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Abstract

We present a depth-integrated Boussinesq model for the e�cient simulation of nonlinear wave-body interaction. The model
exploits a ‘unified’ Boussinesq framework, i.e. the fluid under the body is also treated with the depth-integrated approach. The
unified Boussinesq approach was initially proposed by Jiang [26] and recently analysed by Lannes [29]. The choice of Boussinesq-
type equations removes the vertical dimension of the problem, resulting in a wave-body model with adequate precision for weakly
nonlinear and dispersive waves expressed in horizontal dimensions only. The framework involves the coupling of two di↵erent
domains with di↵erent flow characteristics. Inside each domain, the continuous spectral/hp element method is used to solve the
appropriate flow model since it allows to achieve high-order, possibly exponential, convergence for non-breaking waves. Flux-
based conditions for the domain coupling are used, following the recipes provided by the discontinuous Galerkin framework. The
main contribution of this work is the inclusion of floating surface-piercing bodies in the conventional depth-integrated Boussinesq
framework and the use of a spectral/hp element method for high-order accurate numerical discretization in space. The model is
verified using manufactured solutions and validated against published results for wave-body interaction. The model is shown to
have excellent accuracy and is relevant for applications of waves interacting with wave energy devices.

Keywords: nonlinear and dispersive waves, wave-body interaction, Boussinesq equations, spectral/hp element method,
discontinuous Galerkin method, domain decomposition

1. Introduction1

Wave models based on depth-integrated Boussinesq-type wave equations, e.g. [41, 2, 33], are standard engineering2

tools for predicting nonlinear wave propagation and transformation in coastal areas. Boussinesq-type models are3

computationally e�cient due to the elimination of the vertical dimension of the problem, as well as avoiding the4

problem of a time-dependent computational domain caused by the moving free surface boundary condition. However,5

by its nature, the depth-integrated approach makes truncated surface-piercing bodies troublesome to handle. In order6

to include truncated bodies in depth-integrated hydrodynamic models methods such as pressure patches [17], porosity7

layers [38] and slender ship approximations [7] have been used. None of these approaches includes the actual body8

in the discretization. The exception is the work of Jiang [26] on the ‘unified’ Boussinesq model. Jiang decomposed9

the domain into a free-surface domain and a body domain. Importantly, Jiang modelled also the domain under the10

⇤Corresponding author. E-mail: mario.ricchiuto@inria.fr
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body with a depth-integrated approach – hence the term ‘unified’. Recently, a similar setting was rigorously analyzed11

by Lannes [29]. Lannes extended the work of John [27] to include nonlinear contributions and derived semi-analytic12

nonlinear solutions for the wave-body problem using the nonlinear shallow water equations. Thus, the study of Lannes13

mainly kept within the traditional shallow water limit. The ‘roofed’, congested shallow water flows are discussed also14

in [23].15

In this study we propose a depth-integrated unified Boussinesq model for nonlinear wave-body interaction based16

on the approach introduced by Jiang [26]. Adapting the original idea in terms of governing equations and discretiza-17

tions, we employ a spectral/hp finite element method for the simulation of nonlinear and dispersive waves interacting18

with fixed and heaving bodies. In particular, we employ the continuous spectral/hp element method [28] inside each19

domain, and implement flux-based coupling conditions between domains in line with the discontinuous Galerkin20

spectral/hp element method [8]. This results in a new e�cient and accurate model that simulates the wave propaga-21

tion and the nonlinear interaction of waves with bodies. However, as all models based on Boussinesq-type equations,22

the model is limited to shallow and intermediate depth regimes. The use of spectral/hp elements give support for23

the use of adaptive meshes for geometric flexibility and high-order accurate approximations makes the scheme com-24

putationally e�cient. High-order finite element methods for depth-integrated wave models have been presented in25

[20, 21, 15, 13, 11, 44].26

The current study, which expands and improves the concepts introduced in [18], presents the underlying formu-27

lation of the method as well as verification and validation of the numerical model. Although the model is not limited28

to applications in marine renewable energy, the rationale for developing a medium fidelity wave-body model is found29

in the present state of modelling wave energy converters (WECs). Today the industry standard description of the30

interaction between waves and WECs is based on models solving the Cummins equation [9] using hydrodynamic co-31

e�cients computed from linear potential flow (LPF). The LPF models are based on the small-amplitude assumption32

and they are widely used for their simplicity and e�ciency, e.g. see [34]. Thus, the LFP models can not account for33

nonlinear hydrodynamic e↵ects which are of importance especially for survival cases as well as for WECs operating34

inside the resonance region. The LPF models over-predict the power production in the resonance region unless drag35

coe�cients are calibrated. Moreover, WEC farms are often planned to be placed in near-shore regions where it is36

unlikely to have a flat seabed. Hence, waves are expected to exhibit nonlinear dynamics, as steepening and energy37

transfer between harmonics. More recently, Reynolds Averaged Navier-Stokes (RANS) simulations have been em-38

ployed for point absorber WECs, e.g. [47, 40, 3]. RANS is a complete and accurate model with respect to nonlinear39

phenomena but computationally very costly. For example, a simulation with a full sea state for a WEC may require as40

much as 150 000 CPU hours per simulation [19]. At present RANS models are therefore unsuited for the optimization41

of single devices, not to mention energy farms. In shallow to intermediate waters, Boussinesq-type models as the one42

proposed here, are an intermediate way between the e�cient but too simple linear model and the complete but too43

expensive RANS model.44

The paper is structured as follows. In section 1 we outline the governing equations based on the enhanced45

Boussinesq-type equations of Madsen and Sørensen (MS) [33]. Further, the fluid under the body is defined and it46

is illustrated that high-order terms are negligible in the body domain under the assumption of no rotational degrees47

of freedom. The numerical discretisation in space and time is described in section 3. In particular we discuss the48

coupling between free surface domain and the body constrained domain. In section 4 first the model coupling is49

verified by means of the method of manufactured solutions (sections 4.1 – 4.4). Then, the model is validated against50

test cases found in literature (sections 4.6 – 4.7). A heaving box test is presented in section 4.8 and the results from51

the Boussinesq model is compared to LPF and RANS simulations. A proof-of-concept highlighting the flexibility of52

the framework with multiple bodies interacting with weakly nonlinear incoming waves is demonstrated in section 4.9.53

Finally, the the conclusions are found in section 5.54

2. Governing Equation55

We present here the governing equations of the nonlinear wave-body interaction problem. In the proposed unified56

Boussinesq approach, the domain is decomposed into an outer free surface sub-domain⌦w and a inner sub-domain⌦b57

that represents the area under the structure, as shown in figure 1. The present work is limited to straight-sided body58

interfaces that are assumed vertical at the wave-body intersection. Additionally, only heave motion is considered59

here for simplicity. Boussinesq-type models for free surface flows can be derived from the fully nonlinear potential60
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Figure 1: 3D Layout of the problem describing the nonlinear wave-body interaction in a domain decomposition framework.

equations for an incompressible, irrotational and non-viscous fluid by expanding the velocity potential in terms of the61

vertical coordinate and integrating the Laplace equation over the water depth. Let A0, h0 and �0 denote the characteris-62

tic wave amplitude, characteristic still water depth and characteristic wave length. Boussinesq-type equations are then63

obtained as an asymptotic approximation in terms of nonlinearity (" = A0/h0) and dispersion (µ = 2⇡h0/�0). These64

asymptotic and depth integrated models have the advantage of reducing the original problem to a lower-dimensional65

one (Rd ! Rd�1), but it comes with an application window that depends on the approximation order of nonlinearity66

and dispersion assumed in the derivation procedure [32].67

2.1. Free surface domain68

The shallow water approximation is relevant only for very long waves and, in general, when the dispersion pa-
rameter h0 is less than ⇡ ⇡/20, with  = 2⇡/�0 the wavenumber and h0 the still water depth. To account for the
dispersive e↵ects taking place for shorter waves, we consider Boussinesq-type models that includes weakly nonlinear
and dispersive e↵ects. In this work we will employ the enhanced Boussinesq-type model proposed by Madsen and
Sørensen (MS) [33] which can be written (assuming constant bathymetry) as

dt + r · q = 0 , (1a)

qt + r · (u ⌦ q) + drP = Bh2
0r(r · qt) � ↵MS h3

0r(�P) , (1b)

where d(x, t) is the water depth measured as the height of the water column and q(x, t) is the mass flux. The mass flux
is simply q = du in which u(x, t) is the depth-averaged horizontal velocity. The acceleration of gravity is denoted by
g. Please note the use of horizontal gradient (r) and Laplace (�) operators. In eq. (1b) the total specific pressure is
defined as

