
HAL Id: hal-01988840
https://inria.hal.science/hal-01988840

Submitted on 22 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Hashing Incomplete and Unordered Network Streams
Chao Zheng, Xiang Li, Qingyun Liu, Yong Sun, Binxing Fang

To cite this version:
Chao Zheng, Xiang Li, Qingyun Liu, Yong Sun, Binxing Fang. Hashing Incomplete and Unordered
Network Streams. 14th IFIP International Conference on Digital Forensics (DigitalForensics), Jan
2018, New Delhi, India. pp.199-224, �10.1007/978-3-319-99277-8_12�. �hal-01988840�

https://inria.hal.science/hal-01988840
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 12

HASHING INCOMPLETE AND
UNORDERED NETWORK STREAMS

Chao Zheng, Xiang Li, Qingyun Liu, Yong Sun and Binxing Fang

Abstract Deep packet inspection typically uses MD5 whitelists/blacklists or reg-
ular expressions to identify viruses, malware and certain internal files
in network traffic. Fuzzy hashing, also referred to as context-triggered
piecewise hashing, can be used to compare two files and determine their
level of similarity. This chapter presents the stream fuzzy hash algo-
rithm that can hash files on the fly regardless of whether the input is
unordered, incomplete or has an initially-undetermined length. The al-
gorithm, which can generate a signature of appropriate length using a
one-way process, reduces the computational complexity from O (n log n)
to O(n). In a typical deep packet inspection scenario, the algorithm
hashes files at the rate of 68MB/s per CPU core and consumes no more
than 5KB of memory per file. The effectiveness of the stream fuzzy hash
algorithm is evaluated using a publicly-available dataset. The results
demonstrate that, unlike other fuzzy hash algorithms, the precision and
recall of the stream fuzzy hash algorithm are not compromised when
processing unordered and incomplete inputs.

Keywords: Fuzzy hashing, network traffic, approximate matching, file tracking

1. Introduction
Identifying content in network traffic is important in deep packet in-

spection applications such as malware detection, data leakage prevention
and digital forensics. In these applications, a search is made for pre-
defined signatures in packet payloads, which could be string patterns,
cryptographic hash values, etc. For example, Snort inspects file content
using regular expressions and Suricata (suricata-ids.org) computes
the MD5 checksums of files.

In order to deal with new security threats, several researchers have
focused on identifying similar files and file fragments in network traffic

200 ADVANCES IN DIGITAL FORENSICS XIV

using techniques such as Bloom filters [1], machine learning [8] and fuzzy
fingerprints [21]. However, increased network throughput and network
transmission optimization technologies have rendered these approaches
infeasible. Scarce computational resources prevent the execution of com-
plex algorithms on high throughput traffic in deep packet inspection
applications. Additionally, emerging technologies such as multi-thread
downloading, P2P file sharing and cyberlocker file uploading make it
impractical to acquire ordered file streams during or even after trans-
mission.

Fuzzy hashing, also referred to as context-triggered piecewise hash-
ing (CTPH), essentially slices an input file into pieces using a context-
triggered algorithm and hashes each piece. Compared with crypto-
graphic hash algorithms such as MD5 and SHA1, fuzzy hashing can
recognize files that are changed in a subtle manner (e.g., by inserting
just a single character in a document). This feature makes fuzzy hash-
ing very appealing in deep packet inspection applications. However,
current fuzzy hash algorithms only work on intact and stored files. In-
deed, when applying fuzzy hashing to files in transmission, a number of
challenges are encountered that are quite different from conventional sce-
narios. The challenges include incomplete capture, unordered fragments
and very high buffering requirements.

This chapter proposes an improved fuzzy hash algorithm that can
detect similar files in network traffic under real-time, incomplete input
and limited memory constraints. This so-called stream fuzzy hash (SFH)
algorithm can be applied to streamed and unordered data. The algo-
rithm employs a compact structure to record the computed contexts
and hashes unordered fragments individually with almost no buffering,
generating a proper-length signature via a one-way process. Experi-
ments demonstrate that the stream fuzzy hash algorithm can hash data
at 68 MB/core/s in a typical multi-thread transfer scenario while con-
suming no more than 5 KB memory per file regardless of the file size.
The ability of the stream fuzzy hash algorithm to track files transmit-
ted in network traffic is very useful in network measurement, malicious
software detection and data leakage protection applications.

2. Preliminaries
This section discusses the fuzzy hash algorithm, which is the primi-

tive version of the stream fuzzy hash algorithm presented in this chapter.
Next, it presents the Tillich-Zémor (TZ) hash that is used as a strong
hash by the stream fuzzy hash algorithm due to its concatenation prop-
erty, which saves memory.

Zheng et al. 201

2.1 Fuzzy Hashing
Cryptographic hash algorithms such as MD5 and SHA1 have good

avalanche effects, which means that flipping a single bit of a file causes
drastic changes to its hash value. While this is a highly desirable security
property of cryptographic hash algorithms, digital forensic investigators
are interested in a hash algorithm that can be used to compare two
distinctly different items and determine their fundamental level of sim-
ilarity. Context-triggered piecewise hashing, also referred to as fuzzy
hashing, is one of many such options. Unlike a cryptographic hash, a
fuzzy hash is not designed to be difficult to reverse by an adversary,
making it unsuitable for cryptographic purposes. The concept of fuzzy
hashing was pioneered in spamsum [23] and Nilsimsa [25]. Kornblum [14]
formalized the concept and developed ssdeep for use in digital forensics.

Non-propagation is a property unique to fuzzy hashing. In a fuzzy
hash, only the part of the signature that corresponds linearly to the
changed part of the binary is changed. This means that a small change
to any part of the plaintext will leave most of the signature intact.

Alignment robustness is another important property. Most hash algo-
rithms are very alignment sensitive. Deleting or inserting a single byte
in the plaintext generates a completely different hash value. The core of
the fuzzy hash algorithm is a rolling hash that produces a series of reset
points in the binary. Each reset point depends only on the immediate
context.

