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Abstract
We introduce GLR-klUCB, a novel algorithm for the piecewise i.i.d. non-stationary bandit problem
with bounded rewards. This algorithm combines an efficient bandit algorithm, klUCB, with an
efficient, parameter-free, change-point detector, the Bernoulli Generalized Likelihood Ratio Test,
for which we provide new theoretical guarantees of independent interest. Unlike previous non-
stationary bandit algorithms using a change-point detector, GLR-klUCB does not need to be
calibrated based on prior knowledge on the arms’ means. We prove that this algorithm can attain a
O(
√
TAΥT ln(T )) regret in T rounds on some “easy” instances in which there is sufficient delay

between two change-points, where A is the number of arms and ΥT the number of change-points,
without prior knowledge of ΥT . In contrast with recently proposed algorithms that are agnostic
to ΥT , we perform a numerical study showing that GLR-klUCB is also very efficient in practice,
beyond easy instances.
Keywords: Multi-Armed Bandits; Change Point Detection; Non-Stationary Bandits.

1. Introduction

Multi-Armed Bandit (MAB) problems form a well-studied class of sequential decision making
problems, in which an agent repeatedly chooses an action At ∈ {1, . . . , A} or “arm” among a set
of A arms (Robbins, 1952; Lattimore and Szepesvári, 2019). In the most standard version of the
stochastic bandit model, each arm a is associated with an i.i.d. sequence of rewards (Xa,t) that
follow some distribution of mean µa. Upon selecting arm At, the agent receives the reward XAt,t.
Her goal is to design a sequential arm selection strategy that maximizes the expected sum of these
rewards, or, equivalently, that minimizes regret, defined as the difference between the total sum of
rewards of an oracle strategy always selecting the arm with largest mean and that of her strategy.
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Stochastic bandits were historically introduced as a simple model for clinical trials, where arms
correspond to some treatments with unknown efficacy (Thompson, 1933). More recently, MAB
models have been proved useful for other applications, such as cognitive radio, where arms can
model the vacancy of radio channels, or parameters of a dynamically configurable radio hardware
(Maghsudi and Hossain, 2016; Bonnefoi et al., 2017; Kerkouche et al., 2018). Another application
is the design of recommender systems, where arms model the popularity of different items (e.g.,
news recommendation, Li et al. (2010)). In all these applications, the assumption that the arms
distributions do not evolve over time is often violated: patients adapt to medical treatments, new
devices can enter or leave the radio network, hence impacting the availability of radio channels,
and the popularity of items is subject to trends. This aroused interest in how to take non-stationary
aspects into account within a multi-armed bandit model.

As a possible way to cope with non-stationarity, the piecewise stationary MAB was introduced
by Kocsis and Szepesvári (2006). In this model, the (random) reward of arm a at round t has some
mean µa(t) and the regret is measured with respect to the current best arm a?t = arg maxa µa(t). It
is furthermore assumed that there are relatively few breakpoints between which the µa(t) remain
constant for all arms a. Alternative models in which the mean reward function µa(t) can slowly vary
in every time step have also been considered in the literature (see, e.g. Wei and Srivastava (2018))
and may also be useful for the above mentioned applications. Still, a piecewise stationary model
can be a relevant approximation when there are a few important changes whose magnitude is much
larger than the typical variation between consecutive time steps. For example in cognitive radio, an
important drop in performance could be caused by a new set of radio devices being deployed on a
subset of the channels.

Despite many approaches already proposed for minimizing regret under the piecewise stationary
MAB model (see Section 2), research on this topic has been very active in the last years, notably
in two different directions. The first is the design of a good combination of a bandit algorithm
and a change-point detector (CPD) supported by regret guarantees and enjoying good empirical
performance (Liu et al., 2018; Cao et al., 2019). These algorithms share with many others the
downside of having to know the number of breakpoints ΥT to guarantee state-of-the-art regret. The
second direction proposes algorithms that achieve optimal regret without the knowledge of ΥT (Auer
et al., 2019b; Chen et al., 2019), but without an emphasis on actual practical performance (yet).

In this paper, we propose the first algorithm based on a change-point detector that is very efficient
in practice and does not require the knowledge of ΥT to provably achieve optimal regret, at least
on some “easy” instances, with few breakpoints of large enough magnitude. An interesting feature
of our algorithm compared to other CPD-based algorithms is that it does not require any prior
knowledge on the arms means. Like CUSUM (Liu et al., 2018) and M-UCB (Cao et al., 2019),
our algorithm relies on combining a standard bandit algorithm with a change-point detector. For
the bandit component, we propose the use of the klUCB (Cappé et al., 2013) which is known to
outperform UCB (Auer et al., 2002a) used in previous works. For the change-point detector, we
suggest using the Bernoulli Generalized Likelihood Ratio Test (GLRT), for which we provide new
non-asymptotic properties that are of independent interest. This choice is particularly appealing
because unlike the change-point detectors used in previous works, the Bernoulli GLRT does not
require a lower bound on the minimal amount of change to detect, which leads to a bandit algorithm
which is agnostic to the arms’ means. In contrast, both CUSUM and M-UCB require the knowledge
of the smallest magnitude of a change in the arm’s mean.
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In this work we jointly investigate two versions of GLR-klUCB, one using global restarts
(resetting the history of all arms once a change-point is detected on one of them) and one using
local restarts (resetting the history of an arm each time a change-point is detected on that arm). We
prove that GLR-klUCB based on global restart achieves a O(

√
TAΥT ln(T )/(∆change)2) regret

where ∆change is the smallest magnitude of a breakpoint. If all breakpoints have a large magnitude,
this O(

√
TAΥT ln(T )) regret is matching the lower bound of Seznec et al. (2020) up to a

√
ln(T )

factor. Following a similar analysis, we prove slightly weaker results for the version based on local
restart. Numerical simulations in Section 6 reveal that these two versions are both competitive in
practice with state-of-the-art algorithms.

To summarize, our contributions are the following: (1) A non-asymptotic analysis of the Bernoulli-
GLR change-point detector. (2) A new bandit algorithm for the piecewise stationary setting based
on this test that needs no prior knowledge on the number of change-points and no information on
the arms means to attain near-optimal regret. (3) An extensive numerical study illustrating the good
performance of two versions of GLR-klUCB compared to other algorithms with state-of-the-art
regret.

Outline The paper is structured as follows. We introduce the model and review related works in
Section 2. In Section 3, we present some properties of the Bernoulli-GLR change-point detector.
We introduce the two variants of GLR-klUCB in Section 4. In Section 5 we present regret upper
bounds for GLR-klUCB for Global Restart and sketch our regret analysis. Numerical experiments
are presented in Section 6.

2. Setup and Related Work

A piecewise stationary bandit model is characterized by a stream of (random) rewards (Xa,t)t∈N?

associated to each arm a ∈ {1, . . . , A}. We assume that the rewards are bounded in a known range,
and without loss of generality we assume thatXa,t ∈ [0, 1]. We denote by µa(t) := E[Xa,t] the mean
reward of arm a at round t. At each round t, a decision maker has to select an arm At ∈ {1, . . . , A},
based on past observation and receives the corresponding reward r(t) = XAt,t. At time t, we denote
by a?t an arm with maximal expected reward, i.e., µa?t (t) = maxa µa(t), called an optimal arm.

A policy π chooses the next arm to play based on the sequence of past plays and obtained rewards.
The performance of π is measured by its (dynamic) regret, the difference between the expected
reward obtained by an oracle policy playing an optimal arm a?t at time t, and that of the policy π:

RπT = E

[
T∑
t=1

(
µa?t (t)− µAt(t)

)]
.

In the piecewise i.i.d. model, we furthermore assume that there is a (relatively small) number
of breakpoints, denoted by ΥT :=

∑T−1
t=1 1 (∃a ∈ {1, . . . , A} : µt(a) 6= µt+1(a)). We define the

k-th breakpoint by τ (k) = inf{t > τ (k−1) : ∃a : µa(t) 6= µa(t + 1)} with τ (0) = 1. Hence for
t ∈ [τ (k) + 1, τ (k+1)], the rewards (Xa,t) associated to all arms are i.i.d., with mean denoted by

µ
(k)
a . The magnitude of a breakpoint k is defined as ∆c,(k) =: max

a=1,...,A

∣∣∣µ(k)
a − µ(k−1)

a

∣∣∣ and we let

∆change =: min
k=1,...,ΥT

∆c,(k).

Breakpoint versus change-point Note than when a breakpoint occurs, we do not assume that all
the arms means change, but that there exists an arm which experiences a change-point, i.e. whose
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mean satisfies µa(t) 6= µa(t+ 1). Depending on the application, many scenarios can be meaningful:
changes occurring for all arms simultaneously (due to some exogenous event), or only a few arms
that experience a change-point in each breakpoint. Denoting by CT the total number of change-points
before horizon T , it holds that CT ∈ {ΥT , . . . , AΥT }.

2.1 An Adversarial View on Non-Stationary Bandits

A natural way to cope with non-stationary is to model the decision making problem as an adversarial
bandit problem (Auer et al., 2002b), under which the rewards are arbitrarily generated. For adversarial
environments, the most studied performance measure is the pseudo-regret, which compares the
accumulated reward of a given strategy with that of the best fixed-arm policy. However in some
changing environments it is more natural to measure regret against the best sequence of actions. Auer
et al. (2002b) propose the Exp3.S algorithm, that achieves a regret of O(

√
AΥTT ln(T )) against the

best sequence of actions with ΥT − 1 switches. This regret rate matches the corresponding lower
bound. Exp3.S is simple to implement and run with time and space complexity O(A) but requires
the knowledge of T and ΥT to reach near-minimax optimal regret rate.

When the piecewise i.i.d. assumption holds (with ΥT stationary part), the best sequence of actions
with ΥT − 1 switches corresponds to the optimal oracle policy. The minimax optimal rate against
piecewise i.i.d. rewards sequences is also O(

√
AΥTT ). It is similar to the fixed-arm case where the

adversarial pseudo-regret rate and the minimax stochastic rate are the same (O(
√
AT ), Audibert

and Bubeck (2010)). However, in the fixed-arm setup, the stochastic stationary assumption allows a
problem-dependent analysis: some algorithms (e.g. UCB or Thomson Sampling) suffer O(lnT/∆i)
regret on each arm i with a reward gap of ∆i compared to the best arm. When ∆i is large enough, this
problem-dependent guarantee is much better than the O(

√
T ) minimax rate. Unfortunately, in the

piecewise i.i.d. setup, Garivier and Moulines (2011) show that any algorithm whose regret is RT (µ)
on a stationary bandit instance µ is such that there exists a piecewise stationary instance µ′ with at
most two breakpoints such that RT (µ′) ≥ cT/RT (µ), for some absolute constant c. In particular,
this implies that an algorithm that attains O(

√
T ) regret for any piecewise stationary bandit model

has no hope to reach O(ln(T )) regret on easy instances. The intuition behind this result is that if
an algorithm achieves very low regret on a specific problem then it has to pull suboptimal arms
very scarcely. By doing so, it is unable to perform well on a similar problem where the identified
suboptimal arms’ surreptitiously increase to become optimal. Therefore, it is important to pull every
arm often enough (e.g. every O(

√
AT/ΥT ) rounds) even when one is clearly underperforming.

Nevertheless, the piecewise i.i.d. bandit problem remained actively studied since the seminal
paper of Auer et al. (2002b). The outcome of this line of work is threefold. First, designing strategies
leveraging tools from the stochastic MAB can greatly improve the empirical performance compared
to adversarial algorithms like Exp3.S. Second, we would like to build strategies that are near-optimal
without the knowledge of ΥT

1 (unlike Exp3.S). Third, it is possible to further restrain the setup
to make the problem-dependent analysis possible by forbidding the aforementioned surreptitious
increase of one arm. For instance, Mukherjee and Maillard (2019) consider the “global change” setup
in which all the arms change significantly when a breakpoint occurs. Seznec et al. (2020) consider

1. In the adversarial setup, ΥT appears in the definition of the pseudo-regret, hence it is quite natural that the learner
knows this parameter. In the piecewise i.i.d. setup, the regret is against the optimal oracle policy which is defined
independently of ΥT .
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the rotting setup where the arms cannot increase. In both cases, the authors proved a logarithmic
problem-dependent upper bound on the regret of their algorithms.

In this paper, we bring theoretical and empirical contributions to the two first points. We also
discuss a possible adaptation of GLR-klUCB that may recover logarithmic regret in the easier setups
of Mukherjee and Maillard (2019); Seznec et al. (2020).

2.2 Algorithms Exploiting the Stochastic Assumption

The piecewise stationary bandit model was first studied by Kocsis and Szepesvári (2006); Yu and
Mannor (2009); Garivier and Moulines (2011). It is also known as switching (Mellor and Shapiro,
2013) or abruptly changing stationary (Wei and Srivastava, 2018) environment. Most approaches
exploiting the stochastic assumption combine a bandit algorithm with a mechanism to forget old
rewards. We make a distinction between passively adaptive strategies, which use a fixed forgetting
mechanism, and actively adaptive strategies, for which this mechanism is also data-dependent.

