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Multi-Robot Symmetric Formations for Gradient
and Hessian Estimation with Application to Source

Seeking
Lara Briñón-Arranz, Alessandro Renzaglia, and Luca Schenato

Abstract—This paper deals with the problem of estimating in
a collaborative way the gradient and the Hessian matrix of an
unknown signal via noisy measurements collected by a group of
robots. We propose symmetric formations with a reduced number
of robots for both the two-dimensional (2-D) and the three-
dimensional (3-D) cases, such that the gradient and Hessian of
the signal are estimated at the center of the formation via simple
computation on local quantities independently of the orientation
of the formation. If only gradient information is required, the
proposed formations are suitable for mobile robots that need
to move in circular motion. We also provide explicit bounds
for the approximation error and for the noise perturbation that
can be used to optimally scale the formation radius. Numerical
simulations illustrate the performance of the proposed strategy
for source seeking against alternative solutions available in the
literature and show how Hessian estimation can provide faster
convergence even in presence of noisy measurements.

Index Terms—Networked Robots, Sensor Networks, Cooper-
ating Robots, Cooperative Estimation, Source seeking.

I. INTRODUCTION

SOURCE localization is a fundamental problem in nature
which is relevant to many complex applications, such as

environmental monitoring [1], search and rescue operations
[2], odor source detection [3] and pollution sensing [4]. The
problem of localizing the source of a signal has been ap-
proached in two distinct manners: deploying a fixed network of
sensors that collect measurements to cooperatively estimate the
source location or employing a mobile robot or a robot team
equipped with appropriate sensors which is steered toward the
source using collected signal measurements while moving (see
[5] and the references therein).

The majority of the source seeking strategies proposed in
the current literature exploit the measurements collected by a
group of mobile robots to estimate properties of the signal such
that the model parameters of the scalar field of interest or its
gradient. This estimated information can then be used to steer
the robots toward the source location, for instance via gradient-
based methods. There are several approaches to estimate the
gradient of a signal, as extremum seeking techniques [6],
least-squares methods [7], [8], consensus-based parametric
algorithms [9] and cooperative Kalman filters [10]. However,
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all these strategies do not explicitly quantify the quality of
the estimation algorithm nor the impact of measurement noise
and at best the performance is analyzed only in simulation.
Such error analysis is of paramount importance in practical ap-
plications to properly design formation shapes or exploration
strategies [11]. Such analysis is often avoided in the literature
since no specific formation patterns of the robots are enforced,
thus resulting in algorithms which are highly nonlinear in
the relative distance measures with high communication and
computational complexity. Finally, only few works addressed
the problem of multi-robot source seeking in 3-D scenarios
[12], [13] or proposed strategies to estimate the Hessian of
the unknown signal from noisy measurements [7], [14], [15].

Based on the ideas presented in [16], where a strategy to
estimate only the gradient of 2-D signals is proposed, this
paper aims to overcome the main drawbacks of related works
presenting an alternative strategy to cooperatively estimate the
gradient and the Hessian matrix of an unknown signal for both
2-D and 3-D scenarios. The major contribution is to show
that under some specific symmetric formation patterns, the
estimates can be obtained via simple averages that involve
only the products of the measurements collected by the robots
and their relative position with respect to the formation center.
Differently, the aforementioned works typically require the
solution of a least-squares problem of the size of the formation
size, which then scales quadratically from both a compu-
tational and a memory/communication perspective. Besides
reduced communication and computational complexity which
is appropriate for implementation in small robotic platforms,
this approach also provides explicit a priori computation of
the approximation error and of the measurements noise error
which are shown to be monotonically decreasing and increas-
ing functions of the formation radius, respectively. As so, if the
radius is not properly chosen, either the approximation error
or the measurement noise can induce poor estimation quality.

To validate the quality of the proposed strategy, we nu-
merically compare it with an alternative least-squares-based
solution [8] and we show how Hessian information can be used
to drive the center of the multi-robot formation to the location
of the source much faster than gradient-based algorithms only
if the formation radius is properly chosen, thus stressing
the value of theoretical analysis of this work. Additionally,
the robustness of the estimations with respect to perturbed
robots’ positions in the formation is studied through numerical
simulations.

The rest of the paper is organized as follows. First, Section II
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states the problem formulation and the paper contributions.
Section III exposes the results dealing with the gradient and
the Hessian estimation for the 2-D case. Section IV presents
the contribution for the 3-D scenario. Section V characterizes
the effect of measurement noise in 3-D scenario and discusses
how to optimally determine the formation radius. The perfor-
mance of the proposed estimation method is analyzed through
numerical simulations in Section VI. Finally, we present our
conclusions and future directions.