Fuzzy hashing uses a block size variable b to trigger a reset point. The
block size is computed using the following equation:

binit = bmin2
j
log2

“
n

Sbmin

”k
(1)

where bmin is the (constant) minimum block size, S is the (constant)
expected fuzzy hash length and n is the input file size. The equation
helps ensure that the fuzzy hash result of a given file is neither too long
for efficient comparisons nor too short to avoid collisions. Note that the
file size is not always available in network traffic; this issue, which poses
some challenges, is discussed later.

In the case of a rolling hash function with window k, if an input
sequence of k bytes c1c2 . . . ck satisfies the condition:

rolling hash (c1c2 . . . ck) mod b = b − 1 (2)

then a reset point is positioned at ck. Statistically, the smaller the value
of b, the greater the number of reset points that are triggered.

The strong hash based on the Fowler-Noll-Vo (FNV) algorithm is used
to produce hash values of the regions between two reset points. The

202 ADVANCES IN DIGITAL FORENSICS XIV

resulting signature comes from the concatenation of a single character
from the Fowler-Noll-Vo hash per reset point. A signature is produced
if the length is not more than S/2 characters. Specifically, the fuzzy
hash algorithm reduces the block size from b to b/2 and the algorithm
is executed iteratively until a signature of at least S/2 characters is
produced. Some researchers [2, 6] have proposed improvements to reduce
the computations, but the iterative processing has not been eliminated.
The string edit distance algorithm is used to measure the similarity
percentage of fuzzy hash values computed for different files.

2.2 Tillich-Zémor Hash
The Tillich-Zémor [22] hash function maps a binary string to a matrix

over a finite field of matrices with determinant one. Each element in the
alphabet is first mapped to a matrix from a generator set. Next, the
corresponding matrices are multiplied according to their order in the
binary string. The security of the Tillich-Zémor hash to certain attacks
has been proven to be equivalent to associating a Cayley graph with the
hash function.

The Tillich-Zémor hash has: (i) a defining parameter; and (ii) a hash
algorithm:

Defining Parameter: This parameter is an irreducible polyno-
mial Pn (X) of degree n in the range 130 to 170.

Tillich-Zémor Hash Algorithm: Let A and B be the matrices:

A =
(

X 1
1 0

)
B =

(
X X + 1
1 1

)

and let π = {0, 1} → {A,B} be a mapping where 0 → A and
1 → B. Then, the hash code of a binary message x1x2 . . . xk is the
matrix product:

π (x1) π (x2) . . . π (xk)

where the computations are performed in the quotient field F2n =
F2 [X] /Pn (X) of 2n elements.

Since the Tillich-Zémor hash uses the group SL2 (G) to present a bit
of input data and multiply matrices to produce the hash result, it has
the concatenation property. This feature is of interest to the stream
fuzzy hash algorithm presented in this chapter.

Note that this presentation only provides an overview of Tillich-Zémor
hashing, so mathematical details and proofs are omitted. However,

Zheng et al. 203

it should be noted that several attacks have targeted the collision re-
sistance and pre-image resistance properties of the Tillich-Zémor hash
function [10, 17]. Fortunately, the vulnerabilities have been addressed
in recent research [12, 13]. As a result, the Tillich-Zémor hash is still
strong enough for non-cryptographic purposes.

3. Challenges
As mentioned above, fuzzy hashing has been applied in many domains

to determine the fundamental level of similarity between a pair of files.
However, several challenges are encountered when applying fuzzy hash-
ing to network traffic in order to identify similar files in transmission.

One challenge is that the file size is not known initially; typically, it
cannot be determined until the end of a transmission. For example, if an
HTTP session is non-keep-alive or chunked, the content-length region is
optional [9]. This is not a problem for hash algorithms such as MD5 and
SHA-1 that do not require the file size. However, the file size is a crucial
parameter in a fuzzy hash implementation. This is because it is used as
the input to produce a trigger value (or block size) for generating pieces
for hashing.

Another challenge is one-way processing. In order to generate a sig-
nature of the proper length, fuzzy hashing must adjust the rolling hash
trigger value and calculate it iteratively. Because network traffic often
has high throughput (e.g., 10 Gb Ethernet), it is impractical to store the
file content, so there is no opportunity for recomputation.

Unordered input also poses a challenge. State-of-the-art networking
technologies split a file into fragments for transmission efficiency and
agility, such as multi-thread downloading, P2P file sharing and cyber-
locker services. Figure 1 shows a typical multi-thread transfer scenario,
where the grey block represents a file fragment. At time t3, any file off-
set in the range 0–3 M may appear. The fuzzy hash algorithm can only
perform its computations from the file header or a reset point, meaning
that unordered fragments must be buffered until all the preceding data
has been received. In the worst case, almost the entire file has to be
buffered, which makes the memory consumption unacceptable.

Finally, incomplete capture is a challenge. Files captured from net-
work traffic are often incomplete due to packet loss and processing errors.
Packet loss is a common problem in intrusion detection and data leak-
age protection systems because they cannot deal with bursts of network
traffic or attacks. A human user may also compromise the integrity of
a captured file, for example, by dragging the progress bar on an on-line
video or manually terminating a transfer session.

204 ADVANCES IN DIGITAL FORENSICS XIV

Offset

Time Linet0 t1 t2 t3 t4 t5 t6 t7 t8

5M

4M

3M

2M

1M

0

Figure 1. Example of an out-of-sequence transfer.

4. Stream Fuzzy Hashing Algorithm
This section describes the design and implementation of the stream

fuzzy hash algorithm.

4.1 Overview
As mentioned above, a fuzzy hash algorithm uses a rolling hash to

generate reset points and a strong hash technique to produce hash values
for each piece between two reset points. The stream fuzzy hash algorithm
uses a context to record the computational result of each discrete data
segment. Since unordered data segments are common and each segment
generates a segment context, an interval tree [7] is used to efficiently
organize the file segment contexts. The stream fuzzy hash algorithm
uses the Tillich-Zémor hash instead of the Fowler-Noll-Vo hash, enabling
each discrete segment to be buffered using no more than six bytes. A
fine-grained adaptive mechanism is employed to generate a fuzzy hash
signature via a one-way process. If a file is confirmed to be incomplete
after transmission, the missing parts of a file do not affect other intervals
because each signature is generated individually.

Figure 2 illustrates the three basic operations in the stream fuzzy hash
algorithm:

Updating: This operation updates the segment context with an
incoming data segment. There are no limitations on the data size
and starting offset.