Passively Adaptive Strategies A simple mechanism to forget the past consists in either discounting
rewards (multiplying past reward by γn where n is the time elapsed since that reward was collected,
for a discount factor γ ∈ (0, 1)), or using a sliding window (only the rewards gathered in the τ
last rounds are taken into account, for a window size τ ). Those strategies are passively adaptive
as the discount factor or the window size are fixed, and can be tuned as a function of T and ΥT to
achieve a certain regret bound. Discounted UCB (D-UCB) was proposed by Kocsis and Szepesvári
(2006) and analyzed by Garivier and Moulines (2011), who prove aO(A

√
ΥTT ln(T )) regret bound,

if γ = 1 −
√

ΥT /T/4. The same authors proposed the Sliding-Window UCB (SW-UCB) and
prove a O(A

√
ΥTT ln(T )) regret bound, if τ = 2

√
T ln(T )/ΥT . More recently, Raj and Kalyani

(2017) proposed the Discounted Thompson Sampling (DTS) algorithm, which performs well on the
reported experiments with γ = 0.75, but no theoretical guarantees are given for this particular tuning.
The RExp3 algorithm (Besbes et al., 2014) is another passively adaptive strategy that is based on
(non-adaptive) restarts of the Exp3 algorithm (Auer et al., 2002b). RExp3 is analyzed in terms of a
different measure of interest, the total variation budget VT which satisfies ∆changeΥT ≤ VT ≤ ΥT .
RExp3 is proved to have a O((A lnA)1/3V

1/3
T T 2/3) regret, which translates to a sub-optimal rate in

our setting.

Actively Adaptive Strategies The first actively adaptive strategy is Windowed-Mean Shift (Yu
and Mannor, 2009), which combines any bandit policy with a change-point detector which performs
adaptive restarts of the bandit algorithm. However, this approach does not apply to our setting as it
takes into account side observations. Another line of research on actively adaptive algorithms uses a
Bayesian point of view, where the process of change-point occurrences is modeled and tracked using
Bayesian updates. A Bayesian Change-Point Detection (CPD) algorithm is combined with Thompson
Sampling by Mellor and Shapiro (2013), and more recently in the Memory Bandit algorithm of
Alami et al. (2017). Since none of these algorithms have theoretical guarantees and they are designed
for a different setup, we do not include them in our experiments.

Our closest competitors rather use frequentist CPD algorithms combined with a bandit algorithm.
The first algorithm of this flavor, Adapt-EVE algorithm (Hartland et al., 2006) uses a Page-Hinkley
test and the UCB policy, but no theoretical guarantees are given. Exp3.R (Allesiardo and Féraud,
2015; Allesiardo et al., 2017) combines a CPD with Exp3, and the history of all arms are re-
set as soon as a sub-optimal arm is detected to become optimal and it achieves a (sub-optimal)

5



BESSON, KAUFMANN, MAILLARD, SEZNEC

O(ΥTA
√
T ln(T )) regret (yet without the knowledge of ΥT ). More recently, CUSUM-UCB (Liu

et al., 2018) and Monitored UCB (M-UCB, Cao et al. (2019)) have achieved O(
√

ΥTAT ln(T ))
regret, when ΥT is known.

CUSUM-UCB is based on a variant of a two-sided CUSUM test, that uses the first M samples
from one arm to compute an initial average, and then detects whether a drift of size larger than ε
occurred from this value by checking whether a random walk based on the remaining observations
crosses a threshold h. It requires the tuning of three parameters, M , ε and h. CUSUM-UCB
performs local restarts using this test, to reset the history of one arm for which the test detects a
change. M-UCB uses a simpler test, based on the w most recent observations from an arm: a change
is detected if the absolute difference between the empirical means of the first and second halves
of those w observations exceeds a threshold h. It requires the tuning of two parameters, w, and h.
M-UCB performs global restarts using this test, to reset the history of all arms whenever the test
detects a change on one of them.

On a stationary batch, a UCB index algorithm tends to pull each arm at a logarithmic rate
asymptotically. According to the aforementioned Garivier and Moulines (2011)’s lower bound, it is
not enough to shield against increases of the suboptimal arms’ values. Thus, CPD-based algorithms
usually rely on additional forced exploration: each arm is pulled regularly either according to a
constant probability of uniform exploration (Liu et al., 2018) or according to a deterministic scheme
(Cao et al., 2019). To avoid linear regret, the total budget dedicated to this forced exploration is
tuned with the knowledge of T and ΥT (e.g. O

(√
AΥTT

)
). Mukherjee and Maillard (2019) suggest

canceling the forced exploration when all the arms change at the same rounds. Indeed, in that case,
we can aim to detect the changes on any arms’ sequences and then restart all the arms’ indexes.
Similarly, Seznec et al. (2020) do not use forced exploration and study the Rotting Adaptive Window
UCB (RAW-UCB) - a UCB index policy with an adaptive window designed for non-increasing
sequences of rewards. Both these algorithms can get logarithmic regret on some problem instances
and, therefore, cannot be minimax optimal for the general piecewise i.i.d bandit problem, which is
our focus in this paper.

2.3 On the Knowledge of the Number of Breakpoints

All algorithms mentioned above for the general piecewise stationary bandit problem require some
tuning that should depend on ΥT to attain state-of-the-artO(

√
ΥTAT ln(T )) regret. Two algorithms

achieving this regret without the knowledge of ΥT were recently proposed: Ada-ILTCB+(Chen
et al., 2019) and AdSwitch (Auer et al., 2019b), that also rely on detecting non-stationarities (Auer
et al., 2019a). While the former is tailored for the more general adversarial and contextual setting,
the latter is specifically proposed for the piecewise i.i.d. model.

AdSwitch is an elimination strategy based on confidence interval (like Improved UCB (Auer and
Ortner, 2010)) with global restarts when a change-point is detected on one arm. AdSwitch performs
an adaptive forced exploration scheme on the eliminated arms which adds two main components to
the aforementioned uniform random exploration. First, AdSwitch uses a counter l (initialized at 1)
for the number of detected changes by the CPD subroutine as a proxy for ΥT to tune the random
exploration probability on each eliminated arms at O

(√
l/KT

)
. Second, AdSwitch also selects at

random a change size ∆ on a geometric grid, with a probability proportional to ∆. The arm is then
pulled O (1/∆2) consecutive pulls to check if there is a change of size ∆. The consecutive sampling
is particularly helpful theoretically to analyze the algorithm when the CPD misses some breakpoints.
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However, unlike in our work, the underlying change-point detectors used in AdSwitch have not
been optimized for efficiency or tractability2. Neither (Chen et al., 2019) nor (Auer et al., 2019b)
report simulation to assess the empirical or numerical efficiency of their algorithms. In this paper, we
include (a tweaked, tractable version of) AdSwitch in our experiments for short horizons.

An alternative idea to adapt to ΥT is the “Bandit over Bandit” approach of Cheung et al. (2019),
which uses an exponential weights algorithm for expert aggregation on top of several copies of
Sliding-Windows UCB with different (fixed) window size. Yet this approach does not yield optimal
regret.

3. The Bernoulli GLR Change Point Detector

Sequential change-point detection has been extensively studied in the statistical community (see,
e.g., Basseville et al. (1993); Jie and Gupta (2000); Wu (2007))). In this article, we are interested
in detecting changes on the mean of a probability distribution with bounded support. Assume that
we collect independent samples X1, X2, . . . all from some distribution supported in [0, 1]. We want
to discriminate between two possible scenarios: all the samples come from distributions that have
a common mean µ0, or there exists a change-point τ ∈ N? such that X1, . . . , Xτ have some mean
µ0 and Xτ+1, Xτ+2, . . . have a different mean µ1 6= µ0. A sequential change-point detector is a
stopping time τ̂ with respect to the filtration Ft = σ(X1, . . . , Xt) such that (τ̂ <∞) means that we
reject the hypothesisH0 : (∃µ0 ∈ [0, 1] : ∀i ∈ N,E[Xi] = µ0).

Generalized Likelihood Ratio tests have been used for a very long time (see, e.g. Wilks (1938))
and were for instance studied for change-point detection by Siegmund and Venkatraman (1995).
Exploiting the fact that bounded distributions are (1/4)-sub-Gaussian (i.e., have a moment generating
function dominated by that of a Gaussian with the same mean and variance 1/4), the (Gaussian)
GLRT, recently studied in depth by Maillard (2019), can be used for our problem. We propose
instead to exploit the fact that bounded distributions are also dominated by Bernoulli distributions.
We call a sub-Bernoulli distribution any distribution ν that satisfies lnEX∼ν

[
eλX

]
≤ φµ(λ) with

µ = EX∼ν [X] and φµ(λ) = ln(1− µ+ µeλ) is the log moment generating function of a Bernoulli
distribution with mean µ. Lemma 1 of Cappé et al. (2013) establishes that any bounded distribution
supported in [0, 1] is a sub-Bernoulli distribution.

3.1 Presentation of the test

If the samples (Xt) were all drawn from a Bernoulli distribution, our change-point detection problem

would reduce to a parametric sequential test of H0 : (∃µ0 : ∀i ∈ N, Xi
i.i.d.∼ B(µ0)) against the

alternativeH1 : (∃µ0 6= µ1, τ ∈ N? : X1, . . . , Xτ
i.i.d.∼ B(µ0) and Xτ+1, Xτ+2, . . .

i.i.d.∼ B(µ1)).
The (log)-Generalized Likelihood Ratio statistic for this test is defined by

GLR(n) := ln
sup

µ0,µ1,τ<n
`(X1,...,Xn;µ0,µ1,τ)

sup
µ0

`(X1,...,Xn;µ0) ,

where `(X1, . . . , Xn;µ0) and `(X1, . . . , Xn;µ0, µ1, τ) denote the likelihood of the first n observa-
tions under a model in H0 and H1. High values of this statistic tend to indicate rejection of H0.

2. Indeed, at each time step t, the test employed by AdSwitch requires Θ(At3) operations, resulting in a very expensive
Θ(AT 4) time complexity when compared to Θ(AT ) for simple algorithms like UCB and Θ(AT 2) for other adaptive
approaches based on scan statistics like GLR-klUCB.
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Using the notation Ss:t =
∑t

`=sXs for s < t ≤ n, one has

`(X1, . . . , Xn;µ0) = µS1:n
0 (1− µ0)n−S1:n

`(X1, . . . , Xn;µ0, µ1, τ) = µS1:τ
0 (1− µ0)τ−S1:τµ

Sτ+1:n

1 (1− µ1)n−τ−Sτ+1:n .

and the GLR statistic can be expressed using the binary relative entropy kl, defined as

kl(x, y) := x ln
(
x
y

)
+ (1− x) ln

(
1−x
1−y

)
. (1)

Indeed, one can show that GLR(n) = sups∈[1,n] Zs,n where Zs,n = s× kl (µ̂1:s, µ̂1:n) + (n− s)×
kl (µ̂s+1:n, µ̂1:n) and for k ≤ k′, µ̂k:k′ denotes the average of the observations collected between the
instants k and k′. This motivates the definition of the Bernoulli GLR change-point detector.

Definition 1 The Bernoulli GLR change-point detector with threshold function β(n, δ) is

τ̂δ := inf

{
n ∈ N? : sup

s∈[1,n]

[
s× kl (µ̂1:s, µ̂1:n) + (n− s)× kl (µ̂s+1:n, µ̂1:n)

]
≥ β(n, δ)

}
. (2)

Asymptotic properties of the GLR for change-point detection have been studied by Lai and Xing
(2010) for Bernoulli distributions and more generally for one-parameter exponential families, for
which the GLR test is defined as in (2) but with kl(x, y) replaced by the Kullback-Leibler divergence
between two elements in that exponential family that have mean x and y. For example, the Gaussian
GLR studied by Maillard (2019) corresponds to (2) with kl(x, y) = 2(x− y)2 when the variance is
set to σ2 = 1/4, and non-asymptotic properties of this test are given for any (1/4)-sub-Gaussian
samples.

In the next section, we provide new non-asymptotic results about the Bernoulli GLR test under
the assumption that the samples (Xt) come from a sub-Bernoulli distribution, which holds for any
distribution supported in [0, 1]. Note that Pinsker’s inequality gives that kl(x, y) ≥ 2(x− y)2, hence
the Bernoulli GLR may stop earlier than the Gaussian GLR based on the quadratic divergence
2(x− y)2 (assuming that the two statistics were compared to the same threshold).

GLR versus confidence-based CPD An alternative to the GLR also based on scan statistics, used
by Mukherjee and Maillard (2019) consists in building individual confidence intervals for the mean
in each segment, of the formµ̂1:s ±

√
β̃(s, δ)

2s

 and

µ̂s+1:n ±

√
β̃(n− s, δ)
2(n− s)


and report that there is a change-point if there exists s such that these confidence interval are disjoint,
i.e.

τ̂ ′δ = inf

n ∈ N? : ∃s ∈ [1, n],
∣∣∣µ̂1:s − µ̂s+1:n

∣∣∣ >
√
β̃(s, δ)

2s
+

√
β̃(n− s, δ)
2(n− s)

 .

By measuring distances with the appropriate KL divergence function, the Bernoulli GLR test better
exploits the geometry of (sub-)Bernoulli distributions.
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3.2 Properties of the Bernoulli GLR

In Lemma 2 below, we propose a choice of the threshold function β(n, δ) under which the probability
that there exists a false alarm under i.i.d. data is small. To define β, we introduce the function T ,
originally introduced by Kaufmann and Koolen (2021),

T (x) := 2h̃

(
h−1(1 + x) + ln(π2/3)

2

)
(3)

where for u ≥ 1 we define h(u) = u − ln(u) and its inverse h−1(u). And for any x ≥ 0,
h̃(x) = e1/h−1(x)h−1(x) if x ≥ h−1(1/ ln(3/2)) and h̃(x) = (3/2)(x − ln(ln(3/2))) otherwise.
The function T is easy to compute numerically. Its use for the construction of concentration
inequalities that are uniform in time is detailed in Kaufmann and Koolen (2021), where tight upper
bounds on the function T are also given: T (x) ' x+ 4 ln

(
1 + x+

√
2x
)

for x ≥ 5 and T (x) ∼ x
when x is large. The proof of Lemma 2 is given in Appendix B.1.

