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Chapter 5

OBTAINING PRECISION-RECALL
TRADE-OFFS IN FUZZY SEARCHES
OF LARGE EMAIL CORPORA

Kyle Porter and Slobodan Petrovic

Abstract Fuzzy search is often used in digital forensic investigations to find words
that are stringologically similar to a chosen keyword. However, a com-
mon complaint is the high rate of false positives in big data environ-
ments. This chapter describes the design and implementation of cedas,
a novel constrained edit distance approximate string matching algo-
rithm that provides complete control over the types and numbers of
elementary edit operations considered in approximate matches. The
unique flexibility of cedas facilitates fine-tuned control of precision-
recall trade-offs. Specifically, searches can be constrained to the union
of matches resulting from any exact edit combination of insertion, dele-
tion and substitution operations performed on the search term. The
flexibility is leveraged in experiments involving fuzzy searches of an in-
verted index of the Enron corpus, a large English email dataset, which
reveal the specific edit operation constraints that should be applied to
achieve valuable precision-recall trade-offs. The constraints that pro-
duce relatively high combinations of precision and recall are identified,
along with the combinations of edit operations that cause precision to
drop sharply and the combination of edit operation constraints that
maximize recall without sacrificing precision substantially. These edit
operation constraints are potentially valuable during the middle stages
of a digital forensic investigation because precision has greater value in
the early stages of an investigation while recall becomes more valuable
in the later stages.

Keywords: Email forensics, approximate string matching, finite automata

1. Introduction
Keyword search has been a staple in digital forensics since its be-

ginnings, and a number of forensic tools incorporate fuzzy search (or
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approximate string matching) algorithms that match text against key-
words with typographical errors or keywords that are stringologically
similar. These algorithms may be used to search inverted indexes, where
every approximate match is linked to a list of documents that contain
the match.

Great discretion must be used when employing these forensic tools to
search large datasets because many strings that match (approximately)
may be similar in a stringological sense, but are completely unrelated
in terms of their semantics. Even exact keyword matching produces an
undesirable number of false positive documents to sift through, where
as much as 80% to 90% of the returned document hits could be irrel-
evant [2]. Nevertheless, the ability to detect slight textual aberrations
is highly desirable in digital forensic investigations. For example, in the
2008 Casey Anthony case, in which Ms. Anthony was convicted and
ultimately acquitted of murdering her daughter, investigators missed a
Google search for a misspelling of the word “suffocation,” which was
written as “suffication” [1].

Digital forensic tools such as dtSearch [8] and Intella [24] incorporate
methods for controlling the “fuzziness” of searches. While the tools use
proprietary techniques, it appears that they utilize the edit distance [16]
in their fuzzy searches. The edit distance – or Levenshtein distance – is
defined as the minimum number of elementary edit operations that can
transform a string X to a string Y , where the elementary edit operations
are defined as the insertion of a character, deletion of a character and
substitution of a character in string X. However, precise control of the
fuzziness of searches is often limited. In fact, it may not be clear what
modifying the fuzziness of a search actually does other than the results
“looking” more fuzzy. For example, some tools allow fuzziness to be
expressed using a value between 0 to 10, without clarifying exactly what
the values represent.

The research described in this chapter has two contributions. The first
is the design and implementation of a novel constrained edit distance ap-
proximate search cedas algorithm, which provides complete control over
the types and numbers of elementary edit operations considered in ap-
proximate matches. The flexibility of search, which is unique to cedas,
allows for fine-tuned control of precision-recall trade-offs. Specifically,
searches can be constrained to the union of matches resulting from any
exact edit operation combination of insertions, deletions and substitu-
tions performed on the search term.

The second contribution, which is a consequence of the first, is an ex-
perimental demonstration of which edit operation constraints should be
applied to achieve valuable precision-recall trade-offs in fuzzy searches of
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an inverted index of the Enron Corpus [4], a large English email dataset.
Precision-recall trade-offs with relatively high precision are valuable be-
cause fuzzy searches typically have high rates of false positives and in-
creasing recall is simply obtained by conducting fuzzy searches with
higher edit distance thresholds. The experiments that were performed
identified the constraints that produce relatively high combinations of
precision and recall, the combinations of edit operations that cause pre-
cision to drop sharply and the combination of edit operation constraints
that maximize recall without sacrificing precision substantially. These
edit operation constraints appear to be valuable during the middle stages
of an investigation because precision has greater value in the early stages
of an investigation whereas recall becomes more valuable later in an in-
vestigation [17].