Zheng et al. 205

[8, 9]

context

[5, 8]

context

[0, 3]

context

[6, 10]

context

[15, 23]

context

[16, 21]

context

[25, 30]

context

[17, 19]

context

[26, 26]

context

[19, 20]

context

rangemerge

Signature:
tune

update

Input Segment
[8,9]

Figure 2. Stream fuzzy hash algorithm operations.

Merging: This operation merges adjacent segment contexts when
an input data fills the gap of the interval tree.

Tuning: This operation tunes the block size during hashing if the
current signature length exceeds the upper limit. This enables the
generation of a signature with the proper length via a one-way
process.

4.2 Segment Contexts
The stream fuzzy hash algorithm uses a context to represent the fuzzy

hash computation of a data segment while it is being processed. The
data segment, which may belong to any part of the original file, has no
minimum length limit. As shown in Figure 3, a rolling hash is com-
puted for each byte of a data segment with marginal data, sliced data
or truncated data:

Marginal data comprises data in the range before the first reset
point to which a strong hash cannot be applied.

Sliced data comprises data in the range between two reset points
to which a strong hash can be applied.

Truncated data comprises data in the range from the last reset
point to the end to which a strong hash can be applied, but the
result is an incomplete hash.

A hash algorithm must hash data from the beginning of a file. Since a
strong hash cannot be applied to the marginal data portion before a reset

206 ADVANCES IN DIGITAL FORENSICS XIV

Reset Points

Strong Hash

Strong Hash State

Rolling Hash State

truncated

Rolling Hash

slice2slice1

Strong Hash Value of
Slices

 Rolling Hash Value of Reset Points

marginal

r1 r2 r3

Partial Strong
Hash Value

mbuffer[window-1]

s1 s2

Figure 3. Data segment context.

point, the data is buffered in the context. However, buffering marginal
data can cause a severe memory overload; in the worst case, the entire
file has to be buffered. This is infeasible when hashing multi-gigabit
files.

The Tillich-Zémor hash used in the stream fuzzy hash algorithm has
two attractive features:

Concatenation Property: Partial Tillich-Zémor hashing satis-
fies the concatenation property. This is because the Tillich-Zémor
hash uses the group SL2 (G) to present a bit of input data and
multiplies matrices to produce the hash result. For example, the
Tillich-Zémor hash of d1d2d3 can be computed individually as fol-
lows:

hashTZ (d1d2d3) = hashTZ (d1d2)hashTZ (d3) (3)

This design is conducive to parallel computing. In the stream
fuzzy hash algorithm, the marginal part is separated into a partial
Tillich-Zémor hash value and a buffer of size rollingwindow − 1
(six bytes for each discrete data segment in the algorithm imple-
mentation).

Computational Efficiency: Tillich-Zémor hashing is computa-
tionally efficient. Matrix multiplications are performed in the quo-
tient field F2n , which are easily computed using a few shifts and
XORs of 150-bit quantities per message bit. Because the stream
fuzzy hash is a non-cryptographic hash function, the strong hash

Zheng et al. 207

Table 1. Context components.

Symbol Description

mbuff Marginal data buffer of context, may have a reset point
msize Size of mbuff buffer, up to six bytes
ps Partial strong hash value of unbuffered marginal data
stater Rolling hash state of truncated data
states Strong hash state of truncated data, a matrix in group SL2 (G)
arrayr Array storing rolling hash values of reset points
arrays Array storing strong hash matrices between reset points
backups Backup of arrays before the last tuning operation

result is reduced by recording only a Base64 encoding of the six
least significant bits (LS6B [23]) of each hash value; n = 8 is used
instead of the range 130–170 to define the quotient field F2n . The
following irreducible polynomial is employed:

F2n = x8 + x4 + x3 + x2 + 1 (4)

Table 1 presents the context components produced after Tillich-Zémor
hashing.

4.3 Context Updating
An interval tree is employed for context updating. It is a tree data

structure that holds intervals such that all the intervals that overlap
with any given interval or point can be determined efficiently. In this
work, the interval tree implementation is based on a red-black tree. This
dynamic data structure enables the efficient insertion and deletion of an
interval in O (log n). Because intervals in the tree cannot overlap, the
query time is also O (log n).

When a new data segment is received, the stream fuzzy hash algorithm
finds the segment context by querying the interval tree with the starting
offset and ending offset of the data segment. If the new data segment
overlaps with a previous data segment (e.g., due to retransmission), for
convenience of computing, the duplicate portion of the new segment is
discarded. The remaining input data is used to update the context as
in the original fuzzy hash algorithm, except that the stream fuzzy hash
algorithm replaces the Fowler-Noll-Vo hash with the Tillich-Zémor hash.

208 ADVANCES IN DIGITAL FORENSICS XIV

truncatedslicesmarginal

ps

mbuff[window-1]

X

truncatedslicesmarginal

ps

mbuff[window-1]

p n

stater

states

Matrix Multiplication on Galois Field

states

stater

Continue Rolling Hash

Figure 4. Merging two adjacent contexts.

4.4 Context Merging
Discrete segment contexts in the interval tree could become adjacent

if an incoming segment fills the gap; this situation triggers the merging
operation. Merging adjacent segment contexts decreases the number of
nodes in the interval tree, thereby reducing the search time.

Figure 4 illustrates the process of merging two adjacent contexts p
and q. It is based on the associative property of the Tillich-Zémor hash,
where strong hash values of discrete fragments can be computed indi-
vidually and concatenated when they are consecutive. Also, the rolling
hash is continued with the six bytes in mbuff.

4.5 Block Size Tuning
The number of reset points generated by the rolling hash function

is determined by three parameters: (i) file length; (ii) randomness (en-
tropy) of file content; and (iii) block size. For ease of comparison, a
fuzzy hash should limit its signature length to a specific range. The
original fuzzy hash algorithm achieves this goal by iteratively adjusting
the initial block size and recomputing the hash value until the desirable
signature length is obtained. However, this method is infeasible for files
in transmission. On one hand, the file length may not be known before
the computation, which means that Equation (1) cannot be used to com-
pute the initial block size. On the other hand, using a fixed block size
renders the signature length unpredictable and there is no opportunity
for recalculation in a one-way process.