II. PROBLEM FORMULATION

The main purpose of the source seeking is to steer a group
of robots to the source location of a signal distribution. In this
setup, each robot represents a mobile sensor or an autonomous
vehicle equipped with a sensor that is able to measure the
signal strength emitted by the source. In mathematical terms,
the signal distribution σ(r) is a spatial function representing
the scalar field at location r achieving its maximum in the
position r∗ where the source is located and smoothly decreas-
ing to zero far from the source. Formally speaking, we will
consider the following assumption on this signal, where we
denote its gradient and Hessian at a location r as ∇σ(r) and
Hσ(r) respectively:

Assumption 1 The function σ : Rp → R+, where p = 2 (2-
D) or p = 3 (3-D), is three times continuously differentiable,
i.e. σ ∈ C3, and all its partial derivatives up to order three are
globally bounded. Moreover, ∇σ(r∗) = 0, ∇σ(r) 6= 0, ∀r 6=
r∗, and Hσ(r∗) < −aIp, where a > 0 and Ip ∈ Rp×p denotes
the identity matrix.

This assumption implies that there exist scalars L and M such
that

|σ(r)− σ(c)−∇σ(c)T (r− c)︸ ︷︷ ︸
=:ϕ∇(r,c)

| ≤ L‖r− c‖2

|ϕ∇(r, c)− 1

2
(r− c)THσ(c)(r− c)︸ ︷︷ ︸
=:ϕH(r,c)

| ≤M‖r− c‖3

where ϕ∇(r, c) and ϕH(r, c) correspond to the first and second
order remainders of the Taylor expansion about the point c,
respectively.

The knowledge of the gradient and the Hessian can then
be used to drive the group of robots towards the source via
gradient-ascent (GA) or Newton-Raphson-like ascent (NRA)
algorithms, for example by steering the center of robots’
formation as follows

ck+1 =ck + ε∇σ(ck), GA

ck+1 =ck − ε([Hσ(ck)]α)
−1∇σ(ck), NRA

where ε>0 is the step size and the operator [·]α is defined as

[A]α = A, if A ≤ −αIp, [A]α = −Ip otherwise,

where 0<α<a. The previous saturation operator is necessary
when the formation center c is far from the source and the
Hessian is likely to be positive semidefinite and therefore
drives the robots away from the source. Moreover, when
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Fig. 1: Minimal uniformly spaced circular formations for 2-D
estimation: (a) formation with N = 3 robots to estimate the
gradient and (b) formation with N = 5 robots and a green
additional robot at the center to estimate the Hessian matrix.

c ≈ r∗, by assumption we have that A<−aIp and therefore
the saturation operator is not active and we recover the
standard Newton-Rapshon ascent. A similar approach has been
followed in [7]. The core of this manuscript is to provide a
procedure to estimate the gradient and the Hessian, referred as
∇̂σ(c) and Ĥσ(c), based on local measurements by multiple
robots in specific symmetric configurations for both 2-D and
3-D settings. Moreover, explicit bounds on the estimation error
are provided based on the parameters L and M defined above.

Remark 1 Although we propose a simple kinematic model for
source seeking, it can be extended to non-holonomic dynamic
models as in [14] and [16], but it is not included here for
space limitations. The scope of this work is rather to focus on
the gradient and Hessian estimation process in the presence of
noisy measurements and to evaluate the benefit of estimating
the Hessian to speed up the source seeking process. This
direction has only been marginally explored in [7] for 2-
D scenarios. In 3-D scenarios, Hessian estimation has been
proposed in [14] but only to create suitable damping in the
gradient-descent process to guarantee stability rather than to
speed up source seeking.

III. 2-D ESTIMATION

A. Robots’ formation

Consider a team of N robots distributed uniformly along a
circular formation, as shown in panel (a) of Fig. 1, described
by a radius D and a central point c ∈ R2, such that

ri = c +DRφie i = 1, . . . , N (1)

where ri ∈ R2 denotes the position of robot i, φi = 2πi/N is
the rotation angle, Rφ =

[ cφ −sφ
sφ cφ

]
denotes the rotation matrix

where cφ and sφ represent the cosine and sine of angle φ
respectively, and e = [1, 0]T . For the sake of simplicity, the
robots’ dynamics are not considered in this paper. In a previous
work of one of the authors, the stabilization problem of a
group of vehicles with unicycle-like dynamics to the uniformly
distributed circular formation defined by (1) is studied under
a cooperative control approach, see [17].
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B. Gradient estimation

In the sake of clarity, we briefly recall in this section the
results dealing with the gradient estimation of a 2-D signal
analyzed in [16].

Theorem 1 Assume that σ(r) : R2 → R satisfies Assump-
tion 1 and the robots’ formation is given by (1). Considering
a team of N ≥ 3 robots uniformly distributed along the circle
centered at c and defining

∇̂σ(c) := 2

ND2

N∑
i=1

σ(ri)(ri − c) (2)

then it holds
‖∇̂σ(c)−∇σ(c)‖ ≤ LD. (3)

The proof is based on the Taylor series expansion and uses the
trigonometric properties of the uniformly distributed circular
formation, see [16] for details. This theorem basically states
that the estimation error decreases linearly with the forma-
tion radius D, and therefore can be made arbitrarily small.
The following result presents the minimal number of robots
required to exactly compute the gradient of a quadratic signal
at the center of the circular formation which is relevant since
it represents a good approximation of the true signal near the
maximum.