Lemma 2 Assume that there exists µ0 ∈ [0, 1] such that E[Xt] = µ0 and that Xi ∈ [0, 1] for all i.
Then the Bernoulli GLR test satisfies Pµ0(τ̂δ <∞) ≤ δ with the threshold function

β(n, δ) = 2T
(

ln(3n
√
n/δ)

2

)
+ 6 ln(1 + ln(n)). (4)

Another key feature of a change-point detector is its detection delay under a model in which
a change from µ0 to µ1 occurs at time τ . We already observed that from Pinsker’s inequality, the
Bernoulli GLR stops earlier than a Gaussian GLR. Hence, one can leverage some techniques from
Maillard (2019) to upper bound the detection delay of the Bernoulli GLR. Letting ∆ = |µ0 − µ1|,
one can essentially establish that for τ larger than (1/∆2) ln(1/δ) (i.e., enough samples before the
change), the delay can be of the same magnitude (i.e., enough samples after the change). In our
bandit analysis to follow, the detection delay will be crucially used to control the probability of the
“good event” that all the change-points are detected within a reasonable delay (Lemma 8 and 15).

3.3 Practical considerations

Lemma 2 provides the first control of false alarm for the Bernoulli GLR employed for bounded
distributions. However, the threshold (4) is not fully explicit as the function T (x) can only be
computed numerically. Note that for sub-Gaussian distributions, results from Maillard (2019)
show that the smaller and more explicit threshold β(n, δ) =

(
1 + 1

n

)
ln
(

3n
√
n

δ

)
, can be used to

prove an upper bound of δ for the false alarm probability of the GLR, with quadratic divergence
kl(x, y) = 2(x − y)2. For the Bernoulli GLR, numerical simulations suggest that the threshold
(4) is a bit conservative, and in practice we recommend to keep only the leading term and use
β(n, δ) = ln(n

√
n/δ).

Also note that, as any test based on scan-statistics, the GLR can be costly to implement: at every
time step, it considers all previous time steps as a possible position for a change-point. Thus, in
practice the following adaptation may be interesting, based on down-sampling the possible time
steps:

τ̃δ = inf

{
n ∈ N : sup

s∈Sn
Zs,n ≥ β(n, δ)

}
, (5)

9



BESSON, KAUFMANN, MAILLARD, SEZNEC

for any strict subsets N ⊆ N and Sn ⊂ {1, . . . , n}. Following the proof of Lemma 2, we can easily
see that this variant enjoys the exact same false-alarm control. However, the detection delay may
be slightly increased. Yet, in our experiments we will use Sn = {k ≤ n : k mod 5 = 0} in the
Bernoulli GLR and still get improved regret compared to state-of-the-art algorithms.

4. The GLR-klUCB Algorithm

GLR-klUCB (Algorithm 1) combines the klUCB algorithm (Cappé et al., 2013), known to be
optimal for Bernoulli bandits, with the Bernoulli GLR change-point detector introduced in Section 3.
It also needs a third ingredient: some extra exploration to ensure each arm is sampled enough and
changes can also be detected on arms currently under-sampled by klUCB. This forced exploration is
parameterized by a sequence α = (αk)k∈N of exploration frequencies αk ∈ (0, 1). GLR-klUCB
can be used in any bandit model with bounded rewards, and is expected to be very efficient for
Bernoulli distributions.

Algorithm 1: GLR-klUCB (Local or Global restarts)
Input: (αk)k∈N? (sequence of exploration probabilities),
δ ∈ (0, 1) (maximum error probability for the test);
Input: Option: Local or Global restart;

1 Initialization: ∀a ∈ {1, . . . , A}, τa ← 0 (last restart) and na ← 0 (number of selections since last
restart)

2 k ← 1 (number of episodes)
3 for t = 1, 2, . . . , T do
4 if t mod

⌈
A
αk

⌉
∈ {1, . . . , A} then

5 At ← t mod
⌈
A
αk

⌉
6 else
7 At ← arg max

a∈{1,...,A}
UCBa(t) as defined in (6)

8 end
9 Play arm At and receive the reward XAt,t : nAt ← nAt + 1;YAt,nAt

← XAt,t

10 if GLRδ(YAt,1, . . . , YAt,nAt
) = True then

11 if Local restart then
12 τAt

← t and nAt
← 0 and k ← k + 1

13 else
14 ∀a ∈ {1, . . . , A}, τa ← t and na ← 0 and k ← k + 1
15 end
16 end

The GLR-klUCB algorithm can be viewed as a klUCB algorithm allowing for some restarts
on the different arms. A restart happens when the Bernoulli GLR change-point detector detects a
change on the arm that has been played (line 9). To be fully specific, GLRδ(Y1, . . . , Yn) = True if
and only if the GLR statistic associated to those n samples,

sup
1≤s≤n

[
s× kl(Ŷ1:s, Ŷ1:n) + (n− s)× kl(Ŷs+1:n, Ŷ1:n)

]
,

10
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is larger than the threshold β(n, δ) defined in (4), or β(n, δ) = ln(n3/2/δ), as recommended in
Section 3.3. Each restart (on any arm) triggers a new episode and we denote by kt the number of
episodes started after t samples (i.e. the index of the on-going episode at time t).

Letting τa(t) denote the instant of the last restart that happened for arm a before time t, na(t) =∑t
s=τa(t)+1 1(As = a) the number of selections of arm a and µ̂a(t) = (1/na(t))

∑t
s=τa(t)+1Xa,s1(As =

a) the empirical mean (if na(t) 6= 0), the index used by the algorithm is defined as

UCBa(t) :=max
{
q : na(t)× kl (µ̂a(t), q) ≤ f(t−τa(t))

}
. (6)

Algorithm 1 presents two variants of GLR-klUCB, one using local restarts (line 11), and one using
global restarts (line 13). Under local restarts, in the general case the times τa(t) are not equal for all
arms, hence the index policy associated to (6) is not a standard UCB algorithm, as each index uses a
different exploration rate. One can highlight that in the CUSUM-UCB algorithm, which is the only
existing algorithm based on local restarts, the UCB index are defined differently3: f(t− τa(t)) is
replaced by f(nt) with nt =

∑A
a=1 na(t).

The forced exploration scheme used in GLR-klUCB (lines 3-5) generalizes the deterministic
exploration scheme proposed for M-UCB by (Cao et al., 2019), whereas CUSUM-UCB performs
randomized exploration (Liu et al., 2018). A consequence of this forced exploration is given below
in Proposition 3, which is proved in Appendix A.

Proposition 3 Let s, t be two time instants between two consecutive restarts on arm a (i.e. τa(t) <
s < t). Then it holds that na(t) − na(s) ≥

⌊αkt
A (t− s)

⌋
, with kt the number of episodes before

round t.

While M-UCB uses a constant exploration sequence such that αk '
√

ΥT ln(T )/T , we advocate
in the next section the use of an increasing exploration sequence such that αk '

√
k ln(T )/T , which

yields near optimal regret without the knowledge of ΥT .

5. Regret Analysis

In this section, we prove regret bounds for GLR-klUCB using Global Restart. Our results for
GLR-klUCB with Local Restart are a bit weaker and are deferred to Appendix D.

5.1 Regret Upper Bounds

Recall that τ (k) denotes the position of the k-th breakpoint and let µ(k)
a be the mean of arm a on

the segment {τ (k−1) + 1, . . . , τ (k)}. We also introduce k? = arg maxa µ
(k)
a , the sub-optimality gap

∆
(k)
a = µ

(k)
k? − µ

(k)
a and the recall that the magnitude of breakpoint k is ∆c,(k) = max

a=1,...,A
|µ(k)
a −

µ
(k−1)
a | > 0.

We first introduce the assumption under which we are able to upper bound the regret of
GLR-klUCB. It requires that the distance between two consecutive breakpoints is large enough and
how large depends on the magnitude of the largest change that happens at those two breakpoints. A
similar assumption was made for the analysis of M-UCB (Cao et al. (2019), Assumption 1), whereas

3. This choice is currently not fully supported by theory, as we found mistakes in the analysis of CUSUM-UCB:
Hoeffding’s inequality is wrongly used with a random number of observations and a random threshold to obtain Eq.
(31)-(32).

11
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the analysis of CUSUM-UCB requires a known lower bound on the magnitude of any change-point
(see Liu et al. (2018), Assumption 2).

Assumption 4 Define the delay d(k) = d(k)(α, δ) as d(0)(α, δ) = 0 and for k > 0,

d(k)(α, δ) =

⌈
4A

αk(∆c,(k))
2β
(

3
2(τ (k) − τ (k−1)), δ

)
+ A

αk

⌉
,

we assume that ∀k ∈ {1, . . . ,ΥT }, τ (k) − τ (k−1) ≥ 2(d(k) ∨ d(k−1)).

Under Assumption 4, we provide in Theorem 5 a finite time problem-dependent regret upper
bound. It features the parameters α and δ, the gaps ∆

(k)
a and KL-divergence terms kl(µ

(k)
a , µ

(k)
k? )

expressing the hardness of the stationary MAB problem between two breakpoints, and the detection
delays d(k)(α, δ), which feature the gap ∆c,(k) and express the hardness of the detection of each
breakpoint.

Theorem 5 For α = (α1, α2, . . . ) an increasing exploration sequence and δ for which Assumption 4
is satisfied, the regret of GLR-klUCB with parameters α and δ based on Global Restart satisfies

RT ≤ (A+ 1)ΥT δT +AδT + αΥT +1T

+

ΥT∑
k=0

∑
a:∆

(k)
a >0

min

∆(k)
a

(
τ (k+1) − τ (k)

)
; ∆(k)

a

d(k)(α, δ) +
ln
(
τ (k+1) − τ (k)

)
kl
(
µ

(k)
a , µ

(k)
k?

)
+O

(√
ln
(
τ (k+1) − τ (k)

)) .

We express below the scaling of this regret bound when the exploration sequence α and the
parameter δ are carefully tuned using the knowledge of the horizon T , but without the knowledge
of the number of breakpoints ΥT . We express this scaling as a function of the smallest value of a
sub-optimality gap on one of the stationary segments and the gap of the hardest breakpoint to detect,
respectively defined as

∆opt := min
k=1,...,ΥT

min
{a:∆

(k)
a >0}

∆(k)
a

and ∆change := min
k=1,...,ΥT

∆c,(k) = min
k=1,...,ΥT

max
a=1,...,A

|µ(k)
a − µ(k−1)

a |.

Corollary 6 For any α0 ∈ R+ and γ ∈ (1/2, 1], choosing

αk = α0

√
kA ln(T )

T
and δ =

1

T γ
,

on problem instances satisfying the corresponding Assumption 4, the regret of GLR-klUCB satisfies

RT = O

(
(1 + γ)

√
ΥTAT ln(T )(
∆change

)2 +
(A− 1)

∆opt (ΥT + 1) ln(T )

)
,

and RT = O
(√

ΥTAT ln(T )

(∆change)
2

)
.
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If ∆change is viewed as a constant, our regret upper bound is matching the lower bound of Seznec
et al. (2020) up to a

√
ln(T ) factor. Hence we propose a tuning of GLR-klUCB which attains near-

optimal regret without the knowledge of the number of breakpoints, on “easy” problems. In particular,
a sufficient condition for Assumption 4 to hold for the parameter tuning suggested by Corollary 6
and used in our experiments (αk =

√
kA ln(T )/T , δ = 1/

√
T and β(n, δ) = ln(n3/2/δ)) is that

the length of the k-th stationary period, Dk = τ (k) − τ (k−1) satisfies

Dk ≥
8

∆2
change

√
AT

k ln(T )

(
1

2
ln(T ) +

3

2
ln

(
3

2
Dk

)
+ 1

)
,

which holds in particular if Dk ≥ 24
√
AT ln(T )/∆2

change. Under this constraint, observe that the
number of breakpoints ΥT can still be reasonably large, of order ∆2

change

√
T/(A ln(T )).

As shown is Section 6, GLR-klUCB also performs well on problem instances for which Assump-
tion 4 is violated, which was similarly observed by Cao et al. (2019) for M-UCB. Compared to other
algorithms based on stationary bandit strategies combined with change-point detectors, GLR-klUCB
is the only one that does not require a tuning based on ΥT to attain the best possible regret. Indeed,
it uses an increasing exploration sequence instead of a constant sequence, which allows the trick
(8) in the proof of Corollary 6. If ΥT is known, observe that one can also run GLR-klUCB with
the constant exploration sequence αk = α = α0

√
kA ln(T )/T and obtain the same regret as in

Corollary 6. We tried the two alternatives in our experiments, and got similar performances. Hence,
the use of an exploration sequence that is agnostic to ΥT does not hinder the practical performance
of GLR-klUCB.

Finally, there exist algorithms which attain near-optimal regret without the knowledge of ΥT

and with no
(
∆change

)−2 multiplicative factor in their regret bound (Auer et al., 2019b; Chen et al.,
2019). However, these algorithms are very conservative in order to make their analysis possible.
For instance, AdSwitch is an elimination policy, which is often a poor choice in practice for regret
minimization. In Section 6, we indeed show that GLR-klUCB greatly outperforms AdSwitch. We
note that the dependency in

(
∆change

)−2 is also present in the regret bound for other algorithms
combining UCB-style algorithms and change-point detectors (Liu et al., 2018; Cao et al., 2019). It
may come from a limitation of the current analysis of such algorithms, which require every breakpoint
to be detected.

Regret of GLR-klUCB with Local changes As stated precisely in Appendix D, for GLR-klUCB
with Local changes, we can prove a O(

√
CTAT ln(T )/∆2) regret where

CT =

T−1∑
t=0

A∑
a=1

1(µa(t) 6= µa(t+ 1))

is the total number of change-points and ∆ is the minimal magnitude of any change-point.
This result is in general weaker than that of Corollary 6, as CT can be (much) larger than ΥT

and ∆ can be (much) smaller than ∆change. However, Theorem 12 in Appendix D holds under
Assumption 11, a counterpart of Assumption 4 giving a minimal spacing between two change-points
depending on their magnitude. A sufficient condition for Assumption 11 to hold is that the minimal
delay between two change-points on an arm is of order

√
AT ln(T )/∆2, which can be less stringent

than the consequence of Assumption 4 on problem instances in which very few arms change in each
breakpoint.
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5.2 Proof of Corollary 6

With the choice δ = T−γ and αk = α0

√
k ln(T )A/T , Theorem 5 yields the following upper bound

on the regret of GLR-klUCB:

(A+ 1)ΥTT
1−γ +AT−γ + α0

√
(ΥT + 1)AT ln(T ) +

ΥT∑
k=1

4A

αk
(
∆c,(k)

)2 β( 3
2T, T

−γ)

+

ΥT∑
k=0

∑
a:µ

(k)
a 6=µ(k)

k?