The stream fuzzy hash algorithm employs an adaptive mechanism to
tune the block size during hashing. In the tuning process, the rolling
hash value of each reset point (stored in arrayr) is tested by a new block
size, which is the current block size multiplied by a tuning factor k that

Zheng et al. 209

3072:Xk/maCm4yLYtRIFDFnVfHHqx1Jl+[0:432501]
7wr6Es3+TaKxONfbN[6130147:1160163]#12288:XCht
bFS6pHp9GZ[0:432501]lZ1hze2[6130147:1160163]

Figure 5. Example signature.

satisfies the following equation:

r mod (k × b) = k × b − 1 ⇒ r mod b = b − 1 (5)

Obviously, if an appropriate reset point exists for a new block size,
then it must be one of the surviving reset points. This guarantees that
the final signature is independent of the timing of the tuning operation.
After a new reset point is selected, the temporary hash result is refined
by multiplying each strong hash value between the reset points.

The tuning factor k also determines whether or not a partial file can
be compared. As discussed later in this chapter, a larger tuning factor
k generates a longer signature.

A tuning operation is chosen carefully. Let S be the expected signa-
ture length. Then, a tuning operation is deemed to be necessary when
the current reset point number is larger than k × S. In certain cases,
the file entropy may be extremely low (e.g., a string of repeated char-
acters); this yields rolling hash values with less diversity. Tuning the
block size based on these hash values causes a dramatic reduction in the
number of reset points. To avoid this, every rolling hash value is tested
with a new block size before tuning is performed. The tuning opera-
tion is aborted when the number of eligible reset points is less than the
expected signature length S.

4.6 Signature Generation
After all the transferred data is input, the stream fuzzy hash algo-

rithm initiates an inorder traversal of the interval tree to visit every
context. Each strong hash value is mapped to a Base64 space with
LS6B and the data range is in the format [left offset − right offset] to
mark gaps. To enhance partial file matching, the stream fuzzy hash
signature for block size b is k × b, where k is the tuning factor. Re-
peated computations are not necessary because the signature of a block
of size b is a precedent result of k × b, which is stored in backups by
the tuning operation. The format of the stream fuzzy hash signature is
blocksize:hashb: hash b

k
[rangestart − rangeend]. Figure 5 shows an ex-

ample stream fuzzy hash signature with an expected length of 64, block
size of 3,072 and tuning factor of 4.

210 ADVANCES IN DIGITAL FORENSICS XIV

Since the stream fuzzy hash algorithm uses the same rolling hash
function as ssdeep, the two signatures should have the same length for
the same input. Some files may not yield an appropriate number of
pieces for any block size. The ssdeep algorithm addresses this problem
by combining the last few pieces of a message into a single piece. In
contrast, the stream fuzzy hash algorithm keeps all the pieces separate
and generates a longer signature to preserve more details of the input.

5. Signature Comparison
The stream fuzzy hash signature length depends on the block size and

entropy of the input. Since the file is determinate, it can be assumed
that a missing number of signature characters is linearly correlated with
the missing length. Since s1 is generated by the transferred file, ni spaces
are used for each gap in s1, where ni is given by:

ni =
⌊

GapBytes|s1|
ComputeBytes

⌋
(6)

Let s′1 be the filled signature and s2 be the signature of the intact target
file. The Levenshtein distance (LE) of s1 and s2 is refined using the
following equation:

e (s1, s2) = LE
(
s′1, s2

) − |s1| (|s′1| − |s1|)
|s′1|

(7)

As in [14], the final match score in the range 0 to 100 is computed using
the equation:

M = 100 − 100 e(s1, s2)
|s′1| + |s2| (8)

A higher match score indicates a greater probability that the source files
have blocks of values in common and in the same order.

5.1 Partial File Matching
Two stream fuzzy hash signatures are comparable if and only if they

have been generated using the same block size. As described above, block
size tuning is driven by the input data and missing data postpones the
tuning operation. A partial file may have a different block size from
its original file. In fact, although the stream fuzzy hash signature with
block size b has length b/k, it is still possible that a partial file has a
different block size.

Assume that the reset points are evenly distributed over the entire
file and consider a partial file with integrity rate m and tuning factor

Zheng et al. 211

k. Then, the probability that the partial file can be compared with the
original file is given by:

p =
k2m − 1

k2m − km
m ∈ (0, 1] , k ∈ N (9)

Note that the even distribution is used just to simplify the problem;
in practice, the distribution of reset points is strongly correlated with
the dataset. For the desired stream fuzzy hash signature length S, a
complete file with final block size b has two reset point numbers, one is
Lb and the other is L b

k
, which is the precedent result of final tuning. Lb

satisfies the following inequality:

S ≤ Lb ≤ kS (10)

The partial file signature is generated with block size b′ and its reset
point number Lb′ satisfy the following inequality:

S ≤ Lb′ ≤ kS (11)

The partial file is comparable when:

b′ = b or b′ =
b

k

Based on Equation (11), b′ = b is satisfied if and only if:

S ≤ mLb ≤ kS ⇔ S

m
≤ LS ≤ kS

m
(12)

Similarly, b′ = b
k is satisfied if and only if:

S ≤ mL b
k
≤ kS ⇔ S ≤ mkLb ≤ kS ⇔ S

mk
≤ Lb ≤ S

m
(13)

The concatenation of Equations (12) and (13) yields:

S

mk
≤ Lb ≤ kS

m
(14)

Since kS ≤ kS
m , m ∈ (0, 1], this inequility can be written as:

S

mk
≤ Lb ≤ kS (15)

Since the reset points are evenly distributed, if Lb satisfies Equa-
tion (10), then the probability p that Lb also satisfies Equation (15) is
given by:

p =
kS − S

mk

kS − S
=

k2m − 1
k2m − km

(16)

212 ADVANCES IN DIGITAL FORENSICS XIV

A larger tuning factor k can be used to obtain a better comparison
probability. However, this generates a longer signature that increases the
storage requirements and comparison overhead. Therefore, it is neces-
sary to trade-off comparison efficiency versus the ability to perform par-
tial matching. For example, for a tuning factor k = 3 and integrity rate
m = 0.3, the comparison probability is 0.94. Based on Equation (16),
a partial file is always comparable when m ≥ 1

k . Equation (16) is also
confirmed later in this chapter when the application of the stream fuzzy
hash algorithm on a real dataset is evaluated.