2. Background
This section discusses the underlying theory and algorithms.

2.1 Approximate String Matching Automata
A common method for performing approximate string matching, as

implemented by the popular agrep suite [25], is to use a nondetermin-
istic finite automaton (NFA) for approximate matching. Since cedas
implements an extension of this automaton, it is useful to discuss some
key components of automata theory.

A finite automaton is a machine that takes a string of characters X
as input and determines whether or not the input contains a match
for some desired string Y . An automaton comprises a set of states Q
that can be connected to each other via arrows called transitions, where
each transition is associated with a character or a set of characters from
some alphabet Σ. The set of initial states I ⊆ Q comprise the states
that are active before reading the first character. States that are active
check the transitions originating from themselves when a new character
is being read; if a transition includes the character being read, then the
state pointed to by the arrow becomes active. The set of states F ⊆ Q
correspond to the terminal states; if any of these states become active,
then a match has occurred. The set of strings that result in a match are
considered to be accepted by the automaton; this set is the language L
recognized by the automaton.

Figure 1 shows the nondeterministic finite automaton for approxi-
mate matching AL, where the nondeterminism implies that any number
of states may be active simultaneously. The initial state of AL is the
node with a bold arrow pointing to it; it is always active as indicated
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Figure 1. NFA matching the pattern “that” (allowing two edit operations).

by the self-loop. The terminal states are the double-circled nodes. Hor-
izontal arrows denote exact character matches. Diagonal arrows denote
character substitutions and vertical arrows denote character insertions,
where both transitions consume a character in Σ. Since AL is a nondeter-
ministic finite automaton, it permits ε-transitions, where transitions are
made without consuming a character. Dashed diagonal arrows express
ε-transitions that correspond to character deletions. For approximate
search with an edit distance threshold of k, the automaton has k + 1
rows.

The automaton AL is very effective at pattern matching because it
checks for potential errors in a search pattern simultaneously. For every
character consumed by the automaton, each row checks for potential
matches, insertions, deletions and substitutions against every position
in the pattern.

For common English text, it is suggested that the edit distance thresh-
old for approximate string matching algorithms should be limited to one,
and in most cases should never exceed two [9]. This suggestion is well
founded because about 80% of the misspellings in English text are due
to a single edit operation [5].

Let Lk=1 and Lk=2 be the languages accepted by automaton AL with
thresholds k = 1 and k = 2, respectively. The nondeterministic finite
automaton AT described in this section allows for different degrees of
fuzziness that enable the exploration of the entire space between Lk=1

and Lk=2 in terms of the exact combinations of elementary edit op-
erations applied to the search keyword. This automaton accepts the
languages LT , where Lk=1 ⊆ LT ⊆ Lk=2.

The automaton AT is constructed in the following manner. The au-
tomaton that accepts Lk=2 can be viewed as the union of the languages
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accepted by each of its rows. For example, for an edit distance thresh-
old of k = 2, the first row accepts the language comprising matches
that have no edit operations performed on the keyword, the second row
accepts the language of matches with one edit operation performed on
the keyword and the third row accepts the language of matches with
two edit operations performed on the keyword. The union of these sub-
sets is a cover of Lk=2. An alternative cover of Lk=2 is the union of all
the languages accepted by the automata for a specific number of inser-
tions i, deletions e and substitutions s performed in a match such that
i + e + s ≤ k.

The following lemma proves the equivalence of the covers.

Lemma. Let Lk be the language accepted by an automaton such that
k elementary edit operations are performed on a specified pattern. Let
Lk=n be the language accepted by the nondeterministic finite automaton
for approximate matching with edit distance threshold n be equivalent
to its cover Cα = ∪k=n

k=0Lk. Furthermore, let L(i,e,s) be equivalent to
the language accepted by an automaton such that exactly i insertions,
e deletions and s substitutions have been performed on a specified pat-
tern. Let Cβ = ∪i,e,s:0≤i+e+s≤nL(i,e,s). Then, Cα = Cβ.