P(x, t) = gd(x, t) + ⇧(x, t). (2)

Here ⇧(x, t) represents the pressure at the free surface and it is equal to the atmospheric pressure. It is custom to set69

the atmospheric pressure above the free surface to zero. The free parameters ↵MS and B are used to optimize the linear70

dispersion relation of the system [42]. The parameters are defined in the literature as ↵MS = 1/15 and B = 1/3 + ↵MS71

[42] to give an application window of h0 ⇡ ⇡, for which the error in linear phase velocity is less than 5% with respect72

to the exact phase velocity of the Euler incompressible flow [22]. Note that varying the two parameters we can recover73

other long wave equations. Setting ↵MS = B = 0 we recover the standard nonlinear hydrostatic shallow water (NSW)74

model. The NSW model is valid only for hydrostatic pressure.75

2.2. Body model76

As shown in [29], eq. (1) with ↵MS = 0 is also valid in the domain below the body ⌦b. However, as shown in [32],77

under the standard Boussinesq assumption we can derive the MS model valid for every ↵MS . In the inner domain,78

⇧ represents the pressure on the body surface, which is a priori neither constant nor known. Further, d still denotes79

the elevation of the water column but is now restrained by the body geometry and is known. However, in the inner80

domain we can prove the following result:81

3
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Proposition 1. Under the standard assumption of the Boussinesq theory of

µ4 ⌧ 1, µ2 ⇡ ". (3)

and in absence of pitch, roll and yaw, all terms accounting for higher-order dispersive e↵ects in the inner domain are82

negligible, within the classical Boussinesq truncation of O(µ4, µ2", "2).83

Proof. Introducing the inner domain nondimensional variables

t̃ = µ

p

gh0

h0
t, x̃ =

µ

h0
x, z̃ =

z
h0
, h̃(x̃) =

h(x)
h0
, ⌘̃(x̃, t̃) =

⌘(x, t)
"h0

, d̃(x̃, t̃) = "⌘̃(x̃, t̃) + h̃ =
d(x, t)

h0
,

ũ =
1

"
p

gh0
u, q̃ = d̃ũ, w̃ =

µ

"
p

gh0
w, P̃ =

1
"⇢wgh0

P, B̃ =
B
h2

0
, ↵̃MS =

↵MS

h3
0

(4)

where ⌘ is the instantaneous wave elevation and w the vertical velocity component. The nondimensional MS problem
reads

d̃t + r · q̃ = O(µ4, "µ2, "2), (5a)

q̃t � µ2B̃r(r · q̃t) + "r · (ũ ⌦ q̃) + ⇢wd̃rP̃ + ↵̃MS µ
2⇢wr(�P̃) = O(µ4, "µ2, "2). (5b)

From the mass eq. (5)
rd̃tt + r(r · q̃t) = 0, (6)

but in the inner domain the water elevation is at the bottom of the body, therefore d represent the body geometry and
rdtt = 0 as it is the derivative of a constant value in space and the dispersion term is zero. To demonstrate that the
term r(�P) = 0, consider the nondimensional momentum eq. (5b) under the Boussinesq assumption eq. (3):

q̃t + ⇢wd̃rP̃ = O(µ4, "µ2, "2), (7)

the variable d̃ = h̃0 + O(") so we simplify eq. (7) to express it in the form

q̃t + ⇢wh̃0rP̃ = O(µ4, "µ2, "2). (8)

Taking the gradient of the divergence of eq. (8)

r(r · q̃)t + ⇢wr(r · (h̃0rP̃)) = O(µ4, "µ2, "2), (9)

for a constant bathymethry, h̃0 can be moved out the derivation

r(r · q̃t) + ⇢wh̃0r(�P̃) = O(µ4, "µ2, "2), (10)

but we know that r(r · q̃t) = 0, which proves that r(�P̃) is within the asymptotic error and within this assumption84

leads to the conclusion that this term is negligible.85

Thanks to proposition 1, it is possible to use the NSW model in the inner domain. The total pressure P is evaluated
by taking the divergence of eq. (1b) with ↵MS = B = 0

�r · (drP) = r · qt + r · (r · (u ⌦ q)). (11)

Introducing the vertical acceleration a = dtt, and using the continuity eq. (1a) we have

a + (r · q)t = 0, (12)

and assuming that all variables are continuous, we can change the order of the space and time derivative

a = �r · (qt). (13)

Combining eqs. (11) and (13), we can show that in both the inner and outer domains the total pressure satisfies the
following equation

�r · (drP) = �a + r · (r · (u ⌦ q)). (14)

4
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Figure 2: 1D Layout of the problem describing the nonlinear wave-body interaction in a domain decomposition framework.

2.3. Boundary and coupling conditions86

The coupling conditions between hydrostatic free surface and body domains have been presented in [29]. The87

transmission/coupling conditions between the fully non-hydrostatic free surface domain and the submerged domain88

under the body have not been rigorously formulated in the nonlinear case [29, 30]. Thus, to reduce the complexity89

of this coupling we have decided to handle them numerically introducing an intermediate (thin) hydrostatic coupling90

layer (denoted by ⌦l) in which the flow is described by the NSW equations (eqs. (21a) and (21b) with ↵MS = B = 0).91

The role of this layer is to introduce a first transition between non-hydrostatic and hydrostatic conditions, and a92

second between free surface and constrained flow. Note that the equations of the coupling layer can be found setting93

the dispersive term D in eq. (25b) to zero.94

The flow in separated domains is coupled through the mass flux q and the total pressure P. At the interface
between the body and free surface domains, (xli, yli) 2 ⌦l \⌦b the coupling conditions at the waterline read

ql(xli, yli) = qb(xli, yli), (15)

Pl(xli, yli) = Pb(xli, yli). (16)

where (ql, Pl) 2 ⌦l and (qb, Pb) 2 ⌦b. Note that the pressure coupling condition eq. (16) can be expanded and written
also as

gdl(xli, yli) = gdb(xli, yli) + ⇧b(xli, yli). (17)

When coupling the two free surface domains, at (xwl, ywl) 2 ⌦w \ ⌦l, ⇧(xwl, ywl) is zero and the condition states that
the wave elevation and the flow must be equal through the interface

dw(xwi, ywi) = dl(xwl, ywl);
qw(xwl, ywl) = ql(xwl, ywl).

(18)

On the external boundaries of the outer domains (on the far field), we impose the absorption of the wave, thus

dw|±1 = h0;
qw|±1 = 0.

