 and dS

′
n((n, 1), (4, 1)) = n − 4. Since

there is no a ∈ CS
′
n

2 with dS
′
n((1, 1), a) ≤ 3, dS

′
n((1, n), a) ≤

n−4, we must have h((n, 1)) = (n, 1). Similarly, since there

is no a ∈ CS
′
n

4 with dS
′
n((1, 1), a) ≤ 3, dS

′
n((n, 1), a) ≤ n− 4,

we have h((1, n)) = (1, n).
Thus h is the identity on the four corner points of S ′n. Now
a simple induction using (1) shows that h = id. 2

Let k ≥ 4 such that k ≡ 0 (mod 4) or k ≡ 1 (mod 4). Then

K :=
(
k
2

)
is even. Let f : {1, . . . ,K} → {{i, j} | 1 ≤ i <

j ≤ k} be the bijection that maps l to the lth element in
the lexicographic order of

{
{i, j}

∣∣ 1 ≤ i < j ≤ k
}

. Let H
be an arbitrary graph. For a ∈ H and e = (b, c) ∈ EH we
write a ∈ e to denote that a is an endpoint of e, i.e. that
a ∈ {b, c}. We define a 2-colored graph Hk as follows:

Hk :=
{

(a, e, i, p)
∣∣∣ a ∈ H, e ∈ EH, 1 ≤ i ≤ k, 1 ≤ p ≤ K

such that
(
i ∈ f(p) ⇐⇒ a ∈ e

)}
∪
{

(i, p)
∣∣ k + 1 ≤ i ≤ K, 1 ≤ p ≤ K},

EHk :=
{(

(a, e, i, p), (a′, e, i′, p)
) ∣∣∣ a, a′ ∈ H, e ∈ EH,

1 ≤ i, i′ ≤ k, |i− i′| = 1, 1 ≤ p ≤ K
}

∪
{(

(a, e, i, p), (a, e′, i, p′)
) ∣∣∣ a ∈ H, e, e′ ∈ EH,

1 ≤ i ≤ k, 1 ≤ p, p′ < K, |p− p′| = 1
}

∪
{(

(a, e, k, p), (k + 1, p)
)
,
(
(k + 1, p), (a, e, k, p)

) ∣∣∣
a ∈ H, e ∈ EH, 1 ≤ p ≤ K}

∪
{(

(i, p), (i′, p′)
) ∣∣∣ ((i, p), (i′, p′)) ∈ ESK ,

k + 1 ≤ i ≤ K, 1 ≤ p ≤ K
}
,

C
Hk
j :=

{
(a, e, i, p)

∣∣ a ∈ H, e ∈ EH, 1 ≤ i ≤ k, 1 ≤ p ≤ K,
(i, p) ∈ CSKj }

∪
{

(i, p)
∣∣ k + 1 ≤ i ≤ K, 1 ≤ p ≤ K, (i, p) ∈ CSKj }

(for j ∈ {1, 2}).

The following lemma is obvious:

Lemma 8. The mapping π : Hk → SK defined by

π((a, e, i, p)) = (i, p) and π((i, p)) = (i, p)

is a homomorphism.

Lemma 9. H contains a k-clique if, and only if, there is a
homomorphism h : SK → Hk.

Proof: For the forward direction, let {a1, . . . , ak} be a clique
of size k in H, and for 1 ≤ i < j ≤ k let e{ij} denote the
edge between ai and aj . Then we define h : SK → Hk by

h((i, p)) =

{
(ai, ef(p), i, p) if 1 ≤ i ≤ k
(i, p) otherwise.

It is easy to check that h is a homomorphism. Note that the
main point is to verify that h is well-defined.