(
µ

(k)
k? − µ

(k)
a

)
kl
(
µ

(k)
a , µ

(k)
k?

) ln(T ) +O
(√

ln(T )
)
. (7)

For γ > 1/2, the leading term in this expression is

α0

√
(ΥT + 1)AT ln(T ) +

ΥT∑
k=1

4A

αk
(
∆c,(k)

)2β(3
2T, T

−γ) +

ΥT∑
k=0

∑
a:µ

(k)
a 6=µ

(k)
k?

(
µ

(k)
k? − µ

(k)
a

)
kl
(
µ

(k)
a , µ

(k)
k?

) ln(T ) .

Using that β(n, δ) ≤ C ln(n/δ) for some absolute constant C together with the fact that

ΥT∑
k=1

1

αk
=

1

α0

√
T

A ln(T )

ΥT∑
k=1

1√
k
≤ 1

α0

√
ΥTT

A ln(T )
(8)

yields the following control on the expected regret

RT = O

(1 + γ)

√
ΥTAT ln(T )(

minΥT

k=1 ∆c,(k)
)2 +

ΥT∑
k=0

∑
a:µ

(k)
a 6=µ(k)

k?

(
µ

(k)
k? − µ

(k)
a

)
kl
(
µ

(k)
a , µ

(k)
k?

) ln(T )

 .

The conclusion follows from Pinsker’s inequality: kl(µ
(k)
a , µ

(k)
k? ) ≥ 2

(
∆

(k)
a

)2
and from lower

bounding all sub-optimality gaps by ∆opt.
Rather than using the problem-dependent complexity of the MAB problem on each stationary

segment, using Theorem 5 and standard techniques one can also obtain the following “worse-case”
upper bound:

(A+ 1)ΥTT
1−γ +AT−γ + α0

√
(ΥT + 1)AT ln(T ) +

ΥT∑
k=1

4A

αk (∆c,(k))
2 β( 3

2
T, T−γ) + C

ΥT∑
k=0

√
A (τ (k+1) − τ (k)) ln(T ) .

for some constant C. One can further upper bound the last term using the Cauchy-Schwarz inequality:

ΥT∑
k=0

√
A
(
τ (k+1) − τ (k)

)
ln(T ) ≤

√√√√ΥT∑
k=0

(
τ (k+1) − τ (k)

)√√√√ΥT∑
k=0

A ln(T ) =
√

(ΥT + 1)AT ln(T ).

Using the same upper bound derived above for the first three terms yields

RT = O

(1 + γ)

√
ΥTAT ln(T )(

minΥT
k=1 ∆c,(k)

)2 +
√

(ΥT + 1)AT ln(T )

 = O

(√
ΥTAT ln(T )

(∆change)2

)
.
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5.3 Proof of Theorem 5

We first introduce some notation for the proof. Recall that τ (k) denote the k-th breakpoint, we add
the convention that τ (ΥT+1) = T . We denote by τ̂ (k) the k-th breakpoint detected by GLR-klUCB.

Distinguishing the exploration steps and the steps in which GLR-klUCB uses the UCBs to select
the next arm to play, one can upper bound the regret as

RT ≤ E

[
T∑
t=1

1

(
t mod

⌈
A

αkt

⌉
∈ [1, A]

)
+

T∑
t=1

(µa?t (t)− µAt(t))1
(
UCBAt(t−1) ≥ UCBa?t (t−1)

)]
(9)

We now introduce some high-probability event in which all the breakpoints are detected within a
reasonable delay. With d(k) = d(k)(α, δ) in Assumption 4, we define

ET = ET (α, δ) :=
(
∀k ∈ {1, . . . ,ΥT }, τ̂ (k) ∈

[
τ (k) + 1, τ (k) + d(k)

]
, τ̂ (ΥT+1) > T

)
. (10)

Note that from Assumption 4, as the period between two changes are long enough, if ET holds,
then for all change k, one has τ (k) ≤ τ̂ (k) ≤ τ (k+1) for all k ∈ {1, . . . ,ΥT }. Also, when ET holds,
GLR-klUCB experiences exactly ΥT restarts which permits to upper bound the exploration term in
(9), using the convention that τ̂ (ΥT+1) = T :

T∑
t=1

1

(
t mod

⌈
A

αkt

⌉
∈ {1, . . . , A}

)
≤

ΥT∑
k=0

τ̂ (k+1)∑
t=τ̂ (k)+1

1

(
t mod

⌈
A

αk+1

⌉
∈ {1, . . . , A}

)

≤
ΥT∑
k=0

αk+1

(
τ̂ (k+1) − τ̂ (k)

)
≤ αΥT+1

ΥT∑
k=0

(
τ̂ (k+1) − τ̂ (k)

)
= αΥT+1T.

On ET , the second term in (9) can also be decomposed along the ΥT + 1 episodes experienced by
the algorithm. Recalling that k? denotes the optimal arm for t ∈

[
τ (k) + 1, τ (k+1)

]
, one can write

RT ≤ TP (EcT )+αΥT +1T+

ΥT∑
k=0

E

1(ET )

τ(k+1)∑
t=τ(k)+1

(
µ

(k)
k? − µ

(k)
At

)
1(UCBAt

(t−1) ≥ UCBk?(t−1))

 . (11)

The conclusion follows from the two lemmas stated below, whose proofs are given in Appendix C.
The first one hinges on some elements of the analysis of the klUCB algorithm proposed by Cappé
et al. (2013) whereas the second exploits the change-point detection mechanism.

Lemma 7 With ∆
(k)
a = µ

(k)
k? − µ

(k)
a , the following upper bound holds:

(11) ≤
ΥT∑
k=0

∑
a:∆

(k)
a >0

min

∆(k)
a

(
τ (k+1) − τ (k)

)
; d(k) +

∆
(k)
a ln

(
τ (k+1) − τ (k)

)
kl
(
µ

(k)
a , µ

(k)
k?

) +O
(√

ln
(
τ (k+1) − τ (k)

)) .

Lemma 8 Under Assumption 4, it holds that P(EcT (α, δ)) ≤ δ(A+ 1)ΥT +Aδ.

The tricky part in the analysis is the proof of Lemma 8, which crucially exploits Assumption 4,
that we briefly sketch here (with a detailed proof in Appendix C.2). Introducing the event C(k) =
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{
∀` ≤ k, τ̂ (`) ∈

[
τ (`) + 1, τ (`) + d(`)

]}
that all the changes up to the k-th have been detected and

using the convention τ (ΥT+1) = T , a union bound permits to upper bound P(EcT ) by the sum of two
terms:

ΥT +1∑
k=1

P
(
τ̂ (k) ≤ τ (k)|C(k−1)

)
︸ ︷︷ ︸

(a)

+

ΥT∑
k=1

P
(
τ̂ (k) ≥ τ (k) + d(k) | C(k−1)

)
︸ ︷︷ ︸

(b)

.

The event in (a) implies that the change-point detector associated with some arm a experiences
a false alarm. The probability of such an event is upper bounded by Lemma 2 for a change-point
detector run in isolation. Under the bandit algorithm, arm a’s change-point detector is based on less
than t− τa(t) samples, which makes a false alarm even less likely. We finally show that (a) ≤ Aδ
(with union bound over the A arms).

Term (b) is related to the control of the detection delay, which is more involved under the
GLR-klUCB adaptive sampling scheme, when compared to a result like Theorem 6 in Maillard
(2019) for the change-point detector run in isolation. More precisely, we need to leverage the forced
exploration (Proposition 3) to be sure we have enough samples for detection. This explains why
the detection delay for the k-th breakpoint defined in Assumption 4 is scaled by αk. Using some
elementary calculus and a concentration inequality given in Lemma 10, we finally prove that (b) ≤ δ.

6. Experimental Results

In this section, we report numerical simulations performed on synthetic data to compare the perfor-
mance of GLR-klUCB against other state-of-the-art approaches. Experiments were performed with
a library written in the Julia language which is available online.4

6.1 Algorithms and Parameters Tuning

We include two baselines: the klUCB algorithm (not designed for the non-stationary setting) and
an algorithm that we call Oracle-klUCB, which knows the exact locations of the breakpoints, and
restarts klUCB for all arms at those locations. Then, we include algorithms with state-of-the-art
regret for the piecewise stationary MAB presented in Section 2. For a fair comparison, all algorithms
that use UCB as a sub-routine were adapted to use klUCB instead, which yields better performance5.
For all the algorithms, we performed the tuning recommended in the corresponding paper, using in
particular the knowledge of the number of breakpoints ΥT and the horizon T when needed. Only
two algorithms do not require the knowledge of ΥT : AdSwitch and GLR-klUCB.

We experiment with Exp3.S (with theoretically optimal tuning in Corollary 8.3 of Auer et al.
(2002b)), and the two passively adaptive algorithms Discounted klUCB (D-klUCB) with discount
factor γ = 1 −

√
ΥT /T/4 and Sliding-Window klUCB (SW-klUCB) with window-size τ =

d2
√
T ln(T )/ΥT e. As for actively adaptive algorithms, we experiment with AdSwitch (Auer et al.,

2019b) and three algorithms combining a change-point detector with klUCB: CUSUM-klUCB,
M-klUCB and GLR-klUCB. These three algorithms share the use of an exploration parameter
that we call α (or an exploration sequence αk for GLR-klUCB). Liu et al. (2018) and Cao et al.
(2019) recommend two slightly different tuning for CUSUM-klUCB and M-klUCB respectively,
that both scale in

√
ΥT ln(T )/T . This is also the order of magnitude of αΥT given by Corollary 6

4. https://github.com/EmilieKaufmann/PiecewiseStationaryBandits
5. Liu et al. (2018); Cao et al. (2019) both mention that extending their analysis to the use of klUCB should be easy.
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for GLR-klUCB. Hence, in order to compare algorithm that adds a similar amount of exploration,
we set α =

√
ΥTA ln(T )/T for all algorithms using a constant exploration probability and αk =√

kA ln(T )/T for the exploration sequence of GLR-klUCB.
Regarding the parameters of the change-point detectors, we use a threshold h = ln(T/ΥT )

for CUSUM-klUCB, as recommended by Liu et al. (2018), and experience with different values
of (M, ε) that have to be tuned using some prior knowledge of the problem. For M-klUCB, we
experiment with different values of the windows parameterw (often choosing the tuningw = 800 that
was found to be robust in the experiments of Cao et al. (2019)) and use the recommended threshold
b =

√
w ln(2AT 2)/2. For the Bernoulli-GLR test, we use the threshold function β(n, δ) =

ln(n3/2/δ) and set δ = 1/
√
T , which is the largest value licensed by Corollary 6.

For GLR-klUCB and AdSwitch, which are computationally more demanding due to the tests
based on scan-statistics, we use some implementation tweaks. For GLR-klUCB, we use some
down-sampling as discussed in Section 3.3, performing the test only every ∆t = 10 time steps and
scanning every ∆s = 5 observations for a possible change-point. To be able to implement AdSwitch
up to a horizon T = 5000, we set ∆t = 50. The computational bottleneck in AdSwitch is the
checks on good arms that compare the empirical mean between s and t to that between s1 and s2 for
all possible s < t and s1 ≤ s2 < t. We only test values of s1, s2 and s satisfying s′ mod ∆s = 0,
for ∆s = 20. This reduces the time complexity by (∆s)3, which is a significant speed-up in practice.
Finally, the parameter C1 that governs the elimination of good arms and should be chosen large
enough was set to C1 = 1.

6.2 Results on two simple benchmarks

We design two simple piecewise stationary bandit problems with A = 3 arms and ΥT = 4 break-
points. These breakpoints are evenly spaced up to the horizon, for which we investigate 4 values
for each problem: T = 5000, T = 10000, T = 20000 and T = 100000. In Problem 1, a single
arm changes in each breakpoint (ΥT = CT = 4) and ∆change = 0.3, whereas in Problem 2, all arms
means change at every breakpoint (ΥT = 4, CT = 16) and ∆change = 0.2. For each problem, we
display the reward functions of each arm in the top left corner of Figures 1 and 2.

For the different values of the horizon, the reward functions are simply expanded: the size ∆change

remains the same and the breakpoints are still evenly spaced. Hence, it is a way to vary the difficulty
of the underlying change-point detection problems. Indeed, when T goes larger, the distance between
two consecutive breakpoints increases, and Assumption 4 is closer to be satisfied. On these simple
problems with equally spaced breakpoints (τ (k) − τ (k−1) = T/5), with our choice of αk and δ,
Assumption 4 amounts to

√
T ≥ 80

√
A

minΥT
k=1

√
k(∆c,(k))2

√
ln (T ) + 1

which is only satisfied for T much larger than 100000 for both Problem 1 and Problem 2. Therefore,
in this experiment, we investigate the performance of GLR-klUCB for difficult problems on which
it does not have theoretical guarantees.