Proof. For all x ∈ Lk, there exists L(i,e,s) such that x ∈ L(i,e,s), where
i + e + s = k. Therefore, Cα ⊂ Cβ. For all x ∈ L(i,e,s) such that
i + e + s = k, x ∈ Lk. Thus Cβ ⊂ Cα.

By constraining the possible edit operations between the rows of the
automaton AT , each row of the automaton can correspond to a specific
combination of i insertions, e deletions and s substitutions such that
i + e + s ≤ k for edit distance threshold k instead of each row corre-
sponding to some number of edit operations. This construction enables
the accepted language LT to be controlled by allowing terminal states
f ∈ F to remain in F or removing them from F . Specifically, some
L(i,e,s) can be chosen to be not included in Cβ = ∪i,e,s:0≤i+e+s≤nL(i,e,s).

2.2 NFA Definition
The constrained edit distance between two strings X and Y is the

minimum number of edit operations required to transform X to Y given
that the transformation obeys some pre-specified constraints T [19]. In
general, constraints may be defined arbitrarily as long as they consider
the numbers and types of edit operations. Let (i, e, s) be an element of T ,
the set of edit operations that constrain a transformation from string X
to string Y , where (i, e, s) is an exact combination of edit operations. AT

may perform approximate searches where matches are constrained to the
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Figure 2. NFA matching the pattern “that.”

allowed edit operation combinations in T . For example, the search may
be constrained to approximate matches derived from the edit operation
combinations (0, 0, 0), (1, 0, 1) and (0, 2, 0). The corresponding accepted
language is L(0,0,0) ∪ L(1,0,1) ∪ L(0,2,0).

Figure 2 shows the constrained edit distance nondeterministic finite
automaton AT . It uses the same symbol conventions as the nondeter-
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Figure 3. Partially ordered multisets (i, e, s).

ministic finite automaton in Figure 1, except that substitutions and in-
sertions are expressed by diagonal and vertical transitions, respectively,
where the transitions may go up or down. In order to ensure that each
row R(i,e,s) of the automaton AT corresponds to the accepted language
L(i,e,s), it is necessary to engage the notion of a partially ordered set of
multisets, which describes the edit operation transpositions that connect
each row. The following definitions [12] are required:

Definition. Let X be a set of elements. Then, a multiset M drawn from
set X is expressed by a function count M or CM defined as CM : X → N ,
where N is the set of non-negative integers. For each x ∈ X, CM (x)
is the characteristic value of x in M , which indicates the number of
occurrences of elements x in M . A multiset M is a set if CM (x) = 0 or
1 for all x ∈ X.
Definition. Let M1 and M2 be multisets selected from a set X. Then,
M1 is a submultiset of M2 (M1 ⊆ M2) if CM1(x) ≤ CM2(x) for all x ∈ X.
M1 is a proper submultiset of M2 (M1 ⊂ M2) if CM1(x) ≤ CM2(x) for all
x ∈ X and there exists at least one x ∈ X such that CM1(x) < CM2(x).

The set of multisets considered here comprises the elements (i, e, s),
which implies that the multiset contains i insertions, e deletions and s
substitutions. The cardinality of the multisets is no greater than the
edit distance threshold k. The partial ordering of this set of multisets is
the binary relation ∼, where for multisets M1 and M2, M1 ∼ M2 means
that M1 is related to M2 via M1 ⊂ M2.

Figure 3 presents the partially ordered multiset diagram D. Diagram
D models the edit operation transitions between the rows of automaton
AT , where each multiset element (i, e, s) corresponds to row R(i,e,s) and
each row of D corresponds to a sum of edit operations. As seen in
D, every R(i,e,s) has a specific edit operation transition sent to it from a
specific row. In this way, each row R(i,e,s) can determine which (and how
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Table 1. Bit-masks for the word “that.”

Character (tj) Bit-Mask (B[tj])

a 01000
h 00100
t 10010
* 00000

many) elementary edit operations are being considered in a match due to
the partial ordering. For example, R(1,0,0) only has insertion transitions
going to it from R(0,0,0), and R(1,1,0) only has deletion transitions going
to it from R(1,0,0) (where one insertion has already taken place) and it
only has insertion transitions going to it from R(0,1,0) (where one deletion
has already taken place).