For the backward direction, suppose that h : SK → Hk is
a homomorphism. Then by Lemma 8, π ◦ h : SK → SK is
a homomorphism. Thus, recalling that K ≥ 6 is even, by
Lemma 5, π ◦ h is the identity. Hence for all 1 ≤ i ≤ k, 1 ≤
p ≤ K there are aip, eip such that h(i, p) = (aip, eip, i, p).
By the definition of EHk , this implies aip = aiq =: ai for
1 ≤ i ≤ k, 1 ≤ p, q ≤ K and eip = ejp =: ep for 1 ≤ i, j ≤ k,
1 ≤ p ≤ K.
Then by the definition of Hk, for 1 ≤ i ≤ k and 1 ≤ p ≤ K
we have ai ∈ ep if, and only if, i ∈ f(p). Thus ef−1({i,j}) is
an edge between ai and aj , and therefore {a1, . . . , ak} is a
clique of H. 2

The following lemma is again obvious:

Lemma 10. There is a polynomial time algorithm that,
given a graph H and a k with 4 ≤ k ≤ |H| and k ≡
0, 1 (mod 4), computes SK and Hk.
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Thus the NP-completeness of Clique and the W[1]-com-
pleteness of Parameterized Clique immediately yield the
following Theorem 11. There is a slight problem in that
we only have a reduction for k ≥ 4 with k ≡ 0, 1 (mod 4).
However, we can use the simple fact that for all l < k, a
graph H has an l-clique if, and only if, the graph obtained
from H by adding (k− l) vertices and connecting them with
each other and all old vertices has a k-clique.

Theorem 11. Let c ≥ 2. Then c-Grid Homomorphism is
NP-complete. Furthermore, Parameterized c-Grid Ho-
momorphism is W[1]-complete.

Directed grids. Let DGrid denote the class of all directed
graphs whose underlying graph is a square grid. We show
how our proof can be modified to prove NP-completeness of
DGrid-Homomorphism and W[1]-completeness of its pa-
rameterized version.

Lemma 12. Let D be a directed acyclic graph with a di-
rected Hamiltonian path. Then HOM(D,D) = {id}.

Proof: Let H be a Hamiltonian path of D. Define a linear
order ≤ on D by letting a ≤ b if, and only if, a occurs before
b on H. Suppose that h : D → D is not the identity. Then
there exist a, b ∈ D such that a ≤ b and h(b) < h(a). Then
the interval of H that connects a with b must be mapped
to a directed path from h(a) to h(b), which is impossible
because D is acyclic. 2

For every n ≥ 1 we let Sdn be the directed acyclic (n × n)-
gridthat is obtained by directing the edges of Gn,n according
to the Hamiltonian path (cf. Figure 2).

(1, 1), (1, 2), . . . , (1, n), (2, n), . . . , (2, 1), (3, 1), . . . , (n, n)

Then it is an immediate consequence of Lemma 12 that

Figure 2. The directed grid Sd8

HOM(Sdn,Sdn) = {id} for all n ≥ 1.
We can now proceed completely analogously to the case of
2-colored grids. For every k ≥ 2 and every undirected graph
H we define a directed graph Hdk and prove that H contains
a k-clique if, and only if, there is a homomorphism from SdK
to Hdk. Moreover, we do this in such a way that, given H
and k, SdK and Hdk can be computed in polynomial time.
Thus we obtain:

Theorem 13. DGrid-Homomorphism is NP-complete.
Furthermore, Parameterized DGrid-Homomorphism is
W[1]-complete.

4. Conjunctive Query Evaluation

Atomic formulas, or atoms, are expressions of the form x =
y or Rx1 . . . xr, where R is an r-ary relation symbol and
x, y, x1, . . . , xr are variables. The formulas of first-order
logic FO are build up in the usual way from the atomic for-
mulas using the connectives ∧,∨,¬,→, and the quantifiers
∀,∃.
The vocabulary of a first-order formula ϕ, denoted by τ(ϕ),
is the set of all relation symbols occurring in ϕ. If L is a class
of formulas, then L[τ ] denotes the class of all ϕ ∈ L with
τ(ϕ) ⊆ τ . FO denotes the class of all first-order formulas,
and EFO the subclass of all existential first-order formulas,
i.e. all formulas that do not contain any universal quantifiers
and in which existential quantifiers only occur in the scope
of an even number of negation symbols.
The set of all atomic subformulas of a formula ϕ is denoted
by at(ϕ). A free variable of a first-order formula is a variable
x not in the scope of a quantifier ∃x or ∀x. The set of all
free variables of a formula ϕ is denoted by free(ϕ), the set of
all variables of ϕ by var(ϕ). The notation ϕ(x1, . . . , xk) in-
dicates that free(ϕ) = {x1, . . . , xk}. A sentence is a formula
without free variables.
For a formula ϕ(x1, . . . , xk), a τ(ϕ)-structure A, and ele-
ments a1, . . . , ak ∈ A, we write A |= ϕ(a1, . . . , ak) to say
that A satisfies ϕ if the variables x1, . . . , xk are interpreted
by the elements a1, . . . , ak, respectively. We let