Corollary 1 Let σ(r) : R2 → R be a quadratic function, i.e.
σ(r) = rTSr + pT r + q, where S is negative definite, and
consider the robots’ formation given by (1), then for a team
of N ≥ 4 robots we have ∇̂σ(c) = ∇σ(c).

Remark 2 Note that the previous results, as well as the results
presented in the sequel, hold for any configuration defined by
(1) with φi = φ0 + 2πi/N where φ0 is an arbitrary rotation
angle. As so, the proposed formation is suitable for robots
that have to move in circular motion, i.e. φ0(t) = ω0t, as
fixed-wing unmanned aerial vehicles.

C. Hessian matrix estimation

This section presents mathematical results dealing with the
estimation of the Hessian matrix of a two-dimensional signal.
For estimating the Hessian, an additional robot is placed at
the formation center as shown in panel (b) of Fig. 1.

Theorem 2 Assume that σ(r) : R2 → R satisfies Assump-
tion 1. Let N robots be deployed as in (1) and 1 additional
robot placed at the center c. If N ≥ 5 then the quantity:

Kσ(c) :=
16

ND4

N∑
i=1

(σ(ri)− σ(c))(ri − c)(ri − c)T (4)

satisfies

‖Kσ(c) − (3Hσ(c) + Rπ
2

Hσ(c)RTπ
2
)‖F ≤ 16MD (5)

where ‖ · ‖F indicates the Frobenius norm.

Proof 1 Let us preliminary define the notation ∇σ(c) =
[∇σx(c) ∇σy(c)]T and Hσ(c) =

[
H11 ?
H12 H22

]
∈ R2×2 where

? stands for the symmetric terms of the matrix. Using the
first-order Taylor expansion of each measurement σ(ri) about
the point c and recalling that ‖̃ri‖ = D where r̃i := ri − c,
then the following equation holds for all i = 1, . . . , N :

σ(ri)− σ(c) =∇σ(c)T r̃i +
1

2
r̃Ti Hσ(c)r̃i + ϕH(ri, c)

where ϕH(ri, c) denotes the remainder of the Taylor expan-
sion. Pre-multiplying the previous equation by 16 r̃i/(ND4)
and post-multiplying it by r̃Ti , and summing over i = 1, . . . , N ,
we obtain

16

ND4

N∑
i=1

(σ(ri)− σ(c)) r̃ir̃
T
i =

16

ND4

N∑
i=1

r̃i∇σ(c)T r̃ir̃
T
i

+
8

ND4

N∑
i=1

r̃ir̃
T
i Hσ(c)r̃ir̃

T
i +

16

ND4

N∑
i=1

r̃iϕH(ri, c)̃r
T
i .

We start by analyzing the first summatory of the right-side
equation:

N∑
i=1

r̃i∇σ(c)T r̃ir̃
T
i = D3

N∑
i=1

Rφie∇σ(c)TRφieeTRTφi

=D3
N∑
i=1

(
∇σx(c)

[
c3φi

c2φi
sφi

c2φi
sφi cφis

2
φi

]
+∇σy(c)

[
c2φi

sφi cφis
2
φi

cφis
2
φi

s3φi

])
=0

where we used trigonometric properties that allow to write the
powers cmφ , c

m
φ as linear combinations of sφ, cφ, . . . , smφ, cmφ

and the fact
∑N
i=1 cos(m2πi/N) =

∑N
i=1 sin(m2πi/N) = 0

for N > m (see Appendix for details). Since the first element
includes terms with m = 3 we need N ≥ 4 to satisfy the
previous property. Let us now consider the second term of the
right-side equation containing the Hessian matrix:

8

ND4

N∑
i=1

r̃ir̃
T
i Hσ(c)r̃ir̃

T
i =

8

N

N∑
i=1

RφieeTRTφiHσ(c)RφieeTRTφi =
8

N

N∑
i=1

[
b11 b12
b12 b22

]
where

b11 =H11c
4
φi + 2H12c

3
φisφi +H22c

2
φis

2
φi ,

b12 =H11c
3
φisφi + 2H12c

2
φis

2
φi +H22cφis

3
φi ,

b22 =H11c
2
φis

2
φi + 2H12cφis

3
φi +H22s

4
φi .

Applying trigonometric properties, and observing that it in-
cludes fourth-power trigonometric terms, similarly as before
we need to have N ≥ 5 for the following equation to hold:

8

N

N∑
i=1

[
b11 b12
b12 b22

]
=8

[
3
8H11 +

1
8H22

1
4H12

1
4H12

1
8H11 +

3
8H22

]
=3Hσ(c) + Rπ

2
Hσ(c)RTπ

2
.