Finally, since the automaton is nondeterministic, it cannot be imple-
mented directly using a von Neumann architecture.

2.3 Bit-Parallel Implementation
Bit-parallelism allows for an efficient simulation of a nondeterministic

finite automaton. The method uses bit-vectors to represent each row
of the automaton, where the vectors are updated via basic logical bit-
wise operations that correspond to transition relations of the automaton.
Because bitwise operations update every bit in the bit-vector simultane-
ously, it updates the states in the row of the automaton simultaneously.
If the lengths of the bit-vectors are not greater than the number of bits w
in a computer word, then the parallelism reduces the maximum number
of operations performed by a search algorithm by w [10].

In the bit-parallel nondeterministic finite automaton simulation, each
row of the automaton for the search pattern X is expressed as a binary
vector of length |X| + 1; this also requires the input characters to be
expressed as vectors of the same size. Input characters tj are handled
by bit-masks. Thus, a table of bit-masks B[tj] is created, where each bit-
mask represents the positions of the character tj in pattern X. Table 1
shows the bit-masks when X = “that.” Characters that are not present
in the pattern are expressed using the “*” symbol.

Algorithm 1 presents the bit-parallel simulation of automaton AT .
The algorithm is an extension of the simulation of the nondetermin-
istic finite automaton for approximate string matching using the un-
constrained edit distance; this was first implemented by Wu and Man-
ber [26]. Therefore, the components of the AT simulation are similar, the
primary modifications being the transition relationships between rows
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Algorithm 1: NFA update algorithm.
Initialize all rows R′ to 0 except R′(0, 0, 0) ← 0x00000001,

R′(0, 1, 0) ← 0x00000002, R′(0, 2, 0) ← 0x00000004;
for each input character t do

R(0,0,0) ← R′
(0,0,0);

R′
(0,0,0) ← ((R′

(0,0,0) << 1) & B[t]) | 0x00000001;
R(1,0,0) ← R′

(1,0,0);
R′

(1,0,0) ← ((R′
(1,0,0) << 1) & B[t]]) | R(0,0,0);

R(0,1,0) ← R′
(0,1,0);

R′
(0,1,0) ← ((R′

(0,1,0) << 1) & B[t]]) | (R′
(0,0,0) << 1);

R(0,0,1) ← R′
(0,0,1);

R′
(0,0,1) ← ((R′

(0,0,1) << 1) & B[t]]) | (R(0,0,0) << 1);
R(0,1,1) ← R′

(0,1,1);
R′

(0,1,1) ← ((R′
(0,1,1) << 1) & B[t]) | (R(0,1,0) << 1) | (R′

(0,0,1) << 1);
R(1,0,1) ← R′

(1,0,1);
R′

(1,0,1) ← ((R′
(1,0,1) << 1) & B[t]) | (R(1,0,0) << 1) | R(0,0,1);

R(1,1,0) ← R′
(1,1,0);

R′
(1,1,0) ← ((R′

(1,1,0) << 1) & B[t]) | R(0,1,0) | (R′
(1,0,0) << 1);

R(2,0,0) ← R′
(2,0,0);

R′
(2,0,0) ← ((R′

(2,0,0) << 1) & B[t]) | R(1,0,0);
R(0,2,0) ← R′

(0,2,0);
R′

(0,2,0) ← ((R′
(0,2,0) << 1) & B[t]) | (R′

(0,1,0) << 1);
R(0,0,2) ← R′

(0,0,2);
R′

(0,0,2) ← ((R′
(0,0,2) << 1) & B[t]) | (R(0,0,1) << 1);

if (((R′
(0,0,0) & RB

(0,0,0)) | (R′
(0,0,1) & RB

(0,0,1)) | (R′
(0,1,0) & RB

(0,1,0)) |
(R′

(1,0,0) & RB
(1,0,0)) | (R′

(0,1,1) & RB
(0,1,1)) | (R′

(1,0,1) & RB
(1,0,1)) |

(R′
(1,1,0) & RB

(1,1,0)) | (R′
(2,0,0) & RB

(2,0,0)) | (R′
(0,2,0) & RB

(0,2,0)) |
(R′

(0,0,2) & RB
(0,0,2))) & (0x00000001 << n − 1)) then

Match is found;
end

end

and the number of rows. The rows of the automaton are denoted by bit-
vectors R(i,e,s) and their updated values are denoted by R′

(i,e,s). RB
(i,e,s)

represents the Boolean values for whether or not row R(i,e,s) reports a
match, which occurs when R(i,e,s) has a terminal state. For some i, e

and s, the value RB
(i,e,s) is true when (i, e, s) ∈ T .