(19)

2.4. Complete model95

We introduce the linear operators

LB(·) = (1 � Bh2
0r(r·)), B↵d (·) = dr(1 + ↵MS h2

0�). (20)

5
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Note that the operator B↵d (·) contains also the high order component dependent on d. This is possible since the still96

water depth h0 and the instant elevation d are of the same order of approximation and they can be substituted one with97

the other (see in proposition 1).98

We have a set of three equations which have to be satisfied

Pt + gr · q = 0 , x 2 ⌦l [⌦w; (21a)
LBqt + r · (u ⌦ q) + B↵d P = 0 , (21b)

(↵MS , B) =

8

>

>

<

>

>

:

(1/15, 1/3 + ↵MS ), x 2 ⌦w,

(0, 0) , x 2 ⌦l.
(21c)

dt + r · q = 0 , 2 ⌦b; (22a)
� r · (drP) = �a + r · (r · (u ⌦ q)), (22b)
qt + r · (u ⌦ q) + drP = 0 , (22c)

where the mass eq. (21a) has been multiplied by g such that all the models are solved in (P, q) formulation. The main
di↵erence between the free surface domain and the body domain is that in ⌦w the total pressure and the free surface
elevation are readily obtained by eq. (21a), automatically satisfying eq. (21b) (which should include high order terms).
On the other hand, in the inner domain ⌦b, the relation (22a) acts as a constraint on the flux divergence, exactly as
in incompressible flow. In particular, this is where the coupling with the dynamics of the body appear. For a purely
heaving body, the vertical acceleration will be determined by the application of Newton’s second law to the body

mba = �mbg + Fh . (23)

The hydrodynamic force Fh is evaluated integrating the hydrodynamic pressure ⇧ over the body bottom

Fh = ⇢w

Z

⌦b

⇧nb
z dx , (24)

where ⇢w is the water density, mb the mass of the body and nb
z is the vertical component of the inward normal vector99

to the surface. Eq. (23) is added to the final NSW system to account for the movement of the body caused by the100

wave-body interaction.101

3. Numerical Model102

The focus of this paper is to model wave and wave-body interaction in 2D (vertical plane) using a coupled 1D
system of PDEs. As the domains will be coupled following a DG-FEM approach the equations are re-written as a first
order system by introducing auxiliary variables. In the free surface domain, unless otherwise stated, we will solve the
1D MS eqs.(21)

Pt + gqx = 0 ; (25a)
qt + uqx + dPx = D ; (25b)

D = Bh2
0Gx + ↵MS h2

0dFx , x 2 ⌦w; (25c)
G � qxt = 0 ; (25d)
F � Nx = 0 ; (25e)
N � Px = 0. (25f)

where we have multiplied the mass eq. (25) by g such that we can use the same set of variables (P, q), through all
the domains. The transition domain (c 2 ⌦l) is given by eq. (25) with D ⌘ 0. In the body domain we solve the non
dispersive 1D NSW system (22)

qt + (uq)x + dPx = 0 ; (26a)
� wx = �a + kx , x 2 ⌦b; (26b)
w � dPx = 0 ; (26c)
k � (qu)x = 0. (26d)

6
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3.1. Spatial Discretization103

Consider the domain ⌦, which can represent the any of the domains presented, and a test function ' defined in the
discrete spaceVP

Vp =
n

'i 2 L2(⌦) : 'i|⌦ 2 Pp
o

, (27)

where Pp is the space of polynomials of degree at most p. We propose a spectral/hp element approach to discretize
in space the models presented in section 1. Following a DG-FEM type recipe based on double integration by parts on
each sub-domain [10, 24], we multiply the eqs. (25) and (26) by ' and integrate in each domain to obtain the weak
form. However, the systems present non-conservative products, namely the dPx terms, which are not continuous
over the boundaries from the free surface domains to the body one. The non-conservative products are handled by
introducing penalty terms consistent with a local linearization of the quasi-linear form of the system [10, 6, 37]. The
weak form of the free surface equations reads:

Z

⌦w

'iPtdx + g
Z

⌦w

'iqxdx + g
Z

@⌦w\@⌦l

'i[q]ndx = 0, (28a)
Z

⌦w

'iqtdx +
Z

⌦w

'i(qu)xdx +
Z

@⌦w\@⌦l

'i[qu]ndx +
Z

⌦w

'idPxdx +
Z

@⌦w\@⌦l

'id̂[P]ndx =
Z

⌦w

'iDdx, (28b)
Z

⌦w

'iDdx = Bh2
0

 

Z

⌦w

'iGxdx +
Z

@⌦w\@⌦l

'i[G]ndx
!

+ ↵MS h2
0

 

Z

⌦w

'idFxdx +
Z

@⌦w\@⌦l

'id̂[F]ndx
!

, (28c)
Z

⌦w

'iGdx �
Z

⌦w

'iqxt �
Z

@⌦w\@⌦l

'i[qt]ndx = 0, (28d)
Z

⌦w

'F �
Z

⌦w

'iNx �
Z

@⌦w\@⌦l

'i[N]ndx = 0, (28e)
Z

⌦w

'iN �
Z

⌦w

'iPx �
Z

@⌦w\@⌦l

'i[P]ndx = 0. (28f)

where n represents the outward pointing normal vector. In general, the integral boundary terms are in the form

[ f ] = f̂ � f � (29)

where f̂ represent a numerical flux through the boundary interface and f � the value of the function on the boundary
for x inside the domain. Note that the numerical flux between the domains is often based on an approximate Rie-
mann solver for the advective parts [20] and a local discontinuous Galerkin type [46] or hybridizeable discontinuous
Galerkin [44] for the higher-order terms. Here we have used simple central fluxes

f̂ =
1
2

�

f + + f �
�

. (30)

Substituting in eq. (29), we obtain the jumps between the domains for first derivative terms

[ f ] =
1
2

�

f + � f �
�

, (31)

where u+ is the values on the boundary in the neighbor domain. The coe�cient multiplying non conservative terms is
treated taking the average value of the depth on the two side of the boundary

d̂ =
d+ + d�

2
. (32)

This simple choice allows to recover the conservative form in the hydrostatic free surface region, as we have exactly
that

d̂[d] =
d̂2

2
�

 

d2

2

!�
. (33)

7
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In the same manner, we evaluate the weak formulation in the body domain
Z

⌦b

'iqtdx +
Z

⌦b

'i(qu)xdx +
Z

@⌦b\@⌦l

'i[qu]ndx +
Z

⌦b

'idPxdx +
Z

@⌦b\@⌦l

'id̂[P]ndx = 0, (34a)

�
Z

⌦b

'iwxdx
Z

@⌦b\@⌦l

'i[w]ndx = �
Z

⌦b

'iadx +
Z

⌦b

'ikxdx
Z

@⌦b\@⌦l

'i[k]ndx, (34b)
Z

⌦b

'iw �
Z

⌦b

'idPx �
Z

@⌦b\@⌦l

'id̂[k]ndx = 0, (34c)
Z

⌦b

'ik �
Z

⌦b

'i(qu)x �
Z

@⌦b\@⌦l

'i[qu]ndx = 0, (34d)

with the force balance on the body surface

mba = �mbg + ⇢w

Z

⌦b

⇧dx. (35)

Definition 1. We define as hydrostatic equilibrium, the state

(d̄w,l, d̄b(x), P̄, q̄, ū, ā) = (h0, db(x), gh0, 0, 0, 0), (36)

with db(x) and h0 equilibrium depths under the body and in the free surface regions, linked by the hydrostatic equilib-
rium relation

mb

⇢w
=

Z

⌦b

(h0 � d̄b(x))dx. (37)

Proposition 2. The variational formulations eqs. (28), (34) are exactly well balanced: the hydrostatic equilibrium104

eq. (36) is an exact solution of the weak form.105

Proof. The main idea of the proof is to show that replacing the steady state in eq. (36) with condition of eq. (37) in the106

variational form, results in an identity 0=0. As in eq. (36) all the fluxes and velocities are zero, only the terms related107

to variations of the total pressure P may contribute to to form.We look at each domain separately.108

In the outer domain, by definition P̄w = gh0 and constant in time. So eqs. (28b)-(28f) lead to N = F = G = D = 0.109

The only term which may remain is the one related to the jump of the total pressure between the outer domain and the110

coupling layer
R

@⌦w\@⌦l
'i[·]ndx. However, as in the latter we also have by definition P̄l = gh0, these jumps are also111

identically zero.112

In the coupling layer P̄l = gh0 and it is constant in time, so only terms which may give a non-zero contribution
are the one related to total pressure jump with the below body region

R

@⌦l\@⌦b
'i[·]ndx. If P̄b = gh0 too, then the

proof is achieved. This is easily seen from the force balance on the body at steady state. In particular, substituting the
hydrostatic equilibrium eq. (36) in the force balance eq. (35), using eq. (37), one gets to the condition