In Figure 1 (respectively Figure 2), we display the results for Problem 1 (respectively Problem 2).
We display the regret of each algorithm as a function of the rounds for one horizon (top right corner);
and we also tabulate the regret at the horizon and the number of restarts for all the algorithms
and all the horizons. In Problem 1, we observe that the regret of GLR-klUCB with Global and
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Algorithm T = 5000 T = 10000 T = 20000 T = 100000

(α ' 0.142) (α ' 0.105) (α ' 0.077) (α ' 0.019)

Oracle-klUCB 59± 11 4 70± 13 4 84± 15 4 114± 17 4

klUCB 270± 66 0 515± 110 0 998± 202 0 4769± 784 0

EXP3.S 379± 31 0 578± 44 0 870± 64 0 2125± 142 0
SW-klUCB 186± 19 0 298± 29 0 465± 37 0 1269± 74 0
D-klUCB 216± 14 0 355± 19 0 581± 26 0 1731± 55 0

AdSwitch 1339± 96 2.2 − − − − − −
M-klUCB (w = 200) 273± 32 1.8 408± 50 1.9 612± 89 1.9 1848± 532 1.8
M-klUCB (w = 800) 280± 34 1.2 415± 60 1.4 623± 92 1.8 1811± 343 2

CUSUM-klUCB (M=200, ε=0.1) 280± 50 3.2 422± 79 4.1 646± 123 5 1776± 265 5.8
CUSUM-klUCB (M=400, ε=0.05) 321± 89 4.6 485± 119 7.1 752± 179 11.1 2018± 457 28.5

GLR-klUCB Global (αk) 199± 38 2 290± 59 2 460± 95 2.1 1420± 340 2.8
GLR-klUCB Global (constant α) 268± 33 2 403± 59 2.2 609± 91 2.5 1804± 348 2

GLR-klUCB Local (αk) 200± 39 2.1 295± 59 2.2 465± 103 2.4 1403± 354 3
GLR-klUCB Local (constant α) 269± 32 2.3 399± 52 2.6 602± 82 2.9 1786± 334 3

Figure 1: Results for Problem 1 (displayed in the top left corner). The table shows the final regret RT (left
column) and the average number of restarts (right column) for several algorithms run for different values of
the horizon T . The top right corner displays the cumulative regret of the top 8 algorithms for T = 20000. The
regret is estimated based on N = 1000 independent repetitions (except for T = 100000 where N = 100 and
for the AdSwitch algorithm for which N = 50).

Local restart is competitive with that of the SW-klUCB which performs best for the different
time horizons T . However, recall that this algorithm is tuned using the knowledge of ΥT , unlike
GLR-klUCB. In Problem 2, the regret of GLR-klUCB is the smallest for large horizons (T =
20000, 100000) whereas for shorter horizons (T = 5000, 10000) klUCB and SW-klUCB have
(slightly) smaller regret. Regarding other passively adaptive approaches, we see that D-klUCB is
competitive with (sometimes even better than) actively adaptive algorithms, whereas Exp3.S only
manages to outperform klUCB for large horizons. GLR-klUCB largely outperforms AdSwitch for
T = 5000, which is the largest horizon for which we could implement this algorithm. We now turn
our attention to CPD-based algorithms.

The tests used by CUSUM-UCB and M-UCB depend on two sets of parameters that should
in principle be chosen according to some prior knowledge of the problem, and we tried for each
algorithm two different tunings of these parameters. For CUSUM-UCB, the two sets of parameters
yield similar regret on Problem 2, but one is much better than the other on Problem 1. For M-UCB,
the two sets of parameters yield similar regret on Problem 1, but one is much better than the other
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Algorithm T = 5000 T = 10000 T = 20000 T = 100000

(α ' 0.142) (α ' 0.105) (α ' 0.077) (α ' 0.019)

Oracle-klUCB 65± 14 4 80± 17 4 95± 18 4 127± 24 4

klUCB 162± 52 0 293± 82 0 541± 125 0 2425± 440 0

EXP3.S 304± 30 0 448± 42 0 662± 56 0 1587± 137 0
SW-klUCB 182± 15 0 288± 22 0 457± 29 0 1258± 65 0
D-klUCB 218± 15 0 361± 21 0 591± 29 0 1787± 61 0

AdSwitch 1418± 113 1.3 − − − − − −
M-klUCB (w = 200) 485± 89 0 927± 163 0 1813± 285 0 9674± 1082 0
M-klUCB (w = 800) 333± 112 1 609± 272 0.8 1237± 617 0.6 7726± 3331 0.4

CUSUM-klUCB (M=200, ε=0.1) 238± 25 6 352± 39 7.7 520± 64 8.6 1249± 191 12.1
CUSUM-klUCB (M=400, ε=0.05) 238± 27 5.7 353± 51 9.1 534± 92 15.1 1270± 198 38.5

GLR-klUCB Global (αk) 209± 13 3 303± 16 3.5 443± 16 4 989± 20 4
GLR-klUCB Global (constant α) 252± 13 3 350± 14 3.5 501± 15 4 1115± 17 4

GLR-klUCB Local (αk) 206± 17 3.2 298± 23 4.1 447± 28 5.8 1058± 96 5.5
GLR-klUCB Local (constant α) 249± 19 3.1 349± 26 4.5 506± 43 5.2 1230± 243 4.9

Figure 2: Results for Problem 2 (displayed in the top left corner). The table shows the final regret RT (left
column) and the average number of restarts (right column) for several algorithms run for different values of
the horizon T . The top right corner displays the cumulative regret of the top 8 algorithms for T = 20000. The
regret is estimated based on N = 1000 independent repetitions (except for T = 100000 where N = 100 and
for the AdSwitch algorithm for which N = 50).

on Problem 2. This sheds light on the fact that tuning these parameters may be difficult. On the
contrary, the tuning of the Bernoulli GLR test used in GLR-klUCB only requires to specify the error
probability δ, and setting it to δ = 1/

√
T as suggested by Corollary 6 yield good performance on

both Problem 1 and Problem 2.
The table shows the final regret RT (left column) and the average number of restarts (right

column) for several algorithms run for different values of the horizon T . The top right corner displays
the cumulative regret of the top 8 algorithms for T = 20000. The regret is estimated based on
N = 1000 independent repetitions (except for T = 100000 where N = 100 and for the AdSwitch
algorithm for which N = 50).

To understand the behavior of the CPD-based algorithms, we analyze their average number of
restarts, reported in the tables in Figure 1 and 2. In an asymptotic regime (i.e. for T such that
Assumption 4 or Assumption 11 is satisfied), GLR-klUCB should detect all breakpoints with Global
restart and all change-points with Local restart. As can be seen, the asymptotic regime is not met
in our experiments, except for T ≥ 20000 on Problem 2 in which GLR-klUCB with Global restart
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performs exactly ΥT = 4 restarts. Besides this case, GLR-klUCB typically detects fewer changes
than expected, for example between 2 and 3 on Problem 1. Note that M-UCB tends to detect fewer
changes than GLR-klUCB, whereas CUSUM-UCB tend to detect more. Especially, when the
parameter ε (giving the minimal amount of change the CUSUM test should detect) is ε = 0.05, we
observe that CUSUM-UCB experiences false-alarms, especially for large horizons (yet this does not
prevent the algorithm from having a regret smaller than that of klUCB). Overall, we remark that
GLR-klUCB is among the best algorithms on both problems for all the horizon values, including the
smallest ones: it shows that GLR-klUCB is competitive in practice even when the Assumptions 4
and 11 are violated.

In these experiments, we tried four variants of GLR-klUCB: we investigate Global and Local
restarts and two exploration sequences: a constant exploration probability α =

√
ΥTA ln(T )/T

and the exploration sequence αk =
√
kA ln(T )/T that does not require to know the number of

breakpoints. We observe that the two types of restarts yield comparable performance (with a slight
advantage for Global restarts), and thus investigate the two variants further on a wider benchmark.
As for the exploration sequences, we observe that the time-varying one (agnostic to ΥT ) always
performs best. The reason is that it performs less forced exploration in the first episodes, and as we
shall see in our next experiments, scaling down the exploration probability (or exploration sequence)
for CPD-based algorithms can lead to better empirical performance. Still, GLR-klUCB with a
constant exploration probability α also outperforms most of the time other CPD-based algorithms
using the exact same α.

6.3 Robustness on more diverse benchmarks

We now investigate further the performance of the best algorithms for Problem 1 and Problem 2 on
a large number of randomly generated piecewise stationary bandit models, with T = 20000. To
generate a random instance, we specify the number of arms A, the maximal number of breakpoints
Υ, a change-point probability p, a minimal distance dmin, a minimal and maximal amount of change,
∆min and ∆max. Then, we sample the breakpoints uniformly at random under the constraint that
τk− τk−1 ≥ dmin. For each breakpoint k, each arm has a probability p to experience a change-point,
whose magnitude is chosen uniformly at random in [∆min,∆max].

First, we sample two problems from this procedure with A = 5 arms, Υ = 5 breakpoints, with
spacing larger than dmin = 1000, a magnitude in [0.05, 0.4], and a change-point probability p = 0.5.
Results for these two problems are displayed in Figure 3. On Problem 3, there are important changes
of the optimal arm as the initial worse arm ends up being the best, with three changes of optimal
arms. On Problem 4, the best two arms remain the same but are switched around the middle of
the budget T . As can be seen in Figure 3, on these two instances the two versions of GLR-klUCB
attain the smallest regret (with SW-klUCB that is very competitive in Problem 4). We note that the
Local version performs slightly more restarts (as can already be observed on Problems 1 and 2), but
there is again no clear winner between global and local restarts. These experiments also confirm our
conclusions regarding the lack of robustness of M-UCB (with w = 800) and CUSUM-UCB (with
ε = ∆min) and their tendency to under-detect or over-detect, respectively.

Finally, in Table 1, we report the regret of the different algorithms averaged over N = 2000
different instances with K = 5, Υ = 6, ∆min = 0.05, ∆max = 0.3, dmin = 1000 and p = 0.5. We
can remark that even in the most favorable situation in which the amount of change in each breakpoint
is maximal (∆c,(k) = ∆max for all k) and the breakpoints are evenly spaced (τ (k) − τ (k−1) = T/7),
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Algorithm Problem 3 Problem 4
Oracle-klUCB 300± 37 5 125± 15 5

klUCB 1289± 206 0 834± 68 0
EXP3.S 1006± 91 0 1154± 78 0

SW-klUCB 1037± 39 0 643± 29 0
D-klUCB 1260± 39 0 852± 31 0

M-klUCB (w = 800) 929± 53 1.1 1747± 695 0.5
CUSUM-klUCB (M=400, ε=0.05) 801± 87 20.7 1006± 102 6.277

GLR-klUCB Global (αk) 728± 65 3.8 611± 43 3.1
GLR-klUCB Local (αk) 695± 59 4.7 642± 44 3.6

Figure 3: 9 algorithms run with T = 20000 on Problem 3 (left) and Problem 4 (right). The middle row
displays the cumulative regret as a function of time and the bottom table displays the final regret and number
of restarts averaged over N = 1000 runs.

the detection delay d(k) defined in Assumption 4 is lower bounded by

d(1) ≥ 4

√
AT

ln(T )

(
3
2 ln

(
3T
14

)
+ 1

2 ln(T )

∆2
max

+ 1

)
,

which is larger than 70000 for T = 20000 and ∆max = 0.3, and is in particular much larger
than the length of any stationary period. As a consequence, Assumption 4 cannot be satisfied in
any of the N = 2000 instances that were drawn at random6. Hence, this last experiment also

6. A similar reasoning explains was Assumption 11 cannot be satisfied for such instances either.
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investigates the performance of GLR-klUCB beyond the asymptotic regime in which it is studied in
theory. In this experiment, we also study the influence of using a smaller exploration probability,
α = α0

√
ΥTA ln(T )/T with some constant α0 ∈ (0, 1] (and multiplying αk by the same α0

for GLR-klUCB). We see that for α0 = 1, GLR-klUCB outperforms all non-stationary bandit
algorithms, but not klUCB. This can be explained by the fact that some of the random instances
may contain no change of optimal arm, and klUCB is expected to be good in this setting, without
paying the price of forced exploration. However, when we reduce the amount of forced exploration
by setting α0 to 0.5 and 0.1, klUCB is outperformed by actively adaptive algorithms, out of which
GLR-klUCB has the best performance, with a slight advantage for Global restart.

Algorithm α0 = 1 α0 = 0.5 α0 = 0.1
klUCB 515 0 515 0 515 0
EXP3.S 1083 0 1083 0 1083 0

SW-klUCB 826 0 826 0 826 0
D-klUCB 1022 0 1022 0 1022 0

M-klUCB (w = 800) 1070 0.9 716 0.8 415 0.8
CUSUM-klUCB (M=400, ε=0.05) 973 12.4 640 10.9 347 10.9

GLR-klUCB Global (αk) 611 3.1 404 3.0 252 2.9
GLR-klUCB Local (αk) 691 4.4 462 3.8 284 3.5

Table 1: Regret and number of restarts for several algorithm run with T = 20000, averaged over N = 20000
random problem instances with K = 5, Υ = 6, ∆min = 0.05, ∆max = 0.3, dmin = 1000 and p = 0.5.

6.4 GLR-klUCB beyond piecewise stationary models

We summarize in this paragraph the experimental results of (Seznec et al., 2020), who performed
experiments including GLR-klUCB7 on a restless rotting bandit problem, in which the reward
function µa(t) of each arm is assumed to be a non-increasing function of t. They designed 9 bandit
games with arms mean rewards learned from the R6A - Yahoo! Front Page Today Module. In
this setup, each arm corresponds to a news article and its mean reward at a certain time step (the
probability that the news is clicked on) is learned from the dataset with a sliding window average
of 30 000 samples. Each game corresponds to a 12 hours time frame between 6 p.m. and 6 a.m.
EST during one day of May 2009 and the number of rounds is equal to the number of users visiting
the Yahoo! Front Page on the period. This time frame was chosen because the mean rewards (click
probabilities) are mostly decaying. However, besides this high-level data selection, they do not
enforce any of their theoretical assumptions (the reward functions are neither piecewise stationary,
nor strictly non-increasing).