Each row is updated by first checking if the input character is an exact
match for the row by computing ((R′

(i,e,s) << 1) & B[t]). This value
is then bitwise ORed with potential transition relationships. R(i,e,s)

checks for insertions, (R′
(i,e,s) << 1) checks for deletions and (R(i,e,s) <<

1) checks for substitutions from a row R(i,e,s). As mentioned above,
incoming transitions for a row R(i,e,s) may be determined by checking
against the incoming relations to the multiset (i, e, s) in diagram D in
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Figure 3. After updating all the rows, matches are checked by bitwise
ANDing each of the allowed rows and determining if any bit representing
the terminal states is set to one.

2.4 Evaluation
The additional flexibility in specifying fuzziness comes at the cost of

time and space. The time and space complexities of cedas can be speci-
fied in terms of the number of multisets in diagram D for an edit distance
threshold k. This number is equal to the number of rows in Algorithm 1,
which is f(k) = 1

6(k + 1)(k + 2)(k + 3). Therefore, for keyword searches
shorter than 64 characters on an x64 architecture, the worst-case space
complexity is cubic in k and the worst-case time complexity is O(k3n),
where n is the length of the text searched. Obviously, this implies that
the algorithm should not be applied to time sensitive tasks with mas-
sive throughput such as intrusion detection, or applied to a live search
of massive forensic data with high edit distance thresholds k. However,
this is sufficient for specifying the fuzziness of approximate searches over
an index of emails, because the values of k should be low and the index
acts as a data reduction mechanism. The experimentation described in
the next section demonstrates that the algorithm runs approximately
six times slower than agrep with an edit distance threshold of k = 2.

3. Experimental Methodology
The flexibility of cedas was evaluated by specifying fuzziness in the

context of an investigation of the Enron email dataset [4] and assessing
the effectiveness of the constraints. The email messages were converted
to the mbox format to simplify processing. Only the contents of the
email bodies were examined.

In order to search the data, an inverted index of the emails was cre-
ated using the mkid program [11], which yielded a database of index
tokens. After deduplicating the tokens in the index, all the tokens were
output to a single text file that was searched using cedas. Note that
the choice of indexing algorithm affects the list of tokens because differ-
ent algorithms may interpret delimiters differently and, therefore, would
affect any search. The list of tokens used in the experiments totaled
460,800 unique words.

Twenty-eight different keywords related to the 2001 Enron scandal
were used. This list of keywords was not compiled by a digital forensic
investigator, so the choice of keywords could be improved. Keywords
were chosen that were relevant to the case, but would not obviously
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Table 2. Keyword list.

Word Length Keywords

6 Cuiaba
7 BlueDog, BobWest, corrupt, illegal, launder, Sarzyna, scandal
8 bankrupt, Backbone, Fishtail, Margaux1, Shutdown, subpoena,

Velocity, unlawful
9 collusion, Whitewing, Yosemite
10 Catalytica, conspiracy, KennethLay, litigation, reputation,

suspicious
>10 ArthurAndersen, illegitimate, talkingpoints

produce an overwhelming number of false positives. Furthermore, no
keyword that contained less than six characters was chosen.

Unconstrained fuzzy searching with an edit distance threshold of k =
2 for small keywords produces massive lists of words (often exceeding
10,000 words) that have to be analyzed manually. This can be viewed
as a limitation of the proposed approach. Table 2 shows the list of
search keywords. Many of the words were taken from Rodger Lepinsky’s
webpage on data science and the Enron corpus [15].