0 = ⇢w

Z

⌦w

P̄bdx � ⇢w

Z

⌦w

gh0dx, (38)

which must be true independently on the body shape and on the domain size. In particular, this is true if P̄b = gh0113

throughout the inner domain, which also satisfies the auxiliary relations eqs. (34c) and (34d).114

To obtain a fully discrete model, we now replace the unknowns with a spectral/hp element approximation spanned
by high-order polynomial basis functions  j

f (x, t) =
Ndo f
X

j=0

 j(x) f j(t), (39)

f j(t) are expansion coe�cient of f in the domain ⌦ and Ndo f the number of degrees of freedom in the domain
considered. Following the standard Galerkin formulation the test function and the interpolation polynomial are the

8
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Figure 3: Representation of the global first derivative matrix

same, i.e. ' 2 span{ j}. In this study we use the abscissas of the Gauss-Legendre-Lobatto quadrature rule to define
the nodal Lagrange polynomials [28]. We introduce then the mass and di↵erentiation matrices, defined as

Mi j ⌘
Z

⌦�

 i jdx, (40a)

Qi j ⌘
Z

⌦�

 i( j)xdx + 0.5
⇣

 1 1|2⌦� �  1 N |2⌦�+
⌘

� 0.5
⇣

 N N |2⌦� �  N 1|2⌦�+
⌘

, (40b)

Q̃i j ⌘
Z

⌦�

 id j( j)xdx + 0.5hdi�+,�
⇣

 1 1|2⌦� �  1 N |2⌦�+
⌘

� 0.5hdi�,�+
⇣

 N N |2⌦� �  N 1|2⌦�+
⌘

, (40c)

having defined ⌦� the domain of interest, ⌦�+ the domains at its right and left. The first derivative coupled matrices
Q and Q̃ can be written as

Q� = D� + C�� + C��+

Q̃� = D̃� + C̃�� + C̃��+ .
(41)

In particular D� and D̃� are the first derivative matrices internal to the domain ⌦�, C�� and C̃�� are the coupling
matrices internal to the domain ⌦� and C��+ and C̃��+ are the coupling matrices that evaluate the value in the domain
⌦�+ on the interface @⌦� \ @⌦�+ . A representation of the global Q matrix is presented in figure 3 as an example. The
semi-discrete formulation of eq. (22) reads

Mw,lPt + gQw,lq = 0 , x 2 ⌦w [⌦l, (42a)
LBqt + Qw(uq) + B↵

d P = 0 , x 2 ⌦w, (42b)

Ml,bqt + Ql,b(uq) + Q̃l,bP = 0 , x 2 ⌦l [⌦b, (42c)

� Qb M�1
b Q̃bP = �Mb1a + Qb M�1

b Qb(uq) , x 2 ⌦b. (42d)

where 1, in eq. (42d), represents a vector of ones as the acceleration is a scalar variable. The subscripts {w, l, b}
indicates if the matrices are defined in the domains ⌦w, ⌦l and ⌦b respectively. The global discrete linear operator
are defined as

LB = Mw � Bh2
0Qw M�1

w Qw, B↵
d = Q̃w + ↵MS h2

0Q̃w M�1
w (Qw M�1

w Qw). (43)

Proposition 3. The discrete variational form eq. (42) is well balanced: the steady hydrostatic equilibrium in eq. (36)115

with ā = a = 0, is exactly preserved.116

Proof. Identical to the continuous case in proposition 2117

9
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Remark 1. The total pressure P verifies the same discrete equation in all domains. In fact, eq. (42d) is a consequence118

of the semi-discrete mass eq. (42a) solved in the free surface domains. In the inner domain ⌦b, the satisfaction of the119

mass equation Mbdt + Qbq = 0 is obtained by imposing it implicitly as a constrain. This provides an exact discrete120

consistency between the mass and pressure equations in all domains.121

3.2. Time Discretization122

In this paper we implement an extrapolated backward di↵erentiation formula of third order (eBDF3). The eBDF3
scheme has the same computational cost of the explicit Euler time integration. Thus, the eBFD3 with spectral/hp
elements method results in a very e�cient method in time and space to solve our wave-body interaction problem.
Introducing the notation f n = f (x, tn), the time derivative for eBDF3 time integration is expressed as

� f =
11 f n+1 � 18 f n + 9 f n�1 � 2 f n�2

6�t
, (44)

for constant time steps �t. The nonlinear term are evaluated at time n + 1 by a linear extrapolation. This extrapolation
is

f e = 3 f n � 3 f n�1 + f n�2. (45)

The time step �t is chosen in relation with the mesh dimension �x through a standard CFL condition [14]. For the grid123

convergence studies, �t is appropriately reduced such that the error in time is always dominated by the error in space.124

Note that the linear operator B↵
d is evaluated with the extrapolated depth d.125

3.3. Added mass126

As already mentioned, in the case of a moving body the acceleration is defined by Newton’s second law

mban+1 = �mbg + ⇢w

Z

⌦b

⇧n+1nzdx. (46)

We define the vector w of the Gauss-Lobatto-Legendre integration weights giving the discrete formulation

mban+1 = �mbg + ⇢wwT⇧n+1. (47)

We can prove the following proposition.127

Proposition 4. Provided that the matrix K̃b is invertible, the discrete acceleration eq. (47) is

(mb +Madd) an+1 = �mbg � g⇢wwT db � ⇢wwT K̃�1
b

⇣

Qb M�1
b Qb(uq)e + G̃ f P f

⌘

. (48)

where the added mass is defined as
Madd = �⇢wwt K̃�1

b w. (49)

Moreover, in case of constant depth and flat bottom body d⇤b, it can be shown that Q̃b = d⇤bQb and the matrix
K̃b = d⇤b Kb is positive semi-definite (PSD) and thus the added mass is non-negative

Madd � 0. (50)

Proof. Consider the discretized first order formulation presented in eqs. (25)- (26). For simplicity we define the free
surface domain ⌦ f = ⌦w [⌦l. We replace the first derivative matrix Q̃b according to the definition in eq. (41)

� (Db + Cbb) wb + Cb f w f = �Mb1a + Qb M�1
b Qbqu, (51a)

wb = M�1
b

⇣⇣

D̃b + C̃bb
⌘

Pb + C̃b f P f
⌘

, (51b)

wf = M�1
b

⇣⇣

D̃ f + C̃ f f
⌘

Pf + C̃ f bPb
⌘

. (51c)

10
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We define the matrices K̃b and G̃ f using the definition of wb and wf in eq. (51a) and collecting the matrices,

K̃b = (Db + Cbb) M�1
b

⇣

D̃b + Cbb
⌘

+ C̃b f M�1
f C̃ f b, (52a)

G̃ f = (Db + Cbb) M�1
b C̃b f + Cb f M�1

f

⇣

D̃ f + C̃ f f
⌘

. (52b)

From the definition of total pressure eq. (2) and inverting K̃b, we have an expression for ⇧

⇧ = K̃�1
b Mb1a � K̃�1

b Qb M�1
b Qbqu � gdb � K̃�1

b G̃ f P f . (53)

Eq. (53) is substituted in the discrete formulation of the acceleration eq. (47)

mba = �mbg + ⇢wwT
⇣

K̃�1
b Mb1a � K̃�1

b Qb M�1
b Qbqu � gdb � K̃�1

b G̃ f P f
⌘

. (54)

Note that Mb1an+1 = wan+1, in fact

[Mb1]i =

Z

⌦b

Ndo f
X

j

 i j. (55)

From the definition of Gauss-Lobatto-Legendre basis function, we get that

Ndo f
X

j

 j = 1. (56)

As a consequence

[Mb1]i =

 

Z

⌦b

 i

!