ϕ(A) :=
{

(a1, . . . , ak) ∈ Ak
∣∣ A |= ϕ(a1, . . . , ak)

}
.

We shall study the complexity of the following problem for
fragments L ⊆ FO:

L-Evaluation
Input: Formula ϕ ∈ L, τ(ϕ)-structure A.

Problem: Decide if ϕ(A) 6= ∅.

Note that we have turned the actual problem of evaluating
the input query, i.e. computing the set ϕ(A), into a deci-
sion problem here. This is appropriate for the complexity
theoretic considerations made in this paper.
The natural parameterization of query-evaluation is by the
length of the input formula:

Parameterized L-Evaluation
Input: Formula ϕ ∈ L, τ(ϕ)-structure A.

Parameter: ||ϕ||
Problem: Decide if ϕ(A) 6= ∅.

FO-Evaluation is PSPACE-complete [13], and Parame-
terized FO-Evaluation is complete for the parameterized
complexity class AW[1] [5]that it is W[1]-hard.

Conjunctive Queries. A conjunctive query is a first-
order formula of the form ∃x1 . . .∃xk

(
α1 ∧ . . . ∧ αn), where

α1, . . . , αn are atoms. The class of all conjunctive queries is
denoted by CQ.
CQ-Evaluation is NP-complete [1], and Parameterized
CQ-Evaluation is W[1]-complete [11]. Both hardness re-
sults are immediate consequences of the simple observation
that for every k there is a conjunctive query of length O(k2)
saying that a graph has a k-clique. Actually, it is easy to
see that CQ-Evaluation and Homomorphism are basically
the same problem.
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The graph G(ϕ) of a first-order formula ϕ has vertex set
G(ϕ) := var(ϕ) and edge set

EG(ϕ) :=
{

(x, y)
∣∣ x 6= y,∃α ∈ at(ϕ) : x, y ∈ var(α)

}
For a class C of graphs we let CQ(C) := {γ ∈ CQ | G(γ) ∈
C}.

Theorem 14 (Chekuri and Rajaraman [2]). Let C be
a class of graphs of bounded tree-width. Then CQ(C)-Eval-
uation is in PTIME.

Remark 2. Chekuri and Rajaraman define the graph of a
formula differently; they take the incidence graph between
atoms and variables. Consequently, they obtain a different
notion of tree-width. But this difference is irrelevant here.
Our version of the theorem has first been stated by Kolaitis
and Vardi [10].
We refer the reader to [6] for a discussion of the different
concepts.

Theorem 15. Let C be a class of graphs of unbounded tree-
width that is closed under taking minors and τ a vocabulary
that is at least binary. Then CQ(C)[τ ]-Evaluation is NP-
complete.

Proof: Without loss of generality we can assume that τ =
{E} for the binary relation symbol E. Observe that for
every directed (n, n)-grid G there is a conjunctive query γG
with G(γG) = Gn,n such that for every directed graph D we
have

D |= γG ⇐⇒ HOM(G,D) 6= ∅.

Since C is closed under taking minors, by Robertson and
Seymour’s Excluded Grid Theorem 4 it contains all grids,
thus for every directed square grid S the query γS belongs to
CQ(C). Thus we can reduce Directed Grid Homomor-
phism to CQ(C)[τ ]-Evaluation. Then the statement of the
theorem follows from the NP-completeness of directed grid
homomorphism (Theorem 13). 2

Corollary 16. Assume that PTIME 6= NP. Let C be a
class of graphs that is closed under taking minors and τ a
vocabulary that contains at least one binary relation symbol.
Then the following three statements are equivalent:

(1) CQ(C)-Evaluation is in PTIME.