A case-insensitive fuzzy search for each keyword was conducted on
the list of index tokens, and each search was done under 64 different
constraints. A match occurred if a keyword was found as a substring of
an index token with the allowed tolerance of edit operations as specified
by the constraints in terms of (i, e, s) ∈ T . All the approximate matches
found in the index were returned in a list. The elements (i, e, s) that
were possibly not included in T were those in which the sum i+e+s was
equal to the edit distance threshold k = 2. Specifically, the automaton
accepted L(0,0,0), L(1,0,0), L(0,1,0), L(0,0,1), but the inclusion of all possible
combinations of languages L(i,e,s) such that i + e + s = 2 was allowed.

The effectiveness of a search for each constraint on each keyword was
measured in terms of the precision and recall derived from the list of
returned approximate matches. To understand the overall effectiveness
of each constraint, the average precision and recall results for all the
keywords under each constraint were computed as harmonic means. The
harmonic mean was chosen because the arithmetic mean produced overly
optimistic results for fuzzy searches under the chosen constraints.

3.1 Interpreting Match Results
Precision and recall have been used by researchers to gauge the ef-

fectiveness of approximate string matching algorithms [3, 20]. Precision



78 ADVANCES IN DIGITAL FORENSICS XIV

is the proportion of retrieved items that are relevant whereas recall is
the proportion of total relevant items retrieved [13]. As recall increases,
precision tends to decrease. Precision and recall are expressed as:

Precision =
|(retrieved items) ∩ (relevant items)|

|(retrieved items)| (1)

Recall =
|(retrieved items) ∩ (relevant items)|

|(relevant items)| (2)

The precision and recall metrics are useful, but they are not perfect
because the notion of relevance is subjective. Relevant terms are defined
as being variations of the original term (e.g., obtaining “litigating” when
searching for “litigation”), closely related to the original term in a se-
mantic sense (e.g., obtaining “legalese” when searching for “illegal”), or
misspellings of the original term. However, if a keyword is a substring
of the examined index token and is clearly unrelated, then it is not con-
sidered relevant. For example, if the search term is “audit” and a hit is
obtained for “AudiTalk,” then the hit is not relevant. For this reason,
the classification of relevant versus non-relevant hits for approximate
hits is always a manual process.

Another shortcoming of the metrics is that it is not possible to com-
pute the true precision and recall for every keyword; this is because
the number of relevant words for each keyword in the Enron dataset is
unknown. Therefore, a compromise was employed: the number of to-
tal relevant items was set to be equal to the items identified for each
keyword for unconstrained approximate matching at the edit distance
threshold k = 2. This implies that unconstrained approximate matching
with k = 2 yields 100% recall, which is not necessarily true.

Finally, it is important to note that approximate string matching re-
sults are highly dependent on the specific data being matched and the
keywords being used [6]. Therefore, utilizing cedas on an inverted index
that was not derived from an English email corpus may produce different
results.

4. Experimental Results
This section describes the experimental results.

4.1 Precision and Recall
The results in this section reflect the effectiveness of each set of con-

straints T in terms of precision and recall, and identify the constraints
that produce valuable results for investigating an English email corpus.
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Figure 4. Precision-recall trade-off curve for various constraints.

Figure 4 shows the precision-recall trade-off curve for various constraints.
Data points labeled k = 1 and k = 2 represent the results for uncon-
strained fuzzy searches with edit distance thresholds set to one and two,
respectively.

As expected, the application of constraints to fuzzy searches of the En-
ron inverted index resulted in higher recall than an unconstrained fuzzy
search with an edit distance threshold of k = 1, and better precision
than an unconstrained fuzzy search with an edit distance threshold of
k = 2. However, the primary interest is in the precision-recall trade-offs
that are useful in an investigation. As mentioned in the introduction, a
common complaint is the number of false positives produced by a fuzzy
search, and the fact that precision is valued more than recall early in
an investigation [17]. This implies that the constraints that produce re-
sults with relatively high precision are most useful in an investigation,
because increased recall is easily obtained by increasing the edit distance
threshold.