We define the approximation error as follows

ΨH(D, c) =
16

ND4

N∑
i=1

(ri − c)ϕH(ri, c)(ri − c)T
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and by Assumption 1 this error can be bounded as

‖ΨH(D, c)‖F ≤
16

ND4

N∑
i=1

|ϕH(ri, c)|‖ri − c‖2 ≤ 16MD.

Note that once Kσ(c) is computed, an approximation for the
Hessian is obtained by the unique solution of the linear system

3Ĥσ(c) + Rπ
2

Ĥσ(c)RTπ
2
= Kσ(c)

which can be easily computed.
The case of quadratic signals is also analyzed and the

minimal number of robots required to exactly compute the
Hessian matrix at the center of the circular formation is
presented in the sequel:

Corollary 2 Let σ(r) : R2 → R be a quadratic function, i.e.
σ(r) = rTSr + pT r + q, where S is negative definite, and let
N robots be deployed as in (1) and 1 additional robot placed
at the center c. Then for N ≥ 5, the matrix Kσ(c) defined
in (4) satisfies Kσ(c) = 3Hσ(c) + Rπ

2
Hσ(c)RTπ

2
and therefore

Ĥσ(c) = Hσ(c).

The previous result follows directly from Theorem 2, since
in the case of quadratic functions the Taylor’s remainders are
zero, i.e. ϕH(ri, c) = 0,∀i = 1, . . . , N .

Remark 3 The proposed strategy resembles a sampled ver-
sion of the Poisson integral for harmonic functions if σ(c)
is replaced with 1

N

∑N
i=1 σ(ri) in (4) as proposed in [14].

However, such procedure is suitable only for harmonic signals
σ(·) which are solutions of diffusion equations at steady state,
while our proposed strategy can be applied to any signal which
is twice differentiable. For example a quadratic function, which
is a relevant approximation of the signal near its maximum,
is not a harmonic function.

IV. 3-D ESTIMATION

A. Robots’ formation

Consider a team of N = 2n, n ∈ N robots forming a
symmetric configuration composed of two parallel circular
formations whose centers are aligned with the z−axis as
shown in panel (a) of Fig. 2. The center point c ∈ R3 is located
between the two circles at distance D sin θF from each one.
One half of the robots is uniformly distributed in the upper
circular formation, the other half is uniformly distributed in the
lower circular formation and thus, their relative vectors with
respect to the center point c are also evenly spaced, see Fig. 2.
The robots’ positions in such configuration are expressed in
spherical coordinates as follows:

ri = c +D [sθicφi , sθisφi , cθi ]
T

θi =

{
θF , if i = 2m− 1
π − θF , if i = 2m,

m = 1, . . . , n
(6)

where ri ∈ R3 denotes the position of robot i, φi = 2πi/N is
the azimuthal angle, D the radial distance to the center c, θi
is the polar angle and θF is defined such that sθF =

√
2/3.

Note that this symmetric formation has two interesting and
convenient properties. First of all, it is easy to see that all the

φi

D θi

x

z

y φi

D θi

x

z

y

(a) (b)

Fig. 2: Minimal symmetric cylindrical formations for 3-D
estimation: (a) formation with N = 4 robots to estimate the
gradient and (b) formation with N = 8 robots and three
additional robots in green to estimate the Hessian matrix.

robots are placed at the same distance from the center, i.e.,
‖ri − c‖ = D,∀i. Moreover, the sum of the relative position
vectors of all robots with respect to the center is equal to zero
for N = 2n, n ≥ 2, as proven in the sequel:

N∑
i=1

(ri − c) = D

[
sθF

∑N
i=1 cφi

sθF
∑N
i=1 sφi∑

i=2m−1 cθF−
∑
i=2m cθF

]
= 0

since
∑N
i=1 cos(2πi/N) =

∑N
i=1 sin(2πi/N) = 0.

B. Gradient estimation

Consider the symmetric formation of robots given by (6)
collecting measurements of a 3-D signal distribution σ(r). The
following theorem is proposed:

Theorem 3 Assume that σ(r) : R3 → R satisfies Assump-
tion 1 and the robots’ formation is given by (6). Considering
a team of N = 2n robots with n ≥ 2 and defining

∇̂σ(c) := 3

ND2

N∑
i=1

σ(ri)(ri − c) (7)

then it holds

‖∇̂σ(c)−∇σ(c)‖ ≤ 3LD. (8)

Proof 2 Using the first-order Taylor expansion of each mea-
surement σ(ri) about the point c and recalling that ‖̃ri‖ = D
where r̃i := ri − c, then the following equation holds for all
i = 1, . . . , N :

σ(ri)− σ(c) = ∇σ(c)T r̃i + ϕ∇(ri, c),

where ϕ∇(ri, c) denotes the remainder of the Taylor expan-
sion. Multiplying the previous equation by 3 r̃i/(ND2) and
summing over i = 1, . . . , N , we obtain