They studied GLR-klUCB (with Gaussian confidence intervals) with no forced exploration
(α = 0) and local restart together with Exp3.S and two of their algorithms designed for the rotting
case, namely RAW-UCB and FEWA. GLR-klUCB recovers consistently the best performance on
the 9 games, significantly outperforming FEWA and Exp3.S. RAW-UCB performs almost the same
as GLR-klUCB, though the former does not need the knowledge of T to be tuned. Interestingly,
the regret of GLR-klUCB has the same logarithmic shape as FEWA or RAWUCB when one arm is

7. A preliminary version of this paper appeared on arXiv before the paper (Seznec et al., 2020), which explains why
GLR-klUCB could be used in this work
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significantly above the others. This is not the case for Exp3.S which keeps a small linear trend in
regret due to random exploration. These algorithms were proved to have logarithmic regret on each
stationary part of a non-increasing piecewise bandit problem. This suggests that GLR-klUCB with
no forced exploration and local restart could also enjoy logarithmic regret in a similar setting.

7. Conclusion

We proposed a new algorithm based on a change-point detector which empirically outperforms other
CPD-based approaches designed for the general piecewise-stationary bandit problems, while attaining
similar regret without the knowledge of the number of breakpoints and without any prior knowledge
of the arms means. We proved that GLR-klUCB attains a O(

√
ΥTAT ln(T )/(∆change)2) regret

for “easy” instances in which the breakpoints are far enough from each other. When the smallest
magnitude of a breakpoint ∆change is not too small, this is comparable to the regret of recently
proposed algorithms that are agnostic to ΥT but whose implementation is much more intricate than
that of GLR-klUCB.

The presence of ∆change in the regret bound comes from the fact that our analysis (as that of
other CPD-based algorithms) assumes that all the breakpoints are detected by the algorithm. But
our experiments reveal that on “harder” instances, the algorithm actually does not detect all the
breakpoints and still attain small regret. Hence, in future work, we intend to work on an improved
analysis of GLR-klUCB introducing some notion of “meaningful changes” that need to be detected
by the algorithm to ensure a small regret. We will also investigate whether GLR-klUCB can be used
without forced exploration under some extra assumption on the types of breakpoints encountered,
such as global changes (Mukherjee and Maillard, 2019) or restless rotting bandits (Seznec et al.,
2020).
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Switching Bandit Problem Best Resolution. In NIPS 2017 - 31st Conference on Neural Information
Processing Systems, 2017.
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A. Proof of Proposition 3

We consider one arm a ∈ {1, . . . , A}, and when the GLR-klUCB algorithm is running, we consider
two time steps s ≤ t ∈ N?, chosen between two restart times for that arm a. All time steps
u ∈ {s, . . . , t} belong to the same episode, that is ku = kt. Lines 3-4 of Algorithm 1 imply that for
all u ∈ {s+ 1, . . . , t}, {

u mod

⌈
A

αkt

⌉
= a

}
⊂ {Au = a}

Thus we have

na(t)− na(s) =

t∑
u=s+1

1(Au = a)

≥
t∑

u=s+1

1

(
u mod

⌈
A

αkt

⌉
= a

)
=
(
t− (s+ 1) + 1

)
/

⌈
A

αkt

⌉
≥
⌊αkt
A

(t− s)
⌋
,

which proves Proposition 3.

B. Concentration Inequalities

B.1 Proof of Lemma 2

Lemma 2 is presented for bounded distributions and is actually valid for any sub-Bernoulli distribution.
It could also be presented for more general distributions satisfying

E[eλX ] ≤ eφµ(λ) with µ = E[X], (12)

where φµ(λ) is the log moment generating of some one-dimensional exponential family. The
Bernoulli divergence kl(x, y) would be replaced by the corresponding divergence in that exponential
family (which is the Kullback-Leibler divergence between two distributions of means x and y).

Let’s go back to the Bernoulli case with divergence given in (1). A first key observation is

s×kl (µ̂1:s, µ̂1:n)+(n−s)×kl (µ̂s+1:n, µ̂1:n) = inf
µ∈[0,1]

[s× kl (µ̂1:s, λ) + (n− s)× kl (µ̂s+1:n, λ)] .

Hence the probability of a false alarm occurring is upper bounded as

Pµ0 (Tδ <∞) ≤ Pµ0

(
∃(s, n) ∈ N2, s < n : s kl (µ̂1:s, µ̂1:n) + (n− s) kl (µ̂s+1:n, µ̂1:n) > β(n, δ)

)
≤ Pµ0

(
∃(s, n) ∈ N2, s < n : s kl (µ̂1:s, µ0) + (n− s) kl (µ̂s+1:n, µ0) > β(n, δ)

)
≤
∞∑
s=1

Pµ0 (∃n > s : s kl (µ̂1:s, µ0) + (n− s) kl (µ̂s+1:n, µ0) > β(n, δ))

=

∞∑
s=1

Pµ0

(
∃r ∈ N : s kl (µ̂s, µ0) + r kl

(
µ̂′r, µ0

)
> β(s+ r, δ)

)
,
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where µ̂s and µ̂′r are the empirical means of respectively s and r i.i.d. observations with mean µ0 and
distribution ν, that are independent from the previous ones. As ν is sub-Bernoulli, the conclusion
follows from Lemma 9 below and from the definition of β(n, δ):

Pµ0 (Tδ <∞)

≤
∞∑
s=1

Pµ0

(
∃r ∈ N? : s kl (µ̂s, µ0) + r kl

(
µ̂′r, µ0

)
> 6 ln(1 + ln(s+ r)) + 2T

(
ln(3(s+ r)3/2/δ)

2

))

≤
∞∑
s=1

Pµ0

(
∃r ∈ N? : s kl (µ̂s, µ0) + r kl

(
µ̂′r, µ0

)
> 3 ln(1 + ln(s)) + 3 ln(1 + ln(r)) + 2T

(
ln(3s3/2/δ)

2

))

And so we have Pµ0 (Tδ <∞) ≤
∑∞

s=1
δ

3s3/2
≤ δ.

Lemma 9 (Xi)i∈N and (Yi)i∈N two independent i.i.d. processes with resp. means µ and µ′ such
that

E[eλX1 ] ≤ eφµ(λ) and E[eλY1 ] ≤ eφµ′ (λ),

where φµ(λ) = EX∼νµ [eλX ] is the moment generating function of the distribution νµ, which is the
unique distribution in an exponential family that has mean µ. Let kl(µ, µ′) = KL(νµ, νµ

′
) be the

divergence function associated to that exponential family. Introducing the notation µ̂s = 1
s

∑s
a=1Xi

and µ̂′r = 1
r

∑r
a=1 Yi, it holds that for every s, r ∈ N?,

P
(
∃r ∈ N? : s kl (µ̂s, µ) + r kl

(
µ̂′r, µ

′) > 3 ln(1 + ln(s)) + 3 ln(1 + ln(r)) + 2T
(x

2

))
≤ e−x,

where T is the function defined in (3).

Proof of Lemma 9 Using the same construction as in the proof of Theorem 14 in Kaufmann
and Koolen (2021), one can prove that for every λ ∈ I (for an interval I), there exists a non-
negative super-martingale Mλ(s) with respect to the filtration Ft = σ(X1, . . . , Xt) that satisfies
E[Mλ(s)] ≤ 1 and

∀s ∈ N?, Mλ(s) ≥ eλ[skl(µ̂s,µ)−3 ln(1+ln(s))]−g(λ)

for some function g : I → R. This super-martingale is of the form

Mλ(s) =

∫
eη
∑s
a=1 Xi−φµ(λ)sdπ(η)

for a well-chosen probability distribution π, and the function g can be chosen to be any

gξ : [0; 1/(1 + ξ)] −→ R

λ 7→ λ(1 + ξ) ln

(
π2

3(ln(1 + ξ))2

)
− ln(1− λ(1 + ξ))

for a parameter ξ ∈ [0, 1/2].
Similarly, there exists an independent super-martingale W λ(r) w.r.t. the filtration F ′r =

σ(Y1, . . . , Yr) such that

∀r ∈ N?, W λ(r) ≥ eλ[rkl(µ̂′r,µ)−3 ln(1+ln(r))]−g(λ),
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for the same function g(λ). In the terminology of Kaufmann and Koolen (2021), the processes
X(s) = s kl(µ̂s, µ)−3 ln(1+ln(s)) and Y (s) = r kl(µ̂r, µ)−3 ln(1+ln(r)) are called g-VCC for
Ville-Cramér-Chernoff, as Ville’s inequality can be applied in combination with the Cramér-Chernoff
method to obtain deviation inequalities that are uniform in time.

Here we have to modify the technique used in their Lemma 4 in order to take into account the
two stochastic processes, and the presence of super-martingales instead of martingales (for which
Doob’s maximal inequality still works). One can write

P
(
∃r ∈ N? : s kl (µ̂s, µ) + r kl

(
µ̂′r, µ

′) > 3 ln(1 + ln(s)) + 3 ln(1 + ln(r)) + u
)

≤ P
(
∃r ∈ N? : Mλ(s)W λ(r) > eλu−2g(λ)

)
= lim

n→∞
P
(
∃r ∈ {1, . . . , n} : Mλ(s)W λ(r) > eλu−2g(λ)

)
= lim

n→∞
P

(
sup

r∈{1,...,n}
Mλ(s)W λ(r) > eλu−2g(λ)

)
.

Using that M̃(r) = Mλ(s)W λ(r) is a super-martingale with respect to the filtration

F̃r = σ(X1, . . . , Xs, Y1, . . . , Yr),

one can apply Doob’s maximal inequality to obtain

P

(
sup

r∈{1,...,n}
Mλ(s)W λ(r) > eλu−2g(λ)

)
≤ e−(λu−2g(λ))E[M̃(1))]

= e−(λu−2g(λ))E[Mλ(s)W λ(1)]

≤ e−(λu−2g(λ)),

using that Mλ(s) and W λ(1) are independent and have an expectation smaller than 1.
Putting things together yields

P
(
∃r ∈ N? : s kl (µ̂s, µ) + r kl

(
µ̂′r, µ

′) > 3 ln(1 + ln(s)) + 3 ln(1 + ln(r)) + u
)
≤ e−(λu−2gξ(λ)),

for any function gξ defined above. The conclusion follows by optimizing for both λ and ξ, using
Lemma 18 in Kaufmann and Koolen (2021).

B.2 A Concentration Result Involving Two Arms

The following result is useful to control the probability of the good event in our two regret analyzes.
Its proof follows from a straightforward application of the Cramér-Chernoff method (Boucheron
et al., 2013).

Lemma 10 Let µ̂i,s be the empirical mean of s i.i.d. observations with mean µi, for i ∈ {a, b}, that
are σ2-sub-Gaussian. Define ∆ = µa − µb. Then for any s, r > 0, we have

P
(

sr

s+ r

(
µ̂a,s − µ̂b,r −∆

)2
≥ u

)
≤ 2 exp

(
− u

2σ2

)
·
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Proof of Lemma 10 We first note that

P
(

sr

s+ r

(
µ̂a,s − µ̂b,r −∆

)2
≥ u

)
≤ P

(
µ̂a,s − µ̂b,r ≥ ∆ +

√
s+ r

sr
u

)
+ P

(
µ̂b,r − µ̂a,s ≥ −∆ +

√
s+ r

sr
u

)
, (13)

and those two quantities can be upper-bounded similarly using the Cramér-Chernoff method.
Let (Xi) and (Yi) be two i.i.d. sequences that are σ2 sub-Gaussian with mean µ1 and µ2

respectively. Let n1 and n2 be two integers and µ̂1,n1 and µ̂2,n2 denote the two empirical means
based on n1 observations from Xi, and n2 observations from Yi respectively. Then for every λ > 0,
we have

P (µ̂1,n1 − µ̂2,n2 ≥ µ1 − µ2 + x) ≤ P

(
1

n1

n1∑
a=1

(Xi − µ1)− 1

n2

n2∑
a=1

(Yi − µ2) ≥ x

)

≤ P

eλ
(

1
n1

n1∑
i=1

(Xi−µ1)− 1
n2

n2∑
i=1

(Yi−µ2)

)
≥ eλx


(using Markov’s inequality) ≤ e−λxE

eλ 1
n1

n1∑
i=1

(Xi−µ1)

E

e−λ 1
n2

n2∑
i=1

(Yi−µ2)


= exp

(
−λx+ n1φX1−µ1

(
λ

n1

)
+ n2φY1−µ2

(
− λ

n2

))
≤ exp

(
−λx+

λ2σ2

2n2
+
λ2σ2

2n1

)
,

where the last inequality uses the sub-Gaussian property. Choosing the value λ = x
2[σ2/(2n1)+σ2/(2n2)]

which minimizes the right-hand side of the inequality yields

P (µ̂1,n1 − µ̂2,n2 ≥ µ1 − µ2 + x) ≤ exp

(
− n1n2

n1 + n2

x2

2σ2

)
.

Using this inequality twice in the right hand side of (13) concludes the proof.

C. Elements of the analysis of GLR-klUCB with Global Restarts

We present in this section the detailed proof of the two crucial lemmas in the analysis of GLR-klUCB
with Global Restarts.

C.1 Proof of Lemma 7

Lemma 7 follows from summing over k and a upper bounds on the quantities

Ek,a := E

1(ET )
τ (k+1)∑

t=τ (k)+1

∆(k)
a 1(At = a,UCBa(t− 1) ≥ UCBk?(t− 1))

 ,
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for each k ∈ {0, . . . ,ΥT } and each arm a such that ∆
(k)
a > 0.

Using that on ET , τ̂ (k) ≤ τ (k) + d(k), one can write Ek,a ≤ ∆
(k)
a d(k) +Rk,a where

Rk,a = E

1(ET )

τ(k+1)∑
t=τ̂(k)+1

∆(k)
a 1(At = a,UCBa(t− 1) ≥ UCBk?(t− 1))


= E

1(ET )

τ(k+1)∑
t=τ̂(k)+1

1
(

UCBk?(t− 1) ≤ µ(k)
k?