It is important to note that the ability of the stream fuzzy hash al-
gorithm to perform partial file matching not only enables a deep packet
inspection application to identify incomplete captured files, but also al-
lows hazardous transmissions to be stopped.

5.2 Comparing Massive Numbers of Files
Deep packet inspection and intrusion prevention systems maintain

signature sets of valuable files and malicious software that run into mil-
lions of elements. For example, NIST’s National Software Reference
Library [15] maintains a large public database of known content that
covers more than 50 million files. A naive solution for dealing with mas-
sive numbers of signatures is to compare all pairs by brute force, which is
obviously impractical. Fortunately, the large-scale approximate match-
ing problem has been well studied in connection with string similarity
search [24]. The proposed approach adopts a classical method from the
string similarity search domain to speed up comparisons.

The method involves indexing the stream fuzzy hash signatures using
n-grams:

Index Creation: An n-gram is a contiguous sequence of n char-
acters from a sequence of text. The original design of the fuzzy
hash algorithm requires that similar hashes must have a common
7-gram. Thus, each signature in the set is split into many 7-grams.
Each 7-gram is treated as a key and the signature itself as a value.
The key-value pair is then inserted into a hash table.

Signature Querying: The signature to be queried is also split
into several 7-grams. Every 7-gram in the hash table is examined
to find candidate signatures. The 7-gram implementation was se-
lected because the original fuzzy hash algorithm required similar
hashes to have a common 7-gram. A threshold c is selected for
querying based on a predefined similarity baseline. When a can-
didate signature shares more than c 7-grams with a query, then
Equation (8) is applied to determine their similarity.

Zheng et al. 213

Table 2. Normalized TLSH distances versus ssdeep scores.

TLSH Distance < 60 < 50 < 30 < 20 < 10 < 1

ssdeep Score > 0 > 30 > 70 > 80 > 90 100

6. Evaluation
This section evaluates the correctness of the stream fuzzy hash al-

gorithm and its hashing speed and signature length using the t5 cor-
pus [19]. The t5 corpus contains 4,457 files and 1.8 GB of data. In
particular, the stream fuzzy hash algorithm is compared against ssdeep
v2.13 (sourceforge.net/projects/ssdeep), sdhash v3.4 (roussev.
net/sdhash/sdhash.html) and TLSH v3.7 (github.com/trendmicro/
tlsh), which were the latest versions available when the experiments
were conducted. ssdeep is the de facto standard for malware analysis
domain; it is currently the only similarity digest supported by Virus-
Total (www.virustotal.com). sdhash is a widely-applied fuzzy hash
implementation. ssdeep and sdhash are both supported by NIST’s Na-
tional Software Reference Library [15]. TLSH [16] is an open-source fuzzy
matching library developed by Trend Micro.

6.1 Correctness
The first set of experiments sought to evaluate the ability of the stream

fuzzy hash algorithm to identify similarities between files compared with
other fuzzy hash algorithms. Note that the results can contain false pos-
itives (non-similar pairs identified as similar) and false negatives (similar
pairs not identified as similar).

The ssdeep, sdhash and stream fuzzy hash schemes score the simi-
larity between two files in a range from 0 to 100, where 0 corresponds to
a mismatch and 100 is a perfect match (or near-perfect match); a lower
score means a lower confidence level. However, TLSH uses a different
scheme to score the similarity between two digests – a distance score of
zero means that the files are identical (or nearly identical) and increasing
score values above zero represent greater distances between the files.

In order to compare the four schemes using a common basis, the
TLSH distance was normalized to a range from 0 to 100 based on the
results obtained by Oliver et al. [16]. Table 2 shows the TLSH distances
and ssdeep scores with the proximate false positive and recall rates
considered to be the same.

214 ADVANCES IN DIGITAL FORENSICS XIV

Figure 6. Distributions of the detected pairs in t5.

Figure 6 shows the distributions of the detected pairs obtained by the
four hash algorithms.

Recall. Because there are n(n − 1)/2 pairs in a set of n files, there
are almost 10 million pairs in t5 and it is not possible to determine
all the pairs by hand. Therefore, an assumption was made that only
(true and false) positives would be detected by an algorithm and, if
a correlation was not discovered by an algorithm, then it did not exist.
This is appropriate because the intent was to compare the performance of
the stream fuzzy hash algorithm relative to the other algorithms instead
of in absolute terms based on the ground truth.

Drawing on previous research [16, 19], a strict threshold value was set
for each algorithm. Below the threshold, all positive results were ignored
as the false positive rate rose to 10%. The four algorithms detected 387
similar pairs in total using the threshold values listed in Table 3. Note
that the TLSH threshold is not a score, but a distance.

Precision. The 387 unique file pairs were reviewed manually. A total
of 256 pairs were identified as true positives. The following definition
was employed to determine a correct similar pair (true positive):

TXT and HML files that use the same boilerplate or share more
than 10% common content.

Zheng et al. 215

Table 3. Comparison of the precision and recall rates for t5.

Threshold True False Precision Recall
Positives Positives

TLSH 20 146 95 60.6% 57.0%
sdhash 80 109 16 87.2% 42.6%
ssdeep 80 126 14 90.0% 49.2%
SFH 80 155 17 90.1% 60.5%
Total – 256 131 – –

PDF, DOC, PPT and XLS files that are syntactically correlated
beyond their formats.

JPG and GIF files that have visual similarities.

SFH

TLSH

20
ssdeep

sdhash

57

6

7

21

16

10

17

1

66

21
3

Figure 7. Intersections of the true positive sets for t5.

Note that the focus of the true positive definition is not on determin-
ing the percentage of similar pairs, but to compare the four algorithms
on the same real-world dataset. Figure 7 shows the intersections of the
true positive sets for the four algorithms. The overlaps vary because the
thresholds are more rigorous than those in [19]. Note that, for readabil-
ity, Figure 7 does not show all the intersections.