, (57)

and by analogy with the notation used for the pressure integral in eq. (47)

[Mb1]i = wi. (58)

To show that the added mass is always non-negative for constant depth and flat bottom body, consider the quadratic
function �wT Kbw = �wT (Db + Cbb) M�1

b (Db + Cbb) w+wT Cb f M�1
f C f bw. The mass matrices Mb and M f are positive

definite (PD) so also their inverse [25]. From eq. (40b), we can define the matrices Db + Cbb and (Db + Cbb)T

[Db + Cbb]i j =

Z

⌦b

 i( j)xdx + 0.5
Z

@⌦b

 i jn|@⌦b dx, (59a)

h

(Db + Cbb)T
i

i j
=

Z

⌦b

 j( i)xdx + 0.5
Z

@⌦b

 i jn|@⌦b dx. (59b)

We also know that
Z

⌦b

( i j)xdx =
Z

⌦b

( i)x jdx +
Z

⌦b

 i( j)xdx =
Z

@⌦b

 i jn|@⌦b dx. (60)

Using eq. (60) in eq. (59a), it can be shown that

[Db + Cbb]i j = �
h

(Db + Cbb)T
i

i j
. (61)

Since the matrix M�1
b is PD, it exist a unique PD matrix Bb such that B2

b = BT
b Bb = M�1

b [25]. Thus, it holds the
equivalence

�wT (Db + Cbb) M�1
b (Db + Cbb) w = �wT (Db + Cbb) BT

b Bb (Db + Cbb) w, (62)

In the same way, for the free surface-body coupling matrices
h

Cb f
i

i j
= 0.5

Z

@⌦b\@⌦ f

 i jn|@⌦b dx, (63a)

h

C f b
i

i j
= 0.5

Z

@⌦ f\@⌦b

 i jn|@⌦ f dx. (63b)
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Figure 4: The added mass over the body mass in the test presented in sections 4.6 and 4.8. We see that in all cases, decay movement solved with
NSW and MS in figure a and a free heaving box with di↵erent incoming waves in b, the value of the added mass is always positive

and it can be shown that
h

Cb f
i

i j
= �

h

CT
f b

i

i j
. (64)

Since also the matrix M f is PD, it exists a matrix B f such that B2
f = BT

f B f = M�1
f and

�wT Cb f M�1
f C f bw = �wT Cb f BT

f B f C f bw, (65)

As a consequence of eqs. (61) and (64), we can substitute the first Db + Cbb and Cb f

�wT (Db + Cbb) BT Bb (Db + Cbb) w � wT Cb f BT
f B f C f b =

= wT (Db + Cbb)T BT Bb (Db + Cbb) w + wT CT
f bBT

f B f C f b =

= (B (Db + Cbb) w)T Bb (Db + Cbb) w +
⇣

B f C f bw
⌘T

B f C f bw =

= (Bb (Db + Cbb) w)2 +
⇣

B f C f bw
⌘2 � 0.

(66)

So �Kb is positive semi-definite (PSD). When it is invertible also its inverse must be PSD [25] and the added mass is128

non-negative for constant depth.129

Remark 2. Note that non positive added mas can occur in the free surface flow with floating structure [36]. Here,
for flat structure, the above proposition shows that accounting for added mass has a stabilizing e↵ect. This result can
be generalized within an order O(�x) if a truncated Taylor series is introduced:

Z

⌦b

'idb(x)@x' jdx ⇡ db(xi)
Z

⌦b

@x' jdx +Cik@xdb(x)k�x + O(�x2), (67)

where Ci is a mesh dependent constant. Eq. (67) can be readily used to show that

QT M�1Q̃ = QT M�1Ddb Q + O(x), (68)

where D is the diagonal of db(xi). This leads to the conclusion that for bodies having a bounded variation profile,130

accounting for the added mass will still provide a stabilizing e↵ect, at least on a fine enough grid.131

For non-flat bottom body, we can not demonstrate the non-negativeness analytically. However, we have shown132

numerically thatMadd � 0 in figure 4. These plots show the trends of the ratio of added mass over the mass of the133

body in few of the tests presented in section 4. For the added mass eq. (48), we can prove the following result134

12
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Proposition 5. The hydrostatic equilibrium eq. (36) is a solution of the added mass acceleration equation.135

Proof. Substitute the eq. (36) in the acceleration eq. (48)

0 = �mbg � g⇢wwT d̄b � ⇢wwT
⇣

K̃b
⌘�1 ⇣

G̃ f P̄ f
⌘

. (69)

At the hydrostatic equilibrium, the pressure is constant through all the domains. This means that

d̄b@xP̄b = Q̃bP̄b = 0

d̄ f@xP̄ f = Q̃ f P̄ f = 0
(70)

and the auxiliary variable Mw̄b = Q̃bP̄b is also equal to zero. Using the matrices introduced in eq. (52)

Q̃bw̄b = K̃bP̄b + G̃ f P̄ f = 0 (71)

thus G̃ f P̄ f = �K̃bP̄b. Moreover, we know by definition that mb = ⇢wwT (h0 � d̄b) and eq. (69) becomes

0 = �⇢wgwT (h0 � d̄b) � g⇢wwT d̄b + ⇢wwT IP̄b. (72)

where I is the identity matrix. Eq. (72) at equilibrium (d̄b, P̄b) is satisfied.136

The strategy adopted to solve the whole problem is to evaluate at each step first the added mass Madd and the137

vertical acceleration of the body in eqs. (49)-(48), with the extrapolated values of the variables from the previous138

timestep. The updated value of the acceleration is substituted into eq. (42d), as a right hand side term, which coupled139

with eq. (42a) gives us P(x, tn+1). Finally, we solve eqs. (42b) and (42c) for the updated values of the flow q(x, tn+1).140

Note that all coupling conditions of the flow and elevation between outer and inner domains are accounted for by the141

coupling terms in the Qw,l,b and Q̃w,l,b matrices.142

4. Numerical Results143

We consider in this section di↵erent tests to demonstrate the versatility of the proposed spectral/hp depth-integration144

model given in section 3. First, we consider the wave propagation problem in hybrid modelling approach to that verify145

the coupled solver strategy leads to the expected convergence. Then, we consider the more complex problems with146

fixed, forced and free movement for a box. Finally, we seek to compare the solver with the results of CFD simulations147

as a validation means and to demonstrate the e�ciency of the proposed numerical modelling strategy148

4.1. Coupling domains with di↵erent wave models149

As the coupling is enforced by flux conditions that handle only the balance of incoming and outgoing flow, we150

can easily couple di↵erent free surface wave models. In particular, we report here the coupling between a free surface151

domain with MS and one with NSW. Each domain has a length of 2⇡ meters and is discretized over a grid of 40152

elements. Two kind of waves are tested: a linear wave (A = 10�6m, h0 = 0.1m) and a nonlinear wave (A = 0.02m,153

h0 = 0.5m). The simulations are presented respectively in figures 5a and 5b. The linear wave cross the di↵erent154

domain without alterations while the solution for the nonlinear wave shows multiple harmonics. That is due to the155

signal that decomposes propagating through NSW domain, as the model can not solve properly this set of waves.156

This test allows us to examine the behaviour of the solution at the coupled interfaces. As anticipated, the free surface157

elevation is continuous (the jump on the interfaces is of order 10�13, close to the machine precision) and there are no158

oscillations at the interfaces.159
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Figure 5: Wave elevation at t = 25 s using a MS domain and a NSW domain: a linear wave case and 5b nonlinear wave case.

4.2. Grid convergence for the free surface model160

An exact solution for the MS model does not exist. The convergence of the mixed wave model is evaluated using
the manufactured solution method. We consider a known function ⇣(x�ct) = A cos(x�ct), with A the wave amplitude
and c the phase speed, to be imposed as the solution of the problem, i.e.

Pm = dm(x, t) = ⇣(x � ct) + h0,

um(x, t) =
c
A
⇣(x � ct),

qm(x, t) = dm(x, t)um(x, t) =
c
A
⇣(x � ct)(⇣(x � ct) + h0).

(73)

Equation (73) will not exactly satisfy the original di↵erential equation and the substitution will result in a residual
r(⇣) , 0. This residual is treated has the source term for the di↵erential equations considered, such that for NSW and
MS free surface models, we have

dt + qx = rd(⇣),

qt + (uq)x + gd(P)x = r(NS W)
q (⇣),

qt + (uq)x + gd(P)x �
⇣

1
3 + ↵MS

⌘

h2
0qxxt � ↵MS h3

0dxxx = r(MS )
q (⇣).