3

ND2

N∑
i=1

σ(ri) r̃i −
3σ(c)
ND2

N∑
i=1

r̃i =

3

ND2

N∑
i=1

∇σ(c)T r̃i r̃i +
3

ND2

N∑
i=1

ϕ∇(ri, c) r̃i.
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Due to the symmetric properties of the formation, we have that∑N
i=1 r̃i = 0 and thus

∇̂σ(c) = 3∇σ(c)
ND2

N∑
i=1

r̃ir̃
T
i + Ψ∇(D, c), (9)

where Ψ∇(D, c) = 3
ND2

∑N
i=1 ϕ

∇(ri, c)̃ri. We analyze the
second term of the previous equation using (6) to express the
position of the robots ri to obtain

N∑
i=1

r̃ir̃
T
i = D2

N∑
i=1

[
s2θF

c2φi
? ?

s2θF
cφisφi s2θF

s2φi
?

sθF cφicθi sθF sφicθi c
2
θi

]
.

The elements depending on the polar angle θi must be decom-
posed to consider the robots with even index i = 2m and the
rest with i = 2m− 1, m = 1, . . . , n, then for n ≥ 2 we have

N∑
i=1

cφicθi = cθF

(
n∑

i=2m−1
cφi −

n∑
i=2m

cφi

)
= 0

and the same results holds for the sine. Considering the
properties of the proposed formation (6) for which s2θF = 2/3,
and applying trigonometric properties, the following equality
holds:

N∑
i=1

r̃ir̃
T
i = D2

[ N
2 s

2
θF

? ?

0 N
2 s

2
θF

?

0 0 Nc2θF

]
=
ND2

3
I3,

consequently ∇̂σ(c) = ∇σ(c) + Ψ∇(D, c). According to
Assumption 1 the term Ψ∇(D, c) satisfies the inequality

‖Ψ∇(D, c)‖ ≤ 3

ND2

N∑
i=1

|ϕ∇(ri, c)|‖ri − c‖ ≤ 3LD,

which concludes the proof.

Following the same ideas of Theorem 3, it can be proven
that the gradient of a 3-D quadratic signal can be exactly
computed by the symmetric configuration defined by (6):

Corollary 3 Let σ(r) : R3 → R be a quadratic function, i.e.
σ(r) = rTSr + pT r + q, where S is negative definite, and
consider the robots’ formation given by (6), then for a team
of N = 2n robots with n ≥ 3 we have ∇̂σ(c) = ∇σ(c).

C. Hessian matrix estimation

Consider the symmetric formation of robots given by (6)
taking measurements of a signal distribution σ(r). In order to
estimate the Hessian matrix of the signal σ(r), three additional
robots are required, two placed along the z−axis of the
previous symmetric formation, such that the robots positions
are given by (6) with θN+1 = 0 and θN+2 = π and another
one placed at the center c of the formation, as shown in panel
(b) of Fig. 2. The following theorem is proposed:

Theorem 4 Assume that σ(r) : R3 → R satisfies Assump-
tion 1. Let N =2n robots deployed as in (6), two additional
robots are defined by (6) with θN+1 = 0 and θN+2 = π

respectively, and the robot N +3 is placed at the center c
of the formation. If n≥4 then the quantity

Kσ(c) :=
18

ND4

N+2∑
i=1

(σ(ri)−σ(c))(ri−c)(ri−c)T (10)

satisfies∥∥∥Kσ(c) −
[

d1 ? ?
H12 d2 ?
2H13 2H23 d3

]
︸ ︷︷ ︸

=:L(Hσ(c))

∥∥∥
F
≤ 18(N + 2)DM

N
(11)

with

d1 =3H11/2 +H22/2 +H33

d2 =H11/2 + 3H22/2 +H33

d3 =H11 +H22 +H33 + 18H33/N

(12)

where the Hessian matrix at the center of the formation is

denoted by Hσ(c) =

[
H11 ? ?
H12 H22 ?
H13 H23 H33

]
.

Proof 3 Using the first-order Taylor expansion of each mea-
surement σ(ri) about the point c and recalling that ‖̃ri‖ = D,
where r̃i := ri − c then the following equation holds for all
i = 1, . . . , N + 2:

σ(ri)− σ(c) =∇σ(c)T r̃i +
1

2
r̃Ti Hσ(c) r̃i + ϕH(ri, c),

where ϕH(ri, c) denotes the remainder of the Taylor expan-
sion. Pre-multiplying the previous equation by 18 r̃i/(ND4)
and post-multiplying by r̃Ti , and then summing over i =
1, . . . ,N+2, we obtain

Kσ(c) =
18

ND4

N+2∑
i=1

r̃i∇σ(c)T r̃ir̃
T
i +

+
9

ND4

N+2∑
i=1

r̃ir̃
T
i Hσ(c)r̃ir̃

T
i +

18

ND4

N+2∑
i=1

r̃iϕH(ri, c)̃r
T
i .