What is immediately apparent from the data is that there are sev-
eral distinct clusters of data points, where each cluster is associated
with different edit operation combinations. The cluster with the high-
est precision comprises all the data points near data point k = 1, where
(0, 1, 1), (0, 0, 2), (0, 2, 0) /∈ T . This means that matches under these con-
straints did not include edit operations with exactly two substitutions,
a substitution and deletion, or two deletions performed on the keyword.
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Table 3. Average execution times for agrep and cedas.

agrep cedas

0.0477142857 s 0.2795714286 s

It follows that, in order to preserve the precision of a fuzzy search to be
near the unconstrained case of an edit distance threshold of k = 1, it is
necessary to constrain the fuzzy search to edit operations that do not
include the previously mentioned edit operation combinations. Further-
more, the data points in the cluster mostly show a marked improvement
in recall. Because of the relatively high precision and recall, it can be
posited that the constraints in this cluster are useful in the middle stages
of an investigation.

Data points in this cluster that include a single insertion and deletion
(ie) have very good precision-recall tradeoffs. To ensure that the results
of a fuzzy search with these constraints are simply not due to the trans-
position edit operations for which adjacent characters may be swapped,
the same tests were conducted using the nrgrep [18] algorithm to per-
form an unconstrained fuzzy search allowing transpositions with an edit
distance threshold of k = 1. These results are represented by data point
t and it can be seen that ie and t do not yield the same results.

4.2 Execution Time
The speed of cedas was evaluated by timing the unconstrained fuzzy

search with an edit distance threshold of k = 2 for every keyword in the
Enron inverted index. The average of these results was computed and
compared with the average of the results obtained using agrep.

The results in Table 3 demonstrate that cedas executed nearly six
times slower than agrep for an edit distance threshold k = 2. However,
it should be noted that the cedas implementation was not optimized;
therefore, it has the potential to run faster than measured.

4.3 Analysis and Suggestions
The gap in precision between the higher and lower data clusters is

potentially shaped by the statistics of the English language. Additional
experimentation is necessary to confirm this observation, but it is clearly
easy to transform words to other words using many substitutions or dele-
tions. By limiting the application of deletion and substitution edit op-
erations, the structure of the original word is preserved. For this reason,
if somewhat high precision is needed, it is appropriate to use a fuzzy
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search that does not include edit operations involving two deletions, two
substitutions, or a single deletion and a single substitution.

To maximize the recall in the fuzzy search results without sacrificing
precision as seen when applying many of the edit operation combina-
tions, it is suggested that the set of constraints T should contain (0,0,0),
(1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (2,0,0); for the sake of brevity,
the language accepted by this automaton is denoted by L−(ee,ss,es). The
precision and recall of this language correspond to the data point ie, is.
If more precision is needed with nearly as much recall, then the set
of constraints T should contain (0,0,0), (0,0,0), (1,0,0), (0,1,0), (0,0,1),
(1,1,0), (2,0,0) (whose precision and recall correspond to data point ie).
Ultimately, cedas users should choose constraints based on the precision-
recall trade-offs they are willing to tolerate.

5. Related Work
Fuzzy search algorithms are implemented in digital forensic tools such

as dtSearch [8] and Intella [24]. However, the variables for setting the
tolerated fuzziness in these tools do not always correlate directly with
the edit distance thresholds. Whether or not these tools employ con-
strained edit distance algorithms is unknown because their techniques
are proprietary. Nevertheless, they appear to be combining the edit dis-
tance measure with other types of distance measures, natural language
processing and/or information retrieval techniques.

The agrep [25] and nrgrep [18] open-source tools may be used for
fuzzy searches in digital forensic investigations. The tools incorporate
various approximate matching algorithms, including edit-distance-based
approximate matching, prefix matching, regular expression matching
and other options. They can be considered to represent the cutting
edge of bit-parallel nondeterministic finite automaton implementations
for approximate matching in terms of speed and utility. However, the
primary advantage of cedas compared with the edit distance matching
algorithms used by the tools is its flexibility in constraining edit op-
erations. The agrep tool does not implement constraints; as a result,
specifying fuzziness in terms of edit distance operations is limited to
setting the edit distance threshold. The nrgrep tool is more flexible in
that it allows a user to set an edit distance threshold, use transpositions
and define a subset of the edit operations used in a search. The last fea-
ture essentially constrains edit operations, thereby producing a subset
of possible edit operation constraints as in the case of cedas. However,
this type of matching cannot return results equivalent to L−(ee,ss,es).
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Other researchers have also proposed constrained edit distance search
algorithms. For example, Chitrakar and Petrovic [21, 22] have speci-
fied constrained edit distance search algorithms that employ row-based
bit-parallelism. One algorithm specifies edit operation constraints in
terms of the maximum number of allowed indels [21] (sum of insertions
and deletions). A second algorithm expresses edit operation constraints
in terms of the maximum allowed number of insertions, deletions and
substitutions permitted in a match [22]. These algorithms also engage
subsets of possible constraints permitted by cedas, but they cannot
specify constraints that yield the language L−(ee,ss,es). Experiments by
Chitrakar and Petrovic reveal that their algorithms are nearly as fast as
agrep.