(2) CQ(C)[τ ]-Evaluation is in PTIME.

(3) C has bounded tree-width.

With a little extra work, on the parameterized level we get
an even cleaner picture; we can drop the restriction of being
closed under taking minors that we put on the class C of
underlying graphs in Theorem 15.

Theorem 17. Let C be a class of graphs of unbounded tree-
width and τ a vocabulary that is at least binary. Then Pa-
rameterized CQ(C)[τ ]-Evaluation is W[1]-complete un-
der parameterized T-reductions.

In the proof, we will use the following lemma which is an
extension of the second part of Theorem 13.

Lemma 18. Let C be a class of graphs such that for every
n ≥ 1 there is a graph G ∈ C with G = Gn,n and EG ⊇
EGn,n . Then the following problem is W[1]-complete under
parameterized T-reductions:

Parameterized Directed-C-Homomorphism
Input: Directed graph A whose underlying

graph is in C, directed graph B.
Parameter: ||A||

Problem: Decide if there is a homomorphism
from A to B.

Proof: Let us first assume that C is computable. We shall
prove that

Parameterized Clique

≤fp
m Parameterized Directed C-Homomorphism.

This even shows that Parameterized Directed-C-Homo-
morphism is W[1]-complete under parameterized m-reduc-
tions (for computable C). For every graph B and natural
number k we define directed graphs A∗k and B∗k such that
the underlying graph of A∗k belongs to C and there is a
homomorphism from A∗k to B∗k if, and only if, B has a k-
clique. Furthermore, we will do this in such a way that A∗k
only depends on k, the mapping k 7→ A∗k is computable, and
B∗k can be computed from (B,A∗k) in polynomial time.
So let k ≥ 1 and K :=

(
k
2

)
. Let G ∈ C such that G = GK,K

and EG ⊇ EGK,K . Since C is computable, such a G can be
found effectively. Now we let A∗k be a directed graph with
underlying graph G such that HOM(A∗k,A∗k) = {id}. Such
an A∗k exists by Lemma 12. Let B be an arbitrary graph.
Recall that f is a bijection from {1, . . . ,K} → {{i, j} | 1 ≤
i < j ≤ k} that maps l to the lth element in the lexico-
graphic order of

{
{i, j}

∣∣ 1 ≤ i < j ≤ k
}

.
We define the directed graph B∗k as follows:

B∗k :=
{

(a, e, i, p)
∣∣∣ a ∈ B, e ∈ EB, 1 ≤ i ≤ k, 1 ≤ p ≤ K

such that
(
i ∈ f(p) ⇐⇒ a ∈ e

)}
∪
{

(i, p)
∣∣ k + 1 ≤ i ≤ K, 1 ≤ p ≤ K},

EB
∗
k :=

{(
(a, e, i, p), (a′, e′, i′, p′)

) ∣∣∣ a, a′ ∈ B, e, e′ ∈ EB,
1 ≤ i, i′ ≤ k, 1 ≤ p, p′ ≤ K,(
(i, p), (i′, p′)

)
∈ EA

∗
k ,(

i = i′ =⇒ a = a′
)
,
(
p = p′ =⇒ e = e′

)}
∪
{(

(a, e, i, p), (i′, p′)
) ∣∣∣ a ∈ B, e ∈ EB,

1 ≤ i ≤ k, k + 1 ≤ i′ ≤ K, 1 ≤ p, p′ ≤ K,(
(i, p), (i′, p′)

)
∈ EA

∗
k

}
∪
{(

(i, p), (a, e, i′, p′),
) ∣∣∣ a ∈ B, e ∈ EB,

1 ≤ i′ ≤ k, k + 1 ≤ i ≤ K, 1 ≤ p, p′ ≤ K,(
(i, p), (i′, p′)

)
∈ EA

∗
k

}
∪
{(

(i, p), (i′, p′)
) ∣∣∣ k + 1 ≤ i, i′ ≤ K, 1 ≤ p, p′ ≤ K,(

(i, p), (i′, p′)
)
∈ EA

∗
k

}
.
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Then it can be proved analogously to Lemma 9 that B
contains a k-clique if, and only if, there is a homomorphism
h : A∗k → B∗k. Moreover, it is easy to see that, given B and
A∗k, B∗k can be computed in polynomial time.