To analyze this equation, we decompose the summation in two
parts: first, consider the N robots of the cylindrical formation
and second, the two additional ones. Following the same steps
that in previous cases, applying trigonometric properties and
considering robots with even and odd index, we can show that
the first term of the right-side of the previous equation is equal
to zero for n ≥ 4 and the second term is equal to[

3
2H11+

1
2H22+H33 ? ?

H12
1
2H11+

3
2H22+H33 ?

2H13 2H23 H11+H22+H33+
18
N H33

]
.

Additional details on the mathematical derivations can be
found in [18]. The error term defined by

ΨH(D, c) =
18

ND4

N+2∑
i=1

r̃iϕH(ri, c)̃r
T
i

satisfies

‖ΨH(D, c)‖F ≤
18

ND4

N+2∑
i=1

|ϕH(ri, c)|‖̃ri‖2≤
18(N+2)DM

N
.
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Note that once Kσ(c) is computed, an estimate Ĥσ(c) for
the true Hessian Hσ(c) is given by the unique solution of the
linear system

L(Ĥσ(c)) = Kσ(c) (13)

which can be obtained by inverting the operator L.
Similarly to the 2-D setting, the case of a quadratic signal

is also analyzed in the sequel:

Corollary 4 Let σ(r) : R3 → R be a quadratic function,
i.e. σ(r) = rTSr + pT r + q, where S is negative definite.
Considering N = 2n robots deployed as in (6), two additional
robots are defined by (6) with θN+1 = 0 and θN+2 = π
respectively, and the robot N +3 is placed at the center c
of the formation. Then for n≥ 4 the matrix Kσ(c) defined in
(10) satisfies Kσ(c)=L(Hσ(c)) and therefore Ĥσ(c)=Hσ(c).

Remark 4 Both Corollaries 3 and 4 present the minimal
number of robots required to exactly compute the gradient and
the Hessian matrix of quadratic signals at the center of the
3-D symmetric formation, respectively. Details of the proofs
can be found in [18].

V. NOISE AND APPROXIMATION ERROR ANALYSIS

In this section we address the problem of noisy measure-
ments and their effect on the gradient and Hessian estimation,
and we compare it with the approximation errors of equations
(8) and (11). We limit the analysis to the 3-D scenario,
being the 2-D scenario very similar. We assume that the
measurements are corrupted by Gaussian zero-mean white
noise which models possible small scale spatial variations due
to turbulence or local perturbation:

y(ri) = σ(ri) + vi(ri), vi(ri) ∼ N (0, υ2)

where υ2 represents the variance of the noise. We further
assume that the noise is independent in each robot measure-
ment, i.e. E[vi(ri)vj(rj)] = 0, i 6= j which is a realistic
assumption if ‖ri − rj‖>Dmin where Dmin represents the
spatial correlation distance of the disturbance. We start by
considering the effect on the gradient estimation. Since the
noise is additive in the measurement, the gradient estimate
defined in (7) becomes

∇̂σ(c) := 3

ND2

N∑
i=1

σ(ri)(ri − c) +
3

ND2

N∑
i=1

vi(ri − c)︸ ︷︷ ︸
Ψ∇v (D,c)

.

The term Ψ∇v (D, c) represents the effect of noise. It has
clearly zero mean, i.e. E[Ψ∇v (D, c)] = 0 and its expected
standard deviation is given by:

s∇(D) :=
√
E[‖Ψ∇v (D, c)‖2] =

3

ND2
(E[

N∑
i=1

N∑
j=1

υiυj r̃
T
i r̃j ])

1
2

=
3υ

ND2

(
N∑
i=1

r̃Ti r̃i

) 1
2

=
3υ

N
1
2D

,

where we used the results from the proof of Theorem 3. Note
that this term is a monotonically decreasing function of the

formation radius and the number of robots. This term has to be
compared with the approximation error provided in (8) which
is monotonically increasing with the formation radius. This
observation shows a clear trade-off when deciding the forma-
tion radius in order to balance the effect of approximation
error and the noise error. As a rule-of-thumb we can try to
design the formation radius D∗∇ to exactly balance these two
errors (see [18] for more details):

s∇(D
∗
∇) = 3LD∗∇ =⇒ D∗∇ =

υ
1
2

L
1
2N

1
4

, s∇(D
∗
∇) =

3(υL)
1
2

N
1
4

which provides a rule-of-thumb to chose the formation radius
if L, υ and N are known. The previous expression shows that
both the minimal estimation error and the optimal formation
radius decrease as the number of robots increases, however it is
important to keep in mind that we must have ‖ri−rj‖ > Dmin

for the previous equation to be realistic.
We now consider the effect on the Hessian estimation. Since

even in this case the noise is additive in the estimate of the
Hessian, it is straightforward to see that to the estimate Ĥσ(c)
there is the additional term:

ΨH
v (D, c) =

18

ND4

N+2∑
i=1

(vi−vc)(ri−c)(ri−c)T

Such matrix has clearly zero mean, while the expected stan-
dard deviation in terms of the Frobenius norm is given by:

sH(D) :=(E[‖ΨH
v (D, c)‖2F ])

1
2

=E
[
trace(ΨH

v (D, c)(ΨH
v (D, c))T )

]
=

18

ND4
(E[

N+2∑
i=1

N+2∑
j=1

(vi − vc)(vj − vc)(r̃Ti r̃j)2])
1
2

=
18

ND4
(

N+2∑
i=1

E[v2i ]‖r̃i‖4 +
N+2∑
i=1

N+2∑
j=1

E[v2c ](r̃
T
i r̃j)2)

1
2

=
18υ

ND2

(
N + 2 + (

N

3
+ 2)2

) 1
2 ≈ 6υ

D2
,

where the last equation has been obtained via tedious but
straightforward calculations which are reported in [18] in the
interest of space, and the last approximation is obtained for
N � 1. As compared to the effect of noise in the gradient
estimation s∇(D), the standard deviation sH(D) does not
decrease to zero as the number of robots increases, and it is
also more sensitive to the formation radius since it is inversely
proportional to the square of the radius. This last fact is to be
expected since we are estimating second order derivatives via
finite differences and therefore measurement noise is amplified
more than when computing first derivatives.

Similar consideration can be derived for the Hessian in
terms of finding the optimal radius D∗H to balance the ap-
proximation error and the noise error in the scenario N � 1:

sH(D∗∇)=18MD∗H ⇒ D∗H=
( υ

3M

) 1
3

, sH(D∗H)=
18(υM)

1
3

3
1
3

.

From a practical perspective, the optimal radius formation
should be chosen to balance all approximation errors and
noise effects in both the gradient and the Hessian. Since the
noise error increases rapidly for decreasing formation radius a
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Fig. 3: Evolution of the distance between the center of the
formation and the source location for the GA algorithm when
the gradient is estimated via the least-squares method in [8]
(dashed lines) and using our proposed approach (solid lines).

sensible choice for the radius is the largest between D∗∇ and
D∗H .

VI. NUMERICAL SIMULATIONS

In this section, we present numerical simulations to illus-
trate the performance of the proposed cooperative estimation
algorithms applied to the source seeking problem. The signal
strength considered is a 3-D Gaussian function whose surface
sets are ellipsoids given by

σ(r) = 100e−rT Sr,

where S = 10−4
[
100 1 1
1 1 0
1 0 10

]
. The maximum corresponding to

the source is located at r∗=[0, 0, 0]T denoted by the black ×.
We start by first comparing the quality of the proposed

approximation for the gradient in a 3-D scenario with an
alternative solution presented in [8], which is representative
of many other algorithms based on least-squares solutions as
in [7], [9]. Fig. 3 compares the results of the implementation
of the GA algorithm using the gradient estimation proposed in
Theorem 3 with respect to the gradient estimation proposed in
[8]. Both algorithms were implemented using the same step-
size ε= 0.1, the same formation of N = 8 robots as defined
in (6) and no noise was injected in order to evaluate only the
approximation error. The evolution of the distance between
the formation center and the source location, i.e., ‖ck−r∗‖,
at each time step for three different values of the formation
radius is shown. The geometrical properties of our proposed
symmetric formation lead to a much better estimation of the
gradient and thus the center of the formation is driven much
closer to the proximity of the source location. It can be seen
that the error of our proposed estimation strategy considerably
outperforms the least-squares based method from [8]. Similar
strategies presented in literature which do not exploit the ge-
ometric properties of the robots’ formation exhibit analogous
limitations.

In the next simulation we want to evaluate the benefit of
using Hessian information to improve rate of convergence
for source seeking applications, and to evaluate the impact
of noise and approximation error. Fig. 4 shows a simulation

Fig. 4: 3D symmetric formation of 11 robots performing a
source seeking mission based on the gradient and Hessian
cooperative estimation of the signal at the formation center.

of N = 8 robots uniformly spaced along a symmetric 3-D
formation of radius D = 5m as defined in (6) and three
additional robots placed one at the center and two along of the
z-axis as explained in Section IV-C, implementing the NRA
defined in Section II with ε = 0.1 and α = 0.001. The initial
positions of the robots are represented by blue circles and the
green ones denote the final positions. The red dots represent
the trajectory of the formation center. The gradient and the
Hessian matrix at the formation center are estimated at each
time instant k thanks to the computations (7), (10) and (13).