)
︸ ︷︷ ︸

:=(A)

+E

1(ET )

τ(k+1)∑
t=τ̂(k)+1

∆(k)
a 1

(
At = a,UCBa(t− 1) ≥ µ(k)

k?

)
︸ ︷︷ ︸

:=(B)

To upper bound (A) and (B), we recall the following notation. We let τ̂(t) be the last time before
t that the algorithm restarted. Moreover, we denote by na(t) =

∑t
s=τ(t)+1 1(As = a) the number

of selections of arm a since the last (global) restart, and µ̂a(t) = 1
na(t)

∑t
s=τ(t)+1Xa,s1(As = a)

their empirical average (if na(t) 6= 0).

Upper bound on Term (A) By definition of the Upper Confidence Bound, one can write

(A) ≤ E

1(ET )
τ (k+1)−1∑
t=τ̂ (k)

1
(
nk?(t) kl

(
µ̂k?(t), µ

(k)
k?

)
≥ f(t− τ̂(t))

)
≤ E

1(C(k))
τ (k+1)−1∑
t=τ̂ (k)

1
(
nk?(t) kl (µ̂k?(t), µk?) ≥ f(t− τ̂ (k))

) ,
where we introduce the event C(k) that all the changes up to the k-th have been detected:

C(k) =
{
∀j ≤ k, τ̂ (j) ∈ {τ (j) + 1, . . . , τ (j) + d(j)}

}
. (14)

Clearly, ET ⊆ C(k) and C(k) is Fτ̂ (k)-measurable. Observe that conditionally to Fτ̂ (k) , when C(k)

holds, µ̂k?(t) is the average of samples that have all mean µ(k)
k? . Thus, introducing µ̂s as a sequence

of i.i.d. random variables with mean µ(k)
k? , one can write

E

1(C(k))

τ (k+1)∑
t=τ̂ (k)

1
(
nk?(t) kl

(
µ̂k?(t), µ

(k)
k?

)
≥ f

(
t− τ̂ (k)

))∣∣∣∣∣∣Fτ̂ (k)


= 1(C(k))

τ (k+1)∑
t=τ̂ (k)

E
[
1
(
nk?(t) kl

(
µ̂k?(t), µ

(k)
k?

)
≥ f

(
t− τ̂ (k)

)) ∣∣∣ Fτ̂ (k)

]

≤ 1(C(k))

τ (k+1)−τ̂ (k)∑
t′=1

P
(
∃s ≤ t′ : s kl

(
µ̂s, µ

(k)
k?

)
≥ f(t′)

)
.

Using the concentration inequality given in Lemma 2 of Cappé et al. (2013) and the fact that f(t) =
ln(t) + 3 ln(ln(t)) allow to upper bound the probability corresponding to term t′ by 1/(t′ ln(t′)).
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Using the law of total expectation yields

(A) ≤ 2 +
τ (k+1)−τ (k)∑

t=3

1

t ln(t)
≤ 3 + ln

(
ln
(
τ (k+1) − τ (k)

))
.

Upper bound on Term (B) We let µ̃(k)
a,s denote the empirical mean of the first s observations of

arm a made after time t = τ̂ (k) + 1. Rewriting the sum in t as the sum of consecutive intervals
[τ (k) + 1, τ (k+1)],

(B) = ∆(k)
a E

[
1(ET )

τ (k+1)∑
t=τ̂ (k)+1

1
(
At = a,UCBa(t− 1) ≥ µ(k)

k?

) ]

= ∆(k)
a E

[
1(ET )

τ (k+1)∑
t=τ̂ (k)+1

1
(
At = a, na(t− 1)kl

(
µ̂a(t− 1), µ

(k)
k?

)
≤ f

(
t− τ̂ (k)

)) ]

≤ ∆(k)
a E

1(ET )

τ (k+1)∑
t=τ̂ (k)+1

t−τ̂ (k)∑
s=1

1 (At = a, na(t− 1) = s)1
(
s kl(µ̃(k)

a,s , µ
(k)
k? ) ≤ f

(
τ (k+1) − τ (k)

))
≤ ∆(k)

a E
[
1(ET )

na(τ (k+1))∑
s=1

1
(
s kl(µ̃(k)

a,s , µ
(k)
k? ) ≤ f(τ (k+1) − τ (k))

) ]

≤ ∆(k)
a E

[
1(Ck)

na(τ (k+1))∑
s=1

1
(
s kl(µ̃(k)

a,s , µ
(k)
k? ) ≤ f(τ (k+1) − τ (k))

) ]
,

where C(k) is the event already defined in (14). Conditionally to Fτ̂ (k) , when C(k) holds, for
s ∈ {1, . . . , na(τ (k+1))}, µ̃(k)

a,s is the empirical mean from i.i.d. observations of mean µ(k)
a . Therefore,

introducing µ̂s as a sequence of i.i.d. random variables with mean µ(k)
a , it follows from the law of

total expectation that

(B) ≤ ∆(k)
a

τ (k+1)−τ (k)∑
s=1

P
(
s× kl(µ̂s, µ

(k)
k? ) ≤ f

(
τ (k+1) − τ (k)

))
·

As µ̂s is the empirical mean of i.i.d. observation of mean µ(k)
a and µ(k)

k? > µ
(k)
a , and upper bound on

this sum of probabilities can be found in Appendix A.2 of Cappé et al. (2013), which yields

(B) ≤ ∆
(k)
a

kl(µ
(k)
a , µ

(k)
k? )

ln
(
τ (k+1) − τ (k)

)
+O

(√
ln
(
τ (k+1) − τ (k)

))
.

Conclusion Combining the upper bound on (A) and (B) yields

Ek,a ≤ ∆(k)
a d(k) +

∆
(k)
a ln

(
τ (k+1) − τ (k)

)
kl
(
µ

(k)
a , µ

(k)
k?

) +O
(√

ln
(
τ (k+1) − τ (k)

))
.

The bound in Lemma 7 follows from the observation that Ek,a is also trivially upper bounded by
∆

(k)
a

(
τ (k+1) − τ (k)

)
.
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C.2 Proof of Lemma 8

Recall that C(k) defined in (14) is the event that all the breakpoints up to the k-th have been correctly
detected. Using a union bound, one can write

P(EcT ) ≤
ΥT∑
k=1

P
(
τ̂ (k) /∈ {τ (k) + 1, . . . , τ (k) + d(k)}

∣∣∣ C(k−1)
)

+ P
(
τ̂ (ΥT+1) ≤ T

∣∣∣ C(ΥT )
)

≤
ΥT+1∑
k=1

P
(
τ̂ (k) ≤ τ (k) | C(k−1)

)
︸ ︷︷ ︸

(a)

+

ΥT∑
k=1

P
(
τ̂ (k) ≥ τ (k) + d(k) | C(k−1)

)
︸ ︷︷ ︸

(b)

.

The final result follows by proving that (a) ≤ Aδ and (b) ≤ δ, as detailed below.

Upper bound on (a): controlling the false alarm τ̂ (k) ≤ τ (k) implies that there exists an arm
whose associated change-point detector has experienced a false-alarm. Under the bandit algorithm,
the change-point detector associated with each arm a is based on (possibly much) less than t− τa(t)
samples from arm a, which makes false alarm even less likely to occur. More precisely, we upper
bound term (a) by

(a) ≤ P
(
∃a,∃s < t ≤ na(τ (k)) : s kl

(
µ̃

(k−1)
a,1:s , µ̃

(k−1)
a,1:t

)
+ (t− s) kl

(
µ̃

(k−1)
a,s+1:t, µ̃

(k−1)
a,1:t

)
> β(t, δ) | C(k−1)

)
≤

A∑
a=1

P
(
∃s < t : s kl(µ̂1:s, µ

(k−1)
a ) + (t− s) kl(µ̂s+1:t, µ

(k−1)
a ) > β(t, δ)

)
,

with µ̂s:s′ =
∑s′

r=s Zi,r where Zi,r is an i.i.d. sequence with mean µ(k−1)
a . Indeed, conditionally to

C(k−1), the na(τ (k)) successive observations of arm a arm starting from τ̂ (k) are i.i.d. with mean
µ

(k−1)
a . Using Lemma 9, term (a) is upper bounded by Aδ.

Upper bound on the term (b): controlling the delay From the definition of ∆c,(k), there exists
an arm a such that ∆c,(k) = |µ(k)

a − µ(k−1)
a |. We shall prove that it is unlikely that the change-

point detector associated with this arm a does not trigger within the delay d(k). Controlling the
detection delay for arm a under the adaptive sampling scheme of GLR-klUCB is tricky and we
need to leverage the forced exploration (Proposition 3) to be sure we have enough samples to ensure
detection: the effect is that delays will be scaled by the exploration parameter αk of the current
episode.

First step: upper bound Assume that C(k−1) holds. It follows from Proposition 3 that there exists
t ∈ {τ (k), . . . , τ (k) + d(k)} such that na(t) − na(τ (k)) = r where r = bαkA d

(k)c. This is because
the mapping t 7→ na(t)− na(τ (k)) is non-decreasing, is 0 at t = τ (k) and its value at τ (k) + d(k) is
larger than r as kt ≥ k. Using that(

τ̂ (k) ≥ τ (k) + d(k)
)
∩ C(k−1) ⊆

(
τ̂ (k) ≥ t

)
∩ C(k−1)

further implies that (b) = P
(
τ̂ (k) ≥ τ (k) + d(k)|C(k−1)

)
is upper bounded as follows:

(b) ≤ P
(
na(τ (k)) kl

(
µ̃k−1
i,na(τ(k))

, µ̃k−1
i,na(t)

)
+ r kl

(
µ̃k−1
i,na(τ(k)):na(t)

, µ̃k−1
i,na(t)

)
≤ β(na(τ (k)) + r, δ)

∣∣∣ C(k−1)
)
,
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where µ̃k−1
a,s denotes the empirical mean of the s first observation of arm a since the (k − 1)-th restart

τ̂ (k−1) and µ̃k−1
a,s:s′ the empirical mean that includes observation number s to number s′. Conditionally

to C(k−1), µ̃k−1
a,na(τ (k))

is the empirical mean of na(τ (k)) i.i.d. replications of mean µ(k−1)
a , whereas

µ̃k−1
a,na(τ (k)):na(t)

is the empirical mean of r i.i.d. replications of mean µ(k)
a .

Second step: controlling na(τ
(k)) Thanks to Proposition 3, we know that na(τ (k)) lies in the

interval
[⌊
αk
A

(
τ (k) − τ̂ (k−1)

)⌋
,
(
τ (k) − τ̂ (k−1)

)]
. Conditionally to C(k−1), one obtains furthermore

using that d(k−1) ≤ (τ (k) − τ (k−1))/2 (which follows from Assumption 4) that

na(τ
(k)) ∈ Ik where Ik :=

{⌊αk
2A

(τ (k) − τ (k−1))
⌋
, . . . , τ (k) − τ (k−1)

}
.

Introducing µ̂a,s (resp. µ̂b,s) the empirical mean of s i.i.d. observations with mean µ(k−1)
a (resp.

µ
(k)
a ), such that µ̂a,s and µ̂b,r are independent, it follows that

(b) ≤ P
(
∃s ∈ Ik : s kl

(
µ̂a,s,

sµ̂a,s + rµ̂b,r
s+ r

)
+ r kl

(
µ̂b,r,

sµ̂a,s + rµ̂b,r
s+ r

)
≤ β(s+ r, δ)

)
,

where we have also used that µ̃k−1
a,na(t)

=
(
na(τ

(k))µ̃k−1
a,na(τ (k))

+ rµ̃k−1
a,na(τ (k)):na(t)

)
/(na(τ

(k)) + r).

Third step: concluding with concentration inequalities Using Pinsker’s inequality and intro-
ducing the gap ∆

c,(k)
a = µ

(k−1)
a − µ(k)

a (which is such that ∆c,(k) = |∆c,(k)
a |), one can write

(b) ≤ P
(
∃s ∈ Ik :

2sr

s+ r
(µ̂a,s − µ̂b,r)2 ≤ β(s+ r, δ)

)
≤ P

(
∃s ∈ N :

2sr

s+ r

(
µ̂a,s− µ̂b,s−∆c,(k)

a

)2
≥ β(s+ r, δ)

)
(15)

+ P
(
∃s ∈ Ik :

2sr

s+ r

(
µ̂a,s− µ̂b,r−∆c,(k)

a

)2
≤ β(s+ r, δ),

2sr

s+ r
(µ̂a,s− µ̂b,r)2 ≤ β(s+ r, δ)

)
(16)

Using Lemma 10 (given above in Appendix B.2) and a union bound, the first term (15) is upper
bounded by δ (as β(r + s, δ) ≥ β(s, δ) ≥ ln(3s

√
s/δ)). For the second term (16) we use the

observation that

2sr

s+ r

(
µ̂a,s − µ̂b,r −∆c,(k)

a

)2
≤ β(s+ r, δ) ⇒ |µ̂a,s − µ̂b,r| ≥ |∆c,(k)

a | −
√
s+ r

2rs
β(s+ r, δ)

and, using that ∆c,(k) = |∆c,(k)
a |, one obtains

(b) ≤ δ + P

(
∃s ∈ Ik : ∆c,(k) ≤ 2

√
s+ r

2sr
β(s+ r, δ)

)
.