Table 3 compares the precision and recall rates of the four algorithms
applied to t5. Note that the use of Tillich-Zémor hashing by the stream
fuzzy algorithm does not decrease the precision and recall rates.

6.2 Hashing Speed for Sequential Inputs
This section evaluates the hashing speed of the stream fuzzy hash

algorithm, which is a crucial property in deep packet inspection appli-

216 ADVANCES IN DIGITAL FORENSICS XIV

Table 4. Hashing speeds for sequential t5.

MD5 TLSH sdhash ssdeep SFH

Time (s) 2.62 149.53 60.70 31.03 27.01
Speed (MB/s) 703 12 30 59 68

cations. MD5 was added to the four evaluated algorithms to provide
readers with an intuitive understanding of the relative speeds of the
algorithms.

The computer used in the experiments had a multicore Intel Xeon
E5-2698 v3 CPU with a frequency of 2.30 GHz. All the algorithms were
executed on one logic core with hyper-threading enabled. The operating
system used was Linux RedHat 7.2 (kernel 3.10). The t5 corpus was used
as the input in the speed tests. The source code of all the algorithms was
compiled with gcc -O2 and configured as the default option. The MD5
results were generated by OpenSSL v1.0.0. Every algorithm processed
the files sequentially and the chunk size was 4,096 bytes.

Table 4 shows the hashing speeds of the five algorithms. The perfor-
mance gaps between the cryptographic hash algorithm (MD5) and the
four fuzzy hash algorithms are evident. In the case of the stream fuzzy
hash algorithm, the gap is mainly due to the fact that a block hash
function was not used; instead, each bit was hashed individually. By
querying the Galois multiplication table, it would have been possible to
hash eight bits per call, but the invocation cost would still be more than
a block hash. In the case of MD5 (and SHA1), an input message was
broken up into 512-bit blocks, which ssdeep and the stream fuzzy hash
algorithm processed byte-by-byte.

The ssdeep algorithm has to recalculate an n-byte input O (log n)
times to find the proper block size and requires O (n) time for each com-
putation, making the total execution time O (n log n). For the stream
fuzzy hash algorithm with block size tuning, no recalculation is needed
after the block size is adjusted, so the total execution time is O (n).
However, the complexity of the Tillich-Zémor hash weakens this advan-
tage.

6.3 Hashing Speed for Unordered Inputs
The stream fuzzy hash algorithm is designed to hash files in transmis-

sion. Therefore, the unordered input of a multi-thread download was
simulated. The chunk size was 1,460 bytes in order to simulate a generic
TCP payload. Sequential inputs are preconditions for all the other algo-

Zheng et al. 217

Table 5. Hashing speeds for t5 multi-thread downloading.

4 Threads 8 Threads 16 Threads Random Order

Speed (MB/s) 67.8 67.8 67.6 61.3
Space (KB) 2.39 3.40 4.90 310.20

rithms evaluated in this research; therefore, they could not be compared
with the stream fuzzy hash algorithm in this set of experiments.

Table 5 shows the hashing speeds of the stream fuzzy hash algorithm
for different numbers of concurrent fragments. No significant slowdown
was observed even when the input order was completely random. The
memory consumption in the case of sixteen concurrent fragments was
4.90 KB, which is practical for deep packet inspection applications.

6.4 Comparison of Incomplete Files
As discussed earlier, files captured from network traffic may be incom-

plete for a number of reasons. It has also been shown that, if the product
of the integrity rate m and the tuning factor k is greater than one, then
the partial file has a same block size as the original file. Experiments
were conducted to validate this theoretical result on real data.

In the experiments, for each file in t5, only a portion of m (0 to 0.5)
from the first byte of the file was provided as input to the stream fuzzy
hash algorithm. If the block size of an incomplete file was the same as
that of the complete file, then, by design, the two files were deemed to
be comparable. The choice of the threshold score may be left to the
user.

Figure 8 shows the incomplete file comparison probabilities obtained
for various tuning factors k. Note that the results mostly fit with the
predictions made by Equation (9).

6.5 Stream Fuzzy Hash Algorithm Deployment
This section discusses a case study involving the deployment of the

stream fuzzy hash algorithm to provide an intuitive understanding of
the practicalities involved in handling real network traffic. In the case
study, the stream fuzzy hash algorithm was integrated as a plug-in in
a carrier-grade deep packet inspection system to identify malicious An-
droid app installation packages in network traffic. The stream fuzzy hash
algorithm proved to be very flexible because it does not require buffering

218 ADVANCES IN DIGITAL FORENSICS XIV

Figure 8. Incomplete file comparison probabilities for various tuning factors.

and segment rearrangement; as a result, it was readily integrated with
the deep packet inspection system.

The following steps were involved in detecting malicious Android app
installation packages:

Malicious Android app samples were downloaded from VirusShare
(virusshare.com). In all, 35,397 files with a total size of 52.82 GB
were downloaded and a stream fuzzy hash algorithm signature was
computed for each file.

To enhance comparison efficiency, the 35,397 signatures were in-
dexed as described in Section 5.2.

The deep packet inspection system was deployed at an Internet ser-
vice provider. It processed traffic at about 10 Gbps. The stream
fuzzy hash algorithm plug-in identified app package transmissions
based on their URLs. The plug-in provided the packets of the
HTTP session as input to the stream fuzzy hash algorithm. Thus,
a data structure containing the stream fuzzy hash algorithm sig-
natures and URLs was created.

Zheng et al. 219

��������	
����
������������������������

������ ���� ����� ��! "��
�#$%�&�'$()*��+, -�')��"*�. /-

��������	
����
������������������������

�%�� ���� �0	 %1 '�2��3

��#�4#%1 !�#%1� 5� 6 '7

� ��,8%8 0�#�� 5��79��9�� ������'� 	
) : 5 0�,8; 55 �1<!8 �$1 =

��8<�#� � 0!1%02�0>�!�2?�� 3#1 2�

�@��A 	�@� !�824 ����1�241�6�%�86�0	 %1 '�2��3

�@��A ���� ����� ��! "��
�#$%�&�'$()*��+, -�')��"*�. /-

(a) Suck ads.