It remains to deal with non-computable classes C. For such
classes, we can only prove that

Parameterized Clique

≤fp
T Parameterized Directed-C-Homomorphism.

The only place in the reduction above where we used our
assumption that C is computable was when for a given K
we computed the graph G ∈ C with G = GK,K and EG ⊇
EGK,K . Now we can no longer compute such a G, we merely
know that it exists. To circumvent this problem, we simply
do the reduction described above for every graph G with
G = GK,K and EG ⊇ EGK,K .
Let us explain the procedure in detail: We are given a k and
a directed graph B and want to decide whether B contains
a k-clique, using an oracle for Parameterized Directed-
C-Homomorphism. As above, we let K :=

(
k
2

)
. For every

graph G with G = GK,K and EG ⊇ EGK,K we do the fol-
lowing: As described above, we compute directed graphs A∗k
and B∗k such that the underlying graph of A∗k is G and there
is a homomorphism from A∗k to B∗k if, and only if, B has a
k-clique. Then we use our oracle and let it decide if there is
a homomorphism from A∗k to B∗k. The problem is that the
answer we get may be wrong if the graph G we started with
is not contained in C.
We distinguish between two cases. If the oracle answers
‘no’ for all G, in particular it answers ‘no’ for all G in C
(remember that at least one such G exists). Therefore, we
know that the answer is correct. If we get the answer ‘yes’
for some G, we can try to compute a homomorphism from
A∗k to B∗k using Lemma 2. Then we can easily check if the
answer was correct. If we find a correct ‘yes’-instance, we
know that B contains a k-clique. Otherwise, we know that
for all G in C our oracle answers ‘no’, and thus that B does
not contain a k-clique. 2

We are now ready to prove Theorem 17

Proof: Again, without loss of generality we assume that
τ = {E}. By the Excluded Grid Theorem 4, for every n ≥ 1
there exists a graph Gn ∈ C such that Gn,n � Gn. We let G′n
be a connected component of Gn such that Gn,n � G′n and
µn : Gn,n � G′n a minor map such that

⋃
a∈Gn,n

µn(a) =

G′n. We can always find such a minor map because G′n is
connected. We let G′′n be the graph with universeG′′n := Gn,n
and edge set

EG
′′
n :=

{
(a, b)

∣∣ ∃a′ ∈ µn(a), b′ ∈ µn(b) : (a′, b′) ∈ EG
′
n
}
.

Then EG
′′
n ⊇ EGn,n . We let C′′ := {G′′n | n ≥ 1}. Recall

Lemma 18. We shall prove that

Parameterized Directed-C′′-Homomorphism

≤fp
m Parameterized CQ(C)[τ ]-Evaluation.

For every n ≥ 1, we define a conjunctive query γn ∈ CQ(C)
such that for every directed graph D we have:

HOM(G′′n ,D) 6= ∅ ⇐⇒ D |= γn. (2)

Let Gn ∈ C be the graph, G′n ⊆ Gn its connected component,
and µn : Gn,n � G′n the minor map used to define G′′n .

We choose a variable xb for every b ∈ Gn (such that xb 6= xb′
for b 6= b′) and define three sets of atoms:

A1 :=
{
xb = xb′

∣∣ (b, b′) ∈ EGn ,∃a ∈ Gn,n : b, b′ ∈ µn(a)
}

A2 :=
{
Exbxb′

∣∣∣ (b, b′) ∈ EGn , ∃(a, a′) ∈ EG
′′
n :(

b ∈ µn(a), b′ ∈ µn(a′)
)}

A3 :=
{
xb = xb′

∣∣ (b, b′) ∈ EGn , b, b′ 6∈ G′n
}
.