(74)

Now the function ⇣(x � ct) is the exact solution of the problem and that can be compared to the numerical one for a161

convergence study. We have chosen ⇣(x � ct) = A sin(x � ct) since it is a simple, periodic, C1(R ⇥ R+) function of162

which we can calculate all the derivatives. Thus the residuals r(⇣) are known exactly.163

This residual terms act as source terms for the equation and are discretized in space. The discretized model is

AUt = RHS + Mr̄. (75)

The source term is evaluated exactly at time step tn+1. The convergence of the NSW and MS equations is shown in164

figure 6 Nel = [6, 12, 24] and p = [1, 2, 3, 4, 5]. As seen in figure 6, we reach the optimal rate of convergence p+ 1 for165

odd polynomial order and sub-optimal rate p for even polynomial order. The sub-optimal convergence rate is caused166

by the choice of centred fluxes [8].167
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4.3. Grid convergence for a fixed inner model168

We use a similar approach to test the convergence for a manufactured model with a fixed structure in the central
domain, see figure 7. The manufactured solution considered reads

Pm
tot = g(⇣(x � ct) + h0),

qm(x, t) =
c
A
⇣(x � ct)(⇣(x � ct) + h0),

dm(x, t) =

8

>

>

<

>

>

:

⇣(x � ct) + h0 , x 2 ⌦w,

h0 � hd , x 2 ⌦b.

(76)

where hd is the draft of the body. As for the free surface convergence test, the models solved are MS for the free169

surface domains and NSW in the body domain. The convergence of the method is presented in figure 8 for the depth170

and total pressure. This can be due to the discontinuity in depth and nonlinear term which can not be solved exactly171

and results in oscillation around the coupling nodes.172

We remark here on the e�ciency of the spectral element method: considering a simulation of one period T =173

1.95s, we use Nt = 5000 time steps and we test di↵erent meshes. The e�ciency of the model has been checked for174

the medium size mesh, with Nel = 12 for each domain. The error drops with five orders of magnitude going from175

p = 1 to p = 5 while the computational time remains comparable. On the other hand, if we want to reach a similar176

precision with linear elements, we need a much finer grid with 1500 DOF per domain against the 60 DOF of the high177

polynomial order and the computational time grows with 5 orders of magnitude.178

4.4. Time convergence179

The time convergence of the method is evaluated using the manufactured solution presented in figure 7 with180

Nel = 12 elements per domain and polynomial order p = 5. Normally, to maintain stability of the solution for181

the eBDF3, the timestep �t is taken to be always small than the space element dimension �x determined by a CFL182

condition [14], as we presented in section 3.2. Thus, comparing the numerical solution to the exact one, the space183

error will always dominate on the time one. We have evaluated a reference numerical solution with a small time184

step (number of time step Nt = 64000 over two wave periods) and the convergence is computed using this solution.185

The resulting convergence plot is reported in figure 9. The rate of convergence in time is seen to be 3, same as the186

theoretical convergence rate of the eBDF3 scheme.187
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4.5. Forced motion test188

This test includes forced oscillation of a box with a round bottom [29], shown in figure 10a. The body is placed
with its center at x = 0 and the water flume extends for 200m before and after it. The body is composed by a
rectangular box of height H = 2R sin(⇡/3)�R and width 2R The circular segment has radius 2R with the center placed
on the vertical line passing through the middle point. The density of the object is half the density of water, ⇢b = 0.5⇢w.
We can easily evaluate the mass of the object as m = ⇢bV whereV is the volume

V = R2
 p

3 � 2 +
2⇡
3

!

. (77)

In the test we use R = 10m. The fluid domain is defined with a still-water depth h0 = 15m and density of water
⇢w = 1000kgm�3. The structure moves in a forced motion starting from initial position zC,eq = 4.57m and an oscillation
of 2m over 10s time. The height zC,eq corresponds to the equilibrium in case of the free floating body and can be
calculated as

zC,eq =
R
2

 

1 � ⇢b

⇢w

!  p
3 � 2 +

2⇡
3

!

. (78)

The numerical setting is: polynomial order p = 3, Nw = 25 free surface elements and Nb = 5 internal elements.189

In the hydrostatic case, we have an analytic solution for the water elevation at the contact points x+ and x�, where
water and body interact, [29]. The evolution of the water level at x± is described by

de(t, x±) =
 

⌧0

 

x+ � x�
4pg

vg

!!2

, (79)

vG = dt is the given velocity of the center of gravity of the object. The parameter ⌧0 is obtained from

⌧0(r) =
1
3

 

p

h0 +C(r) +
h0

C(r)

!

, (80)

with C(r) given by

C(r) =
3
2

⇣

�4r + r0 +
p

r(r � r0)
⌘

1
3 , (81)

and r0 =
4
27 h

3
2
0 .190
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Figure 8: Convergence trend in a MS-NSW-MS model, in figure a for the depth variables and in figure b for the total pressure variable.

Figure 10c shows the position of the contact point in time. The numerical solution presents the same behaviour of191

the exact solution. The error on the mass is evaluated with the body at the equilibrium position: the method conserves192

the mass within the limits of the finite domain and the absorption layer at the boundary. The figure 11 presents a193

convergence study. We get a lower rate of convergence for all the mesh tested, compared to the results of sections 4.2194

and 4.3. This is probably due to the fact that the initialization of the first two steps of eBDF3 method are evaluated195

with Euler and the error is then propagated to the rest of the simulation.196

4.6. Decay test197

For the decay test, we consider the same structure as in the previous test freely floating in the vertical direction.
The body is released from an initial position zC,0 di↵erent from the equilibrium position zC,eq. In the simulation the
body starts with the center of gravity below the water line zC,0 = zC,eq � 2m and it returns to the equilibrium position.
We can validate the model solving the semi-analytical solution for the movement of the body’s center of gravity, given
by the di↵erential equation [29]

8

>

>

<

>

>

:

(mb + madd)�̈G = �c�G � ⌫(�̇G) + �(�G)(�̇G)2

(�G, �̇G)(t = 0) = (�0
G, 0),

(82)

the parameters ⌫(�̇G) and �(�G) are defined as

⌫(�̇G) = ⇢wg(x+ � x�)
2

6

6

6

6

6

4

h0 �
 

⌧0

 

x+ � x�
4pg

�̇G

!!23
7

7

7

7

7

5

,

�(�G) = ⇢w

Z x+

x�

x � x0

hw
@x

 

(x � x0)2

hw

!

dx,

(83)

with hw(t) = deq + �G(t) the position of the wetted surface, deq the geometry of the bottom of the body at rest and
⇣e,± = ⇣e(t, x±) = de(t, x±) � h0. The added mass term madd and the sti↵ness coe�cient c

madd = ⇢wVar(x)↵ ↵ =

Z x+

x�

1
hw

dx,

c = ⇢wg(x+ � x�).
(84)

We define a variance operator as
Var( f ) = h f 2i � h f i2,
h f i = 1

R x+
x�

1
hw

Z x+

x�

f
hw

dx. (85)
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The ODE eq. (82) is solved with a eBDF3 time integration scheme, such that the integration is consistent with one of198

the numerical problem. In figure 12c we see the tracking of the center of gravity and the semi-analytical solution and199

the numerical solution give comparable results. As in the previous test the total mass is conserved in the limit of the200

boundary wave absorption.201

4.7. Fixed pontoon202

The case considers a weakly nonlinear solitary wave propagating past a rectangular box [16, 31, 43]. In particular,203

we are going to concentrate reproducing the VOF-RANS results in [31] and FNPF results [16]. We consider a pontoon204

of length L = 5m and draft T0 = 0.4m in a flume of constant still water depth h0 = 1.0m. The total length of the205

flume is 185m of which 90m before the body and 90m after. The two wave gauges are located at G1 = �31.5m and206