6. Conclusions
This chapter has presented cedas, a novel constrained edit distance

fuzzy search algorithm that performs approximate searches where the
possible transformations on the search terms are constrained to any set
of edit operation combinations with exactly i insertions, e deletions and
s substitutions. The algorithm is a bit-parallel simulation of a nonde-
terministic finite automaton, in which the rows of the automaton are
defined not by the number of elementary edit operations considered, but
by the numbers and types of edit operations. This flexibility in defining
edit operation constraints for approximate search is unique to cedas.

Experiments employed the cedas algorithm to perform constrained
edit distance fuzzy searches for a list of keywords in an inverted index
of the Enron email corpus. The average precision and recall results of
searches applying various edit operation combination constraints iden-
tified the constraints that were the most valuable for fuzzy searches of
an English email dataset. Because a common complaint against fuzzy
search is its large number of false positives, edit operation constraints
that yield high precision would be valuable in digital forensic investiga-
tions.

The experiments revealed that, in order to avoid the precision drop
commonly seen in unconstrained fuzzy search at an edit distance thresh-
old of k = 2, it is necessary to constrain fuzzy search to not include any
matches involving two deletions, two substitutions, or a substitution
and deletion. Fuzzy searches with an edit distance threshold of two and
whose constraints did not include the previously mentioned edit oper-
ation combinations produced relatively high combinations of precision
and recall, where the precision is somewhat reduced with an uncon-
strained edit distance threshold of k = 1 while also improving recall. To
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maximize the recall of a fuzzy search without significant precision reduc-
tion, the combination of edit operations (i, e, s) should be constrained to
(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1) and (2,0,0). These find-
ings should be useful in the middle stages of an investigation because
precision has greater value in the early stages and recall becomes more
valuable later in an investigation [17].

The flexibility of cedas comes at a cost. The worst-case space com-
plexity of the algorithm is cubic in k and the worst-case time complexity
is O(k3n) for searching keywords of length less than 64 characters on an
x64 architecture, where k is the edit distance threshold and n is the
length of the searched text. During the experiments, it was discovered
that the average time taken to perform an unconstrained approximate
search with edit distance threshold k = 2 on the inverted index of the
Enron dataset and return the list of approximate matches increased from
about 0.0477 seconds with agrep to about 0.2796 seconds with cedas.
It is important to note that the cedas implementation has not been
optimized. In fact, the space and time requirements can be reduced by
dynamically generating the rows of the automaton that are necessary
instead of simply removing terminal states from specific rows.

The implementation of cedas in a hardware architecture targeted for
nondeterministic finite automata (e.g., Automata Processor [7]) could
potentially run in linear time. Tracy et al. [23] have shown that the
nondeterministic finite automaton for approximate matching (Figure 1)
runs in worst-case linear time on the Automata Processor, where the
hardware could maximally handle a nondeterministic finite automaton
with a search pattern length of 2,730 characters with an edit distance
threshold k = 4. The fastest bit-parallel nondeterministic finite au-
tomaton simulations of the same type of automaton require that search
patterns do not exceed about 30 characters to preserve optimal results
with a worst-case time complexity of O(�(m−k)(k+1)/w�n) [14], where
m is the length of the search pattern, k is the edit distance threshold
and n is the length of the input. Finally, other improvements, such as
those employed by other search tools, can also be made to cedas; these
include prefix matching and character-specific fuzziness.
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