In order to evaluate the performance of our proposed strat-
egy we also simulate two ideal algorithms implementing the
GA and NRA source seeking defined in Section II assuming
exact computation of the gradient and the Hessian at the center
of the formation, thus providing a baseline for performance
evaluation in a more realistic multi-robot scenario with noisy
measurements. The evolution of these two algorithms is shown
in Fig. 5 in black pointed and dashed lines, respectively.
Fig. 5a also displays the evolution of the NRA algorithm
implemented with three different values for the symmetric
formation radius with ε=0.1 and α=0.001 when the signal
measurements are corrupted by white noise with υ = 2. For
each iteration of the algorithm, the average over 100 trials
of the distance between the center of the formation and the
source is provided and the standard deviation is reported each
1000 iterations to make figures easier to read. As discussed
in Section V, these curves clearly show the trade-off between
approximation error and noise error. If the formation radius is
chosen too small (D = 1m), then the noise error dominates
and the estimation of the Hessian is so poor that it is not
even negative definite and therefore never used in the actual
algorithm. As so, the NRA algorithm becomes a simple GA
and no benefit in estimating the Hessian appears. If the
formation radius is instead chosen too large (D = 10m),
then the approximation error dominates and the center of the
formation converges to a point which can be far from the true
source. Differently, if the radius is properly chosen to balance
both measurement noise error and approximation error, then
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(a) Noisy measurements

(b) Formation errors

Fig. 5: Mean and standard deviation over 100 trials of the
distance between the center of the formation and the source
location in presence of: (a) noisy measurements with υ = 2
and (b) errors in robots’ positions with δ=0.1m.

convergence behavior is very close to the ideal NRA with no
noise and no approximation error.

With a view to study the robustness of our proposed
estimation strategy with respect to formation errors, i.e., when
the robots’ positions do not exactly fit with the desired
symmetric formation, we considered a perturbation vector
δi = [δxi, δyi, δzi]

T where δxi, δyi, δzi,∼ N (0, δ2) such that
the perturbed position of each robot i is defined as rpi =ri+δi,
where ri is the desired robot’s position in the symmetric
formation. Fig. 5b shows the average over 100 trials of the
distance between the center of the formation and the source for
each iteration of the NRA algorithm using the same 3-D 11-
robots formation as in the previous case, with three different
values of the radius formation D=1, 5, and 10m, considering
now misalignment in the robots’ positions with δ=0.1m. The
standard deviation is reported each 1000 iterations. As shown
in the figure, the gradient and Hessian estimation errors due
to the perturbed robots’ positions increase for smaller values
of the formation radius. This behavior is similar to the noisy
measurements case and again the formation radius plays an
important role to balance approximation error and formation
error. It is however important to remark that, even if our strat-
egy strongly relies on the symmetric geometrical properties of
the formation, the estimations computed in presence of errors
in the robots’ positions can be still exploited to locate the
source and the estimation errors remain bounded.

VII. CONCLUSION

This paper deals with the cooperative estimation of the
gradient and Hessian matrix of a signal in the context of
source seeking missions. We showed that the signal mea-
surements collected by a planar circular formation of robots
allow estimating both quantities at the center of the formation
for the 2-D case. Moreover, another symmetric formation
is proposed to deal with 3-D scenarios. In both cases, a
limited number of robots and low computations are required to
compute the estimates whose error is bounded and depends on
the radius of the formation. Additionally, we mathematically
proved that both the gradient and the Hessian can be exactly
calculated for quadratic signals. Thanks to these results, the
convergence rate of Newton-Raphson based source seeking
algorithms is improved as shown in numerical simulations. A
detailed analysis of the effect of noisy measurements in both
the gradient and the Hessian estimations is provided. A further
analysis of the effect of formation errors has been carried out
in simulation, showing the robustness of our approach also
with respect to errors in the robots’ positions.

The design of an adaptive formation radius to increase the
convergence rate of the Newton-Rhapson-based source seeking
algorithm will be a key point in future research.
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APPENDIX

This appendix presents several relations and trigonometric
properties used to prove the theorems and corollaries pro-
posed in this paper. An important property of the symmetric
formations proposed in this paper is that

∑N
i=1cos(

m2π
N ) =∑N

i=1sin(
m2π
N ) = 0, for N > m. To prove this result,

consider the well known geometric series property
∑N
i=1r

i=
r(1−rN )

1−r , r 6= 1. If we take r = e
m2π
N j where j2 = −1 and

N>m to avoid the situation in which r=1, then
N∑
i=1

e
m2π
N

ij =
e
m2π
N

j(1− em2πj)

1− e
m2π
N

j
= 0

since em2πj=cos(m2π)+j sin(m2π)=1, ∀m. Combining this
result with trigonometric properties we obtain the following
useful equations:

c2φ = (1 + c(2φ))/2, c2φsφ = sφ − s3φ cφs
2
φ = cφ − c3φ,

c3φ = (3cφ + c(3φ))/4, c3φsφ = 3s(2φ)/8 + (s(4φ) − s(2φ))/8,

s3φ = (3sφ − s(3φ))/4, cφs
3
φ = 3s(2φ)/8− (s(4φ) + s(2φ))/8,

c4φ = 3/8 + c(2φ)/2 + c(4φ)/8, cφsφ = sφ/2,

s4φ = c4φ − c(2φ), c2φs
2
φ = 1/2 + c(2φ)/2− c4φ.
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