G2 = 26.5m assuming the center of the box located at xc = 0m as shown in figure 13. The incoming solitary wave is207

defined by the equation from [4] and has a non-dimensional amplitude A
h0
= 0.1. The simulation is done with a mesh208

of Nw = 25 elements on the free surface domain and Nb = 5 elements for the body to have a better resolution, with a209

polynomial order p = 3.210

We can not use the NSW model since the solitary wave is dispersive and it will not be able to solve it correctly,211

subsequently the MS model must be used in the outer domain. Anyway, because of proposition 1, we solve the NSW212

equations in the inner domain. Since the coupling between MS and NSW has been proven e↵ective, especially for213

free surface flow, we set a small free surface layer around the pontoon where NSW is solved. This layer length must214

be calibrated and for the purpose of the fixed pontoon we kept it as small as possible to avoid the loss of the dispersive215

characteristic of the reflected and transmitted waves. Figure 14 shows the solution at two di↵erent times. The problem216

is solved correctly, with the wave transmitting and reflecting smoothly against the structure. The comparison between217

the elevation registered by the gauges in the VOF-RANS simulation and the MS is presented in figure 15a. The wave218

generated is not perfectly coincident with the wave of the original study, due to the fact that we do not have any219

information but the wave elevation. This results shows little discrepancies between our solution and the VOF-RANS220

one, in particular the elevation of the transmitted wave is over-predicted and the first peak of the trail of the reflected221

wave is under-predicted. Regardless, the simpler Boussinesq model can still capture the salient characteristics of the222

transmitted and reflected waves. The figure 15b shows the total water mass during the simulation, the drops from time223

t = 0s to t ⇡ 20s and at the final time, represent the absorption of a trail from the incident soliton wave and of the224

resulting waves in the sponge zone. Anyway we can see that, once the trail is absorbed (around t ⇡ 20s) and before225

time t ⇡ 37s when the waves are absorbed, the mass is conserved.226
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Figure 10: Snapshot of the forced motion test case: a initial state, , b solution at t = 6.66s. Figure c shows the evolution of the contact point and
the exact solution from eq. (79). Figure d shows the amount of error on the total mass during the simulation.

4.8. Heaving body227

We consider a heaving box interacting with a stream function wave [18]. The body is a rectangular box of length228

l = 6m and height = 10m, with a displacement volume of 30m2. Because of the characteristics of the waves generated,229

the outer domain must be solved with the MS equations. As in section 4.7 we define a small free surface layer around230

the body where we solve the NSW equations, coupled with the inner NSW model. The layer here is calibrated to be231

long enough such that we avoid the propagation of dispersive terms under the body, where they are equal to zero and232

short enough to permit the propagation of the wave with minimal distortions. In practice, we have seen that LNS W =
�
5 ,233

gives acceptable results.234

We tested three set of waves of increasing steepness � = A
� , where A is the wave amplitude and � the wave

length. These are listed in the table 1. The main results in figure 17 are presented in terms of the Response Amplitude
Operator (RAO), which is evaluated as

RAO =
max(⌘i) �min(⌘i)

2A
, (86)

where ⌘i is the elevation of the body. We notice that, for linear waves in figure 17a, we can retrace the behavior of the235

linear model, with the characteristic peak at the resonance frequency. For wave with a low steepness of � = 0.025,236

we have a RAO close to the CFD model where the peak at T = 6s is about half the respons of the linear model. For237

larger wave steepness the RAO, in figure 17c, of the Boussinesq model has a value halfway between the linear and238

the RANS result. Note that for the fastest and shortest waves (T < 6s) we do not have any result for the Boussinesq239

19



U. Bosi et al. / Comput. Methods Appl. Mech. Engrg. 00 (2018) 1–25 20

20 30 40 50 60 70 80 90 100

N
el

10
-3

10
-2

10
-1

10
0

Time Error convergence

P = 1

P = 3

P = 5

Figure 11: Convergence in time for the forced motion test

Table 1: Period, amplitude and steepness of the wave tested

Period T [s] Amplitude A[m] Steepness �[�]
6.00 2.75 ⇥ 10�3 10�4

7.00 3.6 ⇥ 10�3 10�4

8.01 4.45 ⇥ 10�3 10�4

9.99 6.05 ⇥ 10�3 10�4

5.99 0.69 0.025
6.99 0.9 0.0249
8.01 1.12 0.025
10.01 1.53 0.025
5.97 1.38 0.0495
6.95 1.8 0.0494
7.92 2.23 0.0497

model as we are outside its application window, suggesting that a Boussinesq model with improved properties should240

be used instead.241

The performance of the RANS and the Boussinesq models are presented in table 2 in the form of computational242

time per wave period. The RANS simulations use existing codes on OpenFOAM [39] with a mesh of 250 000 cells for243

the waves of period T = 6s and of 350 000 cells in the other cases. The Boussinesq simulations are done on a in-house244

code in Matlab [35] with a mesh of 51 elements in total and of polynomial order p = 3. As we can see from the table 2,245

the computational time per period used by the Boussinesq model is two to three orders of magnitude smaller than the246

CFD ones. This, together with the numerical results presented in figure 17, confirm that the Boussinesq model is a247

cost e↵ective alternative to a full RANS model if applied within the range of validity.248

Table 2: Computational e↵ort per wave period for the CDF and Boussinesq models

� Period T [s] CFD [s/T ] Boussinesq [s/T ]
0.025 5.99 52 000 92

6.99 77 000 123
8.01 92 000 143

0.05 5.97 71 000 102
6.95 120 000 120
7.92 150 000 145
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Figure 12: Snapshot of the decay test case: a initial state, 12b solution at t = 6.66s. Figure c shows the evolution of the center of gravity and the
exact solution and figure d the conserved mass of water during the simulation.

4.9. Multiple bodies249

With our framework, we can use the domain decomposition to simulate multiple bodies. In this section we consider250

a two bodies configuration, as shown in figure 18. Each body can be alternatively fixed or a heaving. Both bodies251

have length l = 6m and height hb = 10m. The dimension of the free surface domains is defined by the length of the252

wave tested, such that we can accommodate the generation and the absorption layer. The left free surface domain is253

5� long, the central domain is 2� and the last domain is 4�. The NSW layer around the bodies is a single element of254

length equal to a fifth of a wave length. The polynomial order is p = 3.255

The figure 19 shows the response of the moving bodies of the simulations to four set of waves of period T =256

[6, 7, 8, 10]s and steepness � = [0.0001, 0.025]. We can see from the figure 19, that the interaction of the transmitted257

and reflected waves for the two bodies a↵ects the RAO. We can see that, a part from the short linear wave where258

the single body (the dashed line in the plots) is at resonance frequency, the first body (blue stars and squares ⇤, ⇤)259

benefits by the reflected waves on the second one (red Xs and triangles ⇥, /), especially when the latter is another260

heaving body. It is interesting to notice that the variations of the RAO of the two bodies present similar trends to the261

single body RAO. This is probably do to the fact that the space between the to bodies is not fixed through the di↵erent262

simulations but it is always proportional to the wave length. We expect that the RAO can vary with less predictable263

trends in case the distance is fixed. This can be seen for example in figure 20, where the distance between the two264

bodies is fixed at 20 meters. In this case the reflected wave has a dampening impact on the movement of the first body,265

resulting in it having a smaller movement than the second one in most cases. This test shows also the importance, in266

the future, to be able to optimize the placement of several bodies in such a way that the constructive behaviors are267
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enhanced and the destructive ones minimized.268

5. Conclusion269

We have presented a nonlinear numerical model for wave-body interaction using Madsen and Sørensen equations.270

These models are based on depth-integrated Boussinesq-type equations, a computationally e�cient method for wave271

propagation in near-shore waters. The unified approach of Jiang [26] has inspired the model, as has the recent work of272

Lannes [29]. The model uses continuous spectral/hp element discretization in the di↵erent domains and are coupled273

by numerical fluxes [21]274

We tested the model using manufactured solutions and showed the exponential convergence. In addition, we have275

validated our model against analytical solutions as well as CFD simulations. With the nonlinear shallow water model,276

we can reproduce the results of Lannes [29] and we have agreement with the exact and semi-analytical solutions.277