����� ������	
��

�

�������������������������������������
�

�
�����
��

� !"�!	"�!��
��#$��%&%������������
�����

�%����'%�����

����� ()*����%��'+,*-��.���/�0.'�/1'23�"'���24511-�3#��

. 5�6718
9�'��7	:
�0�-
;�+(;��1�<�="5��:8/�1�>

8�4�!2+)��.�?��#(� @.�8A��	/-A�.#3?-)�#����

A@�/
)�9)	(�*:�(<�(�B53���?B�=C����%��%2D

(���	� ()*����%���-B(E"�('F'=+�B%E��),-F�,<!�F��,+!:��(+

,*-��.���/�0.'�/1'23�"'���24511-�3#��. 5�6718

9�'��7	:
�0�-
;�+(;��1�<�="5��:8/�1�>8�4�!2+)�

�.�?��#(� @.�8A��	C�������%�D

)"	� �����
��
�����
��

� !"�!	"�!��G��
��#

,���
�"�� ��"�� �� � %�

���	1�"� ����� ����H��H�� �������� �5@ I �� ����!�J � ���# ��� K

����	� ���� �
��� �"�0(
����<�	�
� I8K

(b) Football Highlights app.

Figure 9. Malicious app packages detected by the stream fuzzy hash algorithm.

The signature of the app in the previously-constructed index was
queried to measure the similarity. An alarm was raised when the
distance as computed by Equation (7) was less than a fixed thresh-
old.

In the case study, the deep packet inspection system processed 184,688
Android APK downloads and raised fourteen alarms associated with ten
apps. To verify the results, the suspected app packages were retrieved
using the recorded URLs and uploaded to VirusTotal for further exam-
ination.

Four app packages were downloaded successfully and two of them
were identified as malicious (true positives). Figure 9 shows the two
malicious app packages. The Football Highlights app was detected based
on similarity, a capability that is not provided by conventional detection
methods. Visual checks of the two false positive app binaries revealed

220 ADVANCES IN DIGITAL FORENSICS XIV

that their file contents were quite similar to malicious samples. They
shared 95% mutual content and presumably used the same development
components. Thus, the false positive results are due to the concepts
underlying approximate matching as opposed to a flaw in the proposed
stream fuzzy hash algorithm.

7. Related Work
Fuzzy hash algorithms have evolved over the years. Kornblum [14] de-

veloped the ssdeep open-source fuzzy hash algorithm, which has been
widely used to find similar files. Chen and Wang [6] and Breitinger and
Baier [2] have proposed approaches for improving the performance of
fuzzy hashing. However, these researchers and others have not consid-
ered the challenges involved in applying fuzzy hashing to network traffic.

The sdhash algorithm [18] has also been widely used for similar file
detection. It attempts to find the features in each neighborhood that
have the lowest empirical probability of being encountered by chance.
Each of the selected features is hashed and placed in a Bloom filter.
When a Bloom filter reaches its capacity, a new filter is created until
all the features are accommodated. Thus, an sdhash similarity digest
comprises a sequence of Bloom filters. The sdhash digest length is about
2 to 3% of the input length, which is different from the bounded digest
of the fuzzy hash algorithm (64 to 128 bytes). Because it retains more
details of the original file, sdhash is better at embedded object detection
than ssdeep [19]. However, retaining these details increases the storage
and comparson overhead. For example, sdhash generated digests total-
ing 101 GB for the 50 million files in the National Software Reference
Library [15]; in contrast, ssdeep generated only 1.2 GB of digests for
the same set of files.

MinHash [4] and SimHash [5] have been widely adopted in indus-
try to identify potential duplicated text files. They belong to the fam-
ily of locality-sensitive hash (LSH) algorithms. Shrivastava and Li [20]
claim that MinHash outperforms SimHash on binary data, but it is cu-
rious that locality-sensitive hash algorithms are rarely employed in dig-
ital forensic applications. Harichandran et al. [11] note that a locality-
sensitive hash algorithm attempts to map similar objects to the same
bucket whereas approximate matching yields similarity digests that can
be compared to a desired threshold. Several other open-source algo-
rithms and tools, such as Nilsimsa [25], TLSH [16], MRSH-v2 [3], have
also been developed to detect similar files.

Zheng et al. 221

8. Stream Fuzzy Hash Algorithm Limitations
Although the stream fuzzy hash algorithm has important security ap-

plications, it is by no means cryptographically secure. Additionally, the
stream fuzzy hash algorithm cannot handle files that have been com-
pressed or encrypted.

As a hash function, the stream fuzzy hash algorithm has two principal
limitations:

Collisions: Like the original fuzzy hash algorithm, the stream
fuzzy hash algorithm maps a file chunk to a six-bit value. There-
fore, the possibility always exists that two distinct chunks will map
to the same hash. Moreover, two files that have identical stream
fuzzy hash signatures could still be different files. Kornblum [14]
has shown that the probability of a failure to detect a change is
2−12 to 2−6. In the case of two completely-random files with signa-
tures of length S, the probability of an exact match is

(
2−6

)S . Of
course, the expected signature length can be increased to reduce
collisions, but this increases the time and space requirements.

Signature Comparison: Meaningful signature comparisons can
only be performed on files with the same block size. This is not
a problem for different files that match approximately, but it is a
useful feature because different block sizes means that two files are
quite different in terms of size as well as content. In the case of
partial file matching, as discussed in Section 5.1, the cut-off of 1/k
of a file is always compared, where k is the tuning factor. Below
this level, the block sizes are too different to make meaningful
comparisons. Embedded file detection is similar because a small
embedded object can be considered to be a portion of the larger
object.

9. Conclusions
The stream fuzzy hash algorithm is specifically designed to hash files

and file fragments captured from network traffic in real time. The algo-
rithm leverages the context-triggered piecewise hashing concept, employs
the Tillich-Zémor hash as a strong hash function and uses an interval
tree to index the computed segment contexts, rendering it very effective
at handling unordered and incomplete inputs. With block size tuning,
the stream fuzzy hash algorithm can hash a data stream using one-
way processing. Additionally, compared with the ssdeep algorithm, the
stream fuzzy hash algorithm reduces the computational complexity from
O (n log n) to O (n).