Let x̄ be a tuple that contains all the xb, A := A1 ∪A2 ∪A3

and γn := ∃x̄
∧
α∈A α.

Note first that G(γn) = Gn, thus γn ∈ CQ(C). Now let D
be a directed graph. To prove the forward direction of (2),
assume that h : G′′n → D is a homomorphism. Then to see
that D |= γn, for every a ∈ G′′n we interpret all variables
xb with b ∈ µn(a) by h(a). For every connected component
C of Gn \ G′n, we pick one element c and interpret all xb
with b ∈ C by c. Then all atoms in A1 and A3 are satisfied,
and it can be easily checked that this is also the case for the
atoms in A2.
Conversely, suppose that D |= γn. Then by A1 and because
µn(a) is connected in Gn, for every a ∈ G′′n there is a unique
element d ∈ D that interprets all the xb with b ∈ µn(a).
We let h(a) := d, then A2 guarantees that this gives us a
homomorphism h : G′′n → D. 2

Corollary 19. Assume that FPT 6= W[1]. Let C be an ar-
bitrary class of graphs and τ a vocabulary that contains at
least one binary relation symbol. Then the following state-
ments are equivalent:

(1) Parameterized CQ(C)-Evaluation is in FPT.

(2) Parameterized CQ(C)[τ ]-Evaluation is in FPT.

(3) CQ(C)-Evaluation is in PTIME.

(4) CQ(C)[τ ]-Evaluation is in PTIME.

(5) C has bounded tree-width.

Proof: The implications (3) ⇒ (4), (3) ⇒ (1), (4) ⇒ (2),
and (1) ⇒ (2) are trivial. (5) ⇒ (3) by Theorem 14, and
(2)⇒ (5) by Theorem 17. 2

Remark 3. In the proof of Theorem 17 we used the fact
that equality, =, was part of the vocabulary. We dont know
yet whether the theorem remains true without this require-
ment.

Remark 4. Yannakakis [15] proved that the evaluation of
acyclic conjunctive queries is possible in polynomial time
(and therefore tractable both in the classical sense of com-
bined complexity and fixed-parameter tractable). This does
not contradict Corollaries 19 and 16 because the class of
acyclic conjunctive queries is not of the form CQ(C) for a
class of graphs. However, the underlying graph of a conjunc-
tive query whose vocabulary contains at most k-ary relation
symbols, for a k ≥ 2, has tree-width at most k − 1. Thus
in particular, if the vocabulary is fixed, acyclic conjunctive
queries have tree-width bounded by the arity of the vocab-
ulary.

Remark 5. A conjunctive query with negation is a formula
of the form ∃x1 . . .∃xk

(
λ1∧. . .∧λn), where the λi are atomic

or negated atomic formulas. It is easy to see that our results
extend to conjunctive queries with negation.
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5. Towards First-Order Evaluation

Definition 3. A fragment L ⊆ FO is closed if it satisfies
the following condition: If ϕ ∈ L, α is an atom in ϕ, and
β a quantifier-free formula with var(α) = var(β), then the
formula ϕ′ obtained from ϕ by replacing α by β is also con-
tained in L.

The motivation for this definition is that closed classes of
first-order formuls somehow resemble classes of conjuctive
queries of the form CQ(C) for a class C of graphs. There
is no direct formal correspondence between the two notions,
though, because we have to admit negated atoms here.)

Let L1,L2 ⊆ FO. We say that L1 is effectively contained
in L2 (and write L1 ≤eff L2) if there is an algorithm that
computes, given a formula ϕ1 ∈ L1, an equivalent formula
ϕ2 ∈ L2.

Theorem 20. Let L be a closed class of EFO-sentences
that is recursively enumerable. Assume that FPT 6= W[1].
Then Parameterized L-Evaluation is in FPT if, and
only if, there exists a k ≥ 1 such that L ≤eff EFOk.