These results show that we can simulate di↵erent shapes of body. The simulation of the Madsen and Sørensen model278

for the fixed pontoon shows a similar outcomes for our Boussinesq model and the CFD solution by Lin [31]. The279

heaving floating body simulations show agreement with assessed result for linear and small steepness wave and a280

clear improvement in case of medium steepness compared to the linear model. Moreover, the computational time281

of the Boussinesq model is few order of magnitude smaller than the RANS model, making it an e�cient tool for282

the simulation of wave-body interaction. The next step is to include some form of optimal control such that we283

can optimize the power output of the device. However, there are minor problems mainly related to instabilities that284

arise in the MS-NSW coupling or in evaluation the inner pressure. A smoothing and stabilizing method should be285

implemented for the pressure.286

In spite of these challenges ahead we believe the present work indicates that a medium-fidelity unified Boussinesq287

based model can bring benefits in terms of e�ciency without compromising on the accuracy of the results, if applied288

within the application window of the underlying Boussinesq equation. In ongoing work, we will consider the extension289

to two horizontal spatial dimensions as well as allowing the body to move in more degrees of freedom.290
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Flat Pontoon, Solution at t = 14.44s
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Flat Pontoon, Solution at t = 16.44s
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[6] Castro M.J., LeFloch P.G., Muñoz-Ruiz M.L., Parés C.. Why many theories of shock waves are necessary: Convergence error in formally305

path-consistent schemes. Journal of Computational Physics 227.17 (2008): 8107-29.306

[7] Chen, X.N. and Sharma, S. A slender ship moving at near-critical speed in a shallow channel. Journal of Fluid Mechanics 291 (1995):307

263-285.308

[8] Cockburn, B. and Shu, C.-W. The local discontinuous Galerkin method for time-dependent convection-di↵usion systems. SIAM Journal on309

Numerical Analysis, 35.6 (1998): 2440-2463.310

[9] Cummins, W. E. The impulse response function and ship motions. No. DTMB-1661. David Taylor Model Basin Washington DC, (1962).311

[10] Dumbser M., Castro M., Parés C., Toro E.F. ADER schemes on unstructured meshes for nonconservative hyperbolic systems: Applications312

to geophysical flows. Computers & Fluids 38.9 (2009): 1731-48.313

[11] Dumbser, M. and Facchini, M. A space-time discontinuous Galerkin method for Boussinesq-type equations. Applied Mathematics and Com-314

putation 272 (2016): 336-346315

[12] Duran, A., Dutykh D. and Mitsotakis D. On the Galilean invariance of some nonlinear dispersive wave equations. Studies in Applied Mathe-316

matics 131.4 (2013): 359-388.317

[13] Duran, A. and Marche, F. Discontinous-Galerkin discretization of a new class of Green-Nagdhi equations. Communications in Computational318

Physics 17.3 (2015):572-588.319

[14] Engsig-Karup A.P., Eskilsson C., Bigoni D. A stabilised nodal spectral element method for fully nonlinear water waves. Journal of Compu-320

tational Physics 318 (2016):1-21.321

[15] Engsig-Karup, A.P., Hesthavem J.S., Bingham, H. and Madsen. P. Nodal DG-FEM solutions of high-order Boussinesq-type equations. Journal322

of Engineering Mathematics 56 (2006):351-370.323

23



U. Bosi et al. / Comput. Methods Appl. Mech. Engrg. 00 (2018) 1–25 24

0 5 10 15 20 25 30 35 40

time

-0.05

0

0.05

0.1

d
1
(x

 =
 1

)

Gauge 1

MS

VOF-RANS

0 5 10 15 20 25 30 35 40

time

-0.05

0

0.05

0.1

d
2
(x

 =
 5

9
)

Gauge 2

MS

VOF-RANS

a

0 5 10 15 20 25 30 35 40

time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

%
 o

f 
e
rr

10
-4 |Mass(t)-Mass(0)|/Mass(0)

% of error

b

Figure 15: a Elevation at the two gauges; b, error in the total water mass during the simulation.

[16] Engsig-Karup, A.P., Monteserin C. and Eskilsson C. A Stabilised Nodal Spectral Element Method for Fully Nonlinear Water Waves, Part 2:324

Wave-body interaction. arXiv preprint arXiv:1703.09697 (2017).325

[17] Ertekin, R., Webster, W. and Wehausen, J. Waves caused by a moving disturbance in a shallow channel of finite width. Journal of Fluid326

Mechanics 169 (1986): 275-292.327

[18] Eskilsson, C., Palm, J., Engsig-Karup, A.P., Bosi, U. and Ricchiuto, M. Wave Induced Motions of Point-Absorbers: a Hierarchical Investiga-328

tion of Hydrodynamic Models. 11th European Wave and Tidal Energy Conference (EWTEC). (2015).329

[19] Eskilsson, C., Palm J., Kofoed J. P. and Friis-Madsen E. CFD study of the overtopping discharge of the Wave Dragon wave energy converter.330

Renewable Energies O↵shore (2015): 287-294.331

[20] Eskilsson, C. and Sherwin S.J. A discontinuous spectral element model for Boussinesq-type equations, Journal of Scientific Computing 17.1332

(2002): 143-152.333

[21] Eskilsson, C. and Sherwin S.J. Spectral/hp discontinuous Galerkin methods for modelling 2D Boussinesq equations, Journal of Computational334

Physics 212.2 (2006): 566-589.335

[22] Filippini, A.G, Bellec S., Colin M. and Ricchiuto M. On the nonlinear behaviour of Boussinesq type models: Amplitude-velocity vs336

amplitude-flux forms, Coastal Engineering 99 (2015): 109-123 .337

[23] Godlewski E., Parisot M., Sainte-Marie J. and Wahl F. Congested shallow water model: roof modellling in free surface flow, ESAIM:M2AN338

(2018)339

[24] Hesthaven JS, Warburton T. Nodal discontinuous Galerkin methods: algorithms, analysis, and applications. Springer Science & Business340

Media (2007).341

[25] Horn RA, Johnson CR. Matrix analysis. Cambridge university press; (1990).342

[26] Jiang, T. Ship waves in shallow water. Fortschritt-Berichte VDI Reihe 12, Verkehrstechnik, Fahrzeugtechnik; (2001).343

[27] John, F. On the motion of floating bodies. Part I. Communications on Pure and Applied Mathematics 2 (1949):13-57344

[28] Karniadakis, G. and Sherwin S.J. Spectral/hp element methods for computational fluid dynamics, Oxford University Press (2013).345

[29] Lannes, D. On the dynamics of floating structures, Annals of PDE 3.1 (2017): 11.346

[30] Lannes, D., private communications and notes.347

[31] Lin, P. A multiple-layer �-coordinate model for simulation of wave–structure interaction. Computers & fluids 35.2 (2006): 147-167.348
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Figure 17: RAO plot for a linear wave of steepness � = 0.0001 in figure a, for a stream wave of steepness � = 0.025 in figure b and for a stream
wave of steepness � = 0.05 in figure c.
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Figure 18: Multi body problem. Each body can be either a fixed pontoon or a heaving body. In figure a the initial set up and in figure b the
simulation of two heaving bodies with a wave of period T = 10s and steepness � = 0.025
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Figure 19: RAO plots for a stream wave of period T = [6, 7, 8, 10]s and steepness � = 0.0001 for the multiple bodies tests with the distance
between the bodies dependent on the wave length l = 2� in figure a and for a fixed distance of 20 meters in b: the dashed line is the single body
RAO, ⇤ and ⇥ the first and second heaving bodies in series, ⇤ a heaving body in front of a pontoon and finally /, a heaving body behind a pontoon.
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Figure 20: RAO plots for a stream wave of period T = [6, 7, 8, 10]s and steepness � = 0.025 for the multiple bodies tests with the distance
between the bodies dependent on the wave length l = 2� in figure a and for a fixed distance of 20 meters in b: the dashed line is the single body
RAO, ⇤ and ⇥ the first and second heaving bodies in series, ⇤ a heaving body in front of a pontoon and finally /, a heaving body behind a pontoon.
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