222 ADVANCES IN DIGITAL FORENSICS XIV

Experimental results demonstrate that the stream fuzzy hash algo-
rithm has a hashing speed of 68 MB/s per CPU core and consumes just
5 KB of memory per file. Moreover, compared with the other fuzzy hash
algorithms, the precision and recall of the stream fuzzy hash algorithm
are not compromised when processing unordered and incomplete inputs.

The integration of the stream fuzzy hash algorithm in a carrier-grade
deep packet inspection system to identify malware in network traffic
demonstrates the applications potential of the algorithm. A deep packet
inspection system incorporating the stream fuzzy hash algorithm can
identify valuable files (e.g., containing intellectual property) in egress
traffic and malicious software in ingress traffic. Another significant ben-
efit is the ability to perform partial file matching in the context of deep
packet inspection – this makes it possible to identify files before trans-
mission completes and to stop attacks before they can be realized.

Interested readers may access github.com/mesasec/sfh for the source
code related to this project.

Acknowledgements
The authors wish to thank Vassil Roussev for his assistance with the

evaluation conducted in this research. This research was supported in
part by the National Key R&D Program of China under Grant No.
2016YFB0801304.

References

[1] F. Breitinger and I. Baggili, File detection on network traffic using
approximate matching, Journal of Digital Forensics, Security and
Law, vol. 9(2), pp. 23–35, 2014.

[2] F. Breitinger and H. Baier, Performance issues about context-
triggered piecewise hashing, Proceedings of the International Con-
ference on Digital Forensics and Cyber Crime, pp. 141–155, 2011.

[3] F. Breitinger and H. Baier, Similarity preserving hashing: Eligible
properties and a new algorithm MRSH-v2, Proceedings of the In-
ternational Conference on Digital Forensics and Cyber Crime, pp.
167–182, 2012.

[4] A. Broder, On the resemblance and containment of documents, Pro-
ceedings of the Conference on Compression and Complexity of Se-
quences, pp. 21–29, 1997.

[5] M. Charikar, Similarity estimation techniques from rounding algo-
rithms, Proceedings of the Thirty-Fourth Annual ACM Symposium
on the Theory of Computing, pp. 380–388, 2002.

Zheng et al. 223

[6] L. Chen and G. Wang, An efficient piecewise hashing method for
computer forensics, Proceedings of the First International Workshop
on Knowledge Discovery and Data Mining, pp. 635–638, 2008.

[7] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to
Algorithms, MIT Press, Cambridge, Massachusetts, 2009.

[8] Y. Elovici, A. Shabtai, R. Moskovitch, G. Tahan and C. Glezer,
Applying machine learning techniques for detection of malicious
code in network traffic, Proceedings of the Annual Conference on
Artificial Intelligence, pp. 44–50, 2007.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach
and T. Berners-Lee, Hypertext Transfer Protocol – HTTP/1.1, RFC
2616, 1999.

[10] M. Grassl, I. Ilic, S. Magliveras and R. Steinwandt, Cryptanalysis of
the Tillich-Zémor hash function, Journal of Cryptology, vol. 24(1),
pp. 148–156, 2011.

[11] V. Harichandran, F. Breitinger and I. Baggili, Bytewise approxi-
mate matching: The good, the bad and the unknown, Journal of
Digital Forensics, Security and Law, vol. 11(2), pp. 59–77, 2016.

[12] K. Joju and P. Lilly, Pre-image of Tillich-Zémor hash function
with new generators, Applied Mathematical Sciences, vol. 7(85), pp.
4237–4248, 2013.

[13] K. Joju and P. Lilly, Improved form of Tillich-Zémor hash function,
International Journal of Theoretical Physics and Cryptography, vol.
6, pp. 24–29, 2014.

[14] J. Kornblum, Identifying almost identical files using context-
triggered piecewise hashing, Digital Investigation, vol. 3(S), pp.
S91–S97, 2006.

[15] National Institute of Standards and Technology, National
Software Reference Library (NSRL), Gaithersburg, Maryland
(www.nist.gov/software-quality-group/national-software-
reference-library-nsrl), 2018.

[16] J. Oliver, C. Cheng and Y. Chen, TLSH – A locality sensitive hash,
Proceedings of the Fourth Cybercrime and Trustworthy Computing
Workshop, pp. 7–13, 2013.

[17] C. Petit and J. Quisquater, Pre-images for the Tillich-Zémor hash
function, Proceedings of the International Workshop on Selected Ar-
eas in Cryptography, pp. 282–301, 2010.

[18] V. Roussev, Data fingerprinting with similarity digests, in Advances
in Digital Forensics VI, K. Chow and S. Shenoi (Eds.), Springer,
Heidelberg, Germany, pp. 207–226, 2010.

224 ADVANCES IN DIGITAL FORENSICS XIV

[19] V. Roussev, An evaluation of forensic similarity hashes, Digital In-
vestigation, vol. 8(S), pp. S34–S41, 2011.

[20] A. Shrivastava and P. Li, In defense of MinHash over SimHash, Pro-
ceedings of the Seventeenth International Conference on Artificial
Intelligence and Statistics, pp. 886–894, 2014.

[21] X. Shu and D. Yao, Data leak detection as a service, Proceedings of
the International Conference on Security and Privacy in Commu-
nications Systems, pp. 222–240, 2012.

[22] J. Tillich and G. Zémor, Hashing with SL2, Proceedings of the In-
ternational Cryptology Conference, pp. 40–49, 1994.

[23] A. Tridgell, spamsum (github.com/tridge/junkcode/tree/mas
ter/spamsum), 2002.

[24] S. Wandelt, J. Wang, S. Gerdjikov, S. Mishra, P. Mitankin, M. Patil,
E. Siragusa, A. Tiskin, W. Wang, J. Wang and U. Lesser, State-of-
the-art in string similarity search and join, ACM SIGMOD Record,
vol. 43(1), pp. 64–76, 2014.

[25] Wikipedia, Nilsimsa Hash (en.wikipedia.org/wiki/Nilsimsa_
Hash), 2018.

[26] C. Winter, M. Schneider and Y. Yannikos, F2S2: Fast forensic sim-
ilarity search through indexing piecewise hash signatures, Digital
Investigation, vol. 10(4), pp. 361–371, 2013.