Proof: The backward direction is well-known.
To prove the forward direction, we assume that Parame-
terized L-evaluation is in FPT.
Let ϕ ∈ L. By standard techniques we transform ϕ into a
sentence ϕ′ in prenex normal form in which negation sym-
bols only occur in front of atomic subformulas. In doing so,
we may have to rename some of the variables, but we do
not have to duplicate any atoms. In other words, there is a
canonical way to associate an atom α′ of ϕ′ with every atom
α of ϕ.
Now we bring the quantifier-free part of ϕ′ into disjunctive
normal form. Switching existential quantifiers and disjunc-
tions, we obtain a formula ϕ′′ of the form

∨
i∈I γ

ϕ
i , where

the γϕi are conjunctive queries with negation. If we do this
in the straightforward way, ϕ′ and ϕ′′ will have precisely the
same set of atoms, but every atom of ϕ′ may occur several
times in ϕ′′.
Consider the class C of all graph G(γϕi ), for all ϕ ∈ L.
We claim that there is a parameterized m-reduction from
Parameterized CQ(C)[{E}]-Evaluation to Parameter-
ized L-Evaluation. To see this, let γ ∈ CQ(C)[{E}]. Then
there is a formula ϕ ∈ L such that for some γϕi occurring in
ϕ′′ we have G(γϕi ) = G(γ). Because all the literals involve
only binary relations, it is easy to see that we can replace the
literals of γϕi in a suitable way by a conjunction of atoms
such that the resulting formula is γ; equivalently we can
replace the atoms by quantifier-free formulas. We do the
corresponding substitution in ϕ′ and replace all other liter-
als of ϕ′ by a quantifier free formula that is not satisfiable
(for example, a conjunction of atoms x 6= x). Thus in ϕ′

every γϕj with j 6= i is replaced by an unsatisfiable formula
and γϕi is replaced by γ. Therefore the resulting formula
γ′ is equivalent to γ. Now we go back from ϕ′ to ϕ. We
get a formula γ′′ equivalent to γ that can be obtained from
ϕ by replacing atoms by quantifier-free formulas with the
same variables. Since the fragment L is closed, γ′′ is con-
tained in L. Thus for every γ ∈ CQ(C)[{E}] there is an
equivalent γ′′ ∈ L, and since L is recursively enumerable
and equivalence of conjunctive queries is decidable, such a
γ′′ can actually be computed. This proves our claim.

Since we assumed Parameterized L-Evaluation to be
fixed-parameter tractable, by Theorem 19 the class C has
bounded tree-width, say w. Now we apply a result of Ko-
laitis and Vardi [10] saying that every conjunctive query of
tree-width at most w can be effectively translated into an
equivalent EFOw+1-formula. (Actually, we use an exten-
sion of this theorem for conjunctive queries with negation.)
Thus all the γϕi are equivalent to EFOw+1-sentences. This
implies that ϕ′′ and thus ϕ is equivalent to an EFOw+1-
formula. Furthermore, our proof shows that the translation
is effective. 2

Remark 6. The previous theorem can be extended to for-
mulas with at most k free variables, but is clearly wrong for
formulas with more than k free variables.

Conjecture 21. Assume that FPT 6= W[1]. Let L ⊆ FO be
closed and recursively enumerable. Then Parameterized
L-evaluation is in FPT if, and only if, there exists a k ≥ 1
such that L ≤eff FOk.

The idea to prove the conjecture would be to use an analogue
of Kolaitis and Vardi’s results for FO, which is contained in
[6] (Theorem 5.29).

6. Conclusions

The results of this paper give a good understanding on when
the evaluation of conjunctive queries becomes a tractable
problem. The main contribution is to show that evaluat-
ing conjunctive queries is tractable for those queries that
have a bounded tree-width structure (under the hypothesis
that NP6= PTIME and FPT6= W[1]). Beyond conjunctive
queries, it was known that for each k, FOk could be eval-
uated in PTIME and in FPT. The second contribution of
the paper is to propose a converse of this: Tractability of
query evaluation implies an expressive power limited by the
number of variables. This is formalized in conjecture 21,
which we could prove only for the existential fragment of
FO. A third contribution of independent interest, is that
colored grid homomorphism problem is NP-complete and, if
parameterized by the grid size, W[1]-complete.
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