Let smin =
⌊
αk
A (τ (k) − τ (k−1))/2

⌋
. Using that the mappings s 7→ (s+ r)/sr and s 7→ β(s+ r, δ)

are respectively decreasing and increasing in s, one can further write

(b) ≤ δ + P
(
∃s ∈ Ik :

(
∆c,(k)

)2
≤ 2

smin + r

sminr
β(τ (k) − τ (k−1) + r, δ)

)
≤ δ + P

(
∃s ∈ Ik :

(
∆c,(k)

)2
≤ 4

r
β

(
3

2
(τ (k) − τ (k−1)), δ

))
, (17)
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where in the last step we use that by Assumption 4, it holds that r ≤ smin ≤ (τ (k) − τ (k−1))/2. To
conclude the proof, it remains to observe that by definition of the delay d(k),

r =
⌊αk
A
d(k)

⌋
>

4(
∆c,(k)

)2β(3

2
(τ (k) − τ (k−1)), δ

)
hence the probability in the right hand side of (17) is equal to zero, which yields (b) ≤ δ.

D. GLR-klUCB with Local Restarts

Rather than featuring the number of breakpoints ΥT , our analysis for local restarts features the
number of change-points CT defined below. We first define the number of change-points on arm a as

NCa :=
T−1∑
t=1

1 (µt(a) 6= µt+1(a)) .

Clearly, NCa ≤ ΥT , but there can be an arbitrary difference between NCa and ΥT for some arms.
We denote by CT :=

∑A
a=1 NCa the total number of change-points on the arms. Observe CT can

take all the values in {ΥT , . . . , AΥT }.
We further denote by τ (`)

a the position of the `-th change-point for arm a:

τ (`)
a = inf{t > τ (`−1)

a : µa(t) 6= µa(t+ 1)},

with the convention τ
(0)
a = 0, and let µ(`)

a be the `-th value for the mean of arm a, such that
∀t ∈ [τ

(`−1)
a + 1, τ

(`)
a ], µa(t) = µ

(`)
a . We also introduce the gap of the `-th change-point on arm a

which is ∆
c,(`)
a = µ`a − µ`−1

a > 0.
Assumption 11 requires that any two consecutive change-points on a given arm are sufficiently

spaced (relatively to the magnitude of those two change-points). Under that assumption, Theorem 12
provides a counterpart to Theorem 5 for GLR-klUCB based on Local Restart.

Assumption 11 Define the delay d(`)
a = d

(`)
a (α, δ) =

⌈
4A

α`

(
∆
c,(`)
a

)2β
(

3
2(τ

(`)
a − τ (`−1)

a ), δ
)

+ A
α`

⌉
,

we assume that for all arm a and all ` ∈ {1, . . . ,NCa}, τ (`)
a − τ (`−1)

a ≥ 2 max(d
(`)
a , d

(`−1)
a ).

Theorem 12 For α = (α1, α2, . . . ) and δ ∈ (0, 1) for which Assumption 11 is satisfied, the regret
of GLR-klUCB with parameters α and δ based on Local Restart satisfies

RT ≤ (A+ 2CT )δT + αCT+1T

+ 2

A∑
a=1

NCa∑
`=1

4A

α`

(
∆
c,(`)
a

)2β
(

3
2(τ (`)

a − τ (`−1)
a ), δ

)
+

A∑
a=1

NCa∑
`=0

ln(τ
(`+1)
a − τ `a)

kl
(
µ

(`)
a , µ

(`),∗
a

) +O
(√

ln(T )
)
,

where µ(`),∗
a = inf

{
µa?t (t) : µa?t (t) 6= µ

(`)
a , t ∈ [τ

(`)
a + 1, τ

(`+1)
a ]

}
, with inf ∅ = 0.

Corollary 13 Recall ∆opt defined in Section 5 and let ∆ be the minimum value of ∆
c,(`)
a for all a

and ` ∈ {1, . . . ,NCa}. For problem instances satisfying the corresponding Assumption 11, for any
γ > 1/2,
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1. Choosing αk =

√
kA ln(T )

T and δ = 1
T γ yields

RT = O

(
(1 + γ)

(
A∑
a=1

√
NCa

) √
AT ln(T )

∆2
+
CT ln(T )

(∆opt)
2

)
.

2. If CT is known, choosing αk =

√
CTA ln(T )

T and δ = 1
T γ yields

RT = O

(
(1 + γ)

√
CTAT ln(T )

∆2
+

CT ln(T )

(∆opt)
2

)
.

Corollary 13 specifies possible choices for the exploration sequence α and the parameter δ that
yield

√
T regret. If the number of change-pointCT is known, one can achieveO

(√
CTAT ln(T )/∆2

)
,

where ∆ is the minimal magnitude of any change-point (which can be smaller than ∆change defined
in Section 5). Without the knowledge of CT , one achieves a slightly worse regret as the

√
CT factor

is replaced by the larger
∑A

a=1

√
NCa. As CT can moreover take any value in {ΥT , . . . , AΥT }, the

guarantees obtained for GLR-klUCB with Local Restart are essentially worse than those obtained
for Global Restart.

For particular instances such that ΥT = CT , i.e., at each breakpoint only one arm changes (like
in Problem 1 in Section 6), one obtains however competitive results for GLR-klUCB with Local
Restart. Indeed, in that case ∆ = ∆change and when ΥT is known the two versions of GLR-klUCB
achieve the same O(

√
ΥTAT ln(T )/(∆change)2) regret. Yet when ΥT is unknown, GLR-klUCB

with Local restart is only guaranteed to have a regret of O(A
√

ΥTT ln(T )/(∆change)2) when each
arm has the same number of change-points, which is sub-optimal by a factor

√
A. Still, observe that

these similar (or slightly worse) regret guarantees under Local Restart hold for a wider variety of
problems as Assumption 11 is less stringent than Assumption 4.

We highlight that the results of Theorem 5 and Theorem 12 provide only upper bounds on the
regret, which can be viewed as a sanity-check for using both variants of GLR-klUCB. The fact
that our current results are worse for Local Restart is not in contradiction with our observation in
Section 6 that the empirical performance of the two algorithms is very close.

D.1 Proof of Corollary 13

Choosing δ = T−γ and αk =
√
k ln(T )A/T , Theorem 5 upper bound the regret of GLR-klUCB

by

(A+ 2CT )T 1−γ +
√

(CT + 1)AT ln(T ) +

A∑
a=1

NCa∑
`=1

4A

α`(∆
(`)
a )2

β( 3
2
T, T−γ) +

A∑
a=1

NCa∑
`=1

ln(T )

kl
(
µ̄

(`)
a , µ

(`),∗
a

) +O
(√

ln(T )
)
.

For γ > 1/2, the leading term in this expression is√
(CT + 1)AT ln(T ) +

A∑
a=1

NCa∑
`=1

4A

α`(∆
(`)
a )2

β(3
2T, T

−γ) +
A∑
a=1

NCa∑
`=1

ln(T )

kl
(
µ̄

(`)
a , µ

(`),∗
a

) .
Using further that there exists some absolute constant C ′ such that β(n, δ) ≤ C ′ ln(n/δ), one obtains

RT = O

(√
(CT + 1)AT ln(T ) + (1 + γ)

A∑
a=1

NCa∑
`=1

A

α`∆
(`)
a

ln(T ) +
CT ln(T )

(∆opt)2

)
(18)
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Finally, the first statement of the corollary follows from the fact that, for all i,

NCa∑
`=1

1

α`
=

√
T

A ln(T )

NCa∑
`=1

1√
`
≤

√
NCaT
A ln(T )

.

Choosing α` =

√
ACT ln(T )

T in (18) yields the second statement.

D.2 Proof of Theorem 12

We first introduce some notation for the proof. Recall that τ (`)
a denotes the `-th change-point for arm

a. We use the convention τ (NCa+1)
a = T . We denote by τ̂ (`)

a the `-th change-point detected for arm a
by GLR-klUCB, leading to a restart for this arm.

Distinguishing the exploration steps and the steps in which GLR-klUCB uses the UCBs to select
the next arm to play, one can upper bound the regret as

RT ≤ E

[
T∑
t=1

1

(
t

⌈
A

αkt

⌉
∈ {1, . . . , A}

)
+

T∑
t=1

(µa?t (t)− µAt
(t))1

(
UCBAt

(t− 1) ≥ UCBa?t (t− 1)
)]
(19)

We now introduce some high-probability event in which all the change-points are detected within a
reasonable delay for all arms. With d(`)

a = d
(`)
a (α, δ) in Assumption 11, we define

ET = ET (α, δ) =
(
∀a ∈ {1, . . . , A},∀` ∈ {1, . . . ,NCa}, τ̂ (`)

a ∈
[
τ (`)
a + 1, τ (`)

a + d(`)
a

]
, τ̂ (NCa+1)
a > T

)
.

From Assumption 11, as the period between two change-points are long enough, if ET holds, then for
all arm a and all change-point `, one has τ (`)

a ≤ τ̂ (`)
a ≤ τ (`+1)

a for all ` ∈ {1, . . . ,NCa}. Also, when
ET holds, GLR-klUCB experiences a total of CT restarts (on different arms), which each yield an
update of the exploration parameter. Letting σ̂(k) be the instant of the k-th restart (on any arm) with
the convention that σ̂(CT+1) = T , one can write, when ET holds:

T∑
t=1

1

(
t

⌈
A

αkt

⌉
∈ {1, . . . , A}

)
≤

CT∑
k=0

σ̂(k+1)∑
t=σ̂(k)+1

1

(
t

⌈
A

αk+1

⌉
∈ {1, . . . , A}

)

≤
CT∑
k=0

αk+1

(
σ̂(k+1) − σ̂(k)

)
≤ αCT+1

CT∑
k=0

(
σ̂(k+1) − σ̂(k)

)
= αCT+1T.

On ET , the second term in (19) can be further decomposed as follows, according to whether the
upper confidence bound of the current optimal arm is small, leading to

RT ≤ TP (EcT ) + αCT +1T+

E

[
1(ET )

T∑
t=1

1
(
UCBa?t (t) ≤ µa?t (t)

)]
︸ ︷︷ ︸

(C)

+ E

[
1(ET )

T∑
t=1

(µa?t (t)− µAt
(t))1

(
UCBAt

(t) ≥ µa?t (t)
)]

︸ ︷︷ ︸
(D)

.

As in the previous proof, the conclusion follows from two lemmas. Lemma 14 controls terms
(C) and (D) using some elements from the analysis of klUCB while Lemma 15 upper bounds the
probability of the “bad” event EcT . The proofs of these two results are presented in the next sections.
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Lemma 14 It holds that

(C) ≤
A∑
a=1

NCa∑
`=0

d(`)
a (α, δ) + CT ln(ln(T )) , (20)

(D) ≤
A∑
a=1

NCa∑
`=0

d(`)
a (α, δ) +

A∑
a=1

NCa∑
`=1

[
ln(τ

(`+1)
a − τ (`)

a )

kl(µ
(`)
a , µ

(`),∗
a )

+O
(√

ln(T )
)]

. (21)

Lemma 15 Under Assumption 11, it holds that P(EcT ) ≤ (A+ 2CT )δ.

D.3 Proof of Lemma 14

Upper bound on the term (C)

(C) ≤ E

[
1(ET )

T∑
t=1

1
(
na?t (t)kl

(
µ̂a?t (t), µa?t (t)

)
≥ f(t− τa?t (t))

)]

≤
A∑
a=1

E

[
1(ET )

T∑
t=1

1(a?t = a)1 (na(t)kl (µ̂a(t), µa(t)) ≥ f(t− τa(t)))

]

≤
A∑
a=1

NCa∑
`=0

E

1(ET )

τ
(`+1)
a∑

t=τ
(`)
a +1

1
(
na(t)kl

(
µ̂a(t), µ̄

(`)
a

)
≥ f(t− τ̂a(t))

)
≤

A∑
a=1

NCa∑
`=0

d(`)
a (α, δ) +

A∑
a=1

NCa∑
`=0

E

1(C(`)
a )

τ
(`+1)
a∑

t=τ̂
(`)
a +1

1
(
na(t)kl

(
µ̂a(t), µ

(`)
a

)
≥ f(t− τ̂ (`)

a )
) ,

where we introduce the event C(`)
a that all the change-points on arm a up to the `-th have been

detected:
C(`)
a =

{
∀j ≤ `, τ̂ (j)

a ∈
[
τ (j)
a + 1, τ (j)

a + d(`)
a

]}
. (22)

Clearly, ET ⊆ C(`)
a and C(`)

a is F
τ̂

(`)
a

-measurable. Observe that conditionally to F
τ̂

(`)
a

, when 1(C(`)
a )

holds, µ̂a(t) is the average of samples that have all mean µ̄(`)
a . Thus, introducing µ̂s as a sequence of

i.i.d. random variables with mean µ̄(`)
a , one can write

E

1(C(`)
a )

τ
(`+1)
a∑

t=τ̂
(`)
i +1

1
(
na(t)kl

(
µ̂a(t), µ̄

(`)
a

)
≥ f(t− τ̂ (`)

i )
)∣∣∣∣∣∣∣Fτ̂ (`)

a


= E

1(C(`)
a )

τ
(`+1)
a∑

t=τ̂
(`)
i +1

E
[
1
(
na(t)kl

(
µ̂a(t), µ̄

(`)
a

)
≥ f(t− τ̂ (`)

i )
)
| F

τ̂
(`)
a

]
≤ E

1(C(`)
a )

τ
(`+1)
a −τ̂ (`)

i∑
t′=1

P
(
∃s ≤ t′ : s× kl(µ̂s, µ̄

(`)
a ) ≥ f(t′)

) ≤ 2 +

T∑
t=3

1

t ln(t)
≤ 3 + ln(ln(T )),

where the last but one inequality relies on the concentration inequality given in Lemma 2 of Cappé
et al. (2013), and the fact that f(t) = ln(t) + 3 ln(ln(t)).
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Upper bound on the term (D) Recall that µ(`),∗
a is defined in the statement of Theorem 12 as the

smallest value of µa?t (t) when arm a is sub-optimal on the interval [τ
(`)
a + 1, τ

(`+1)
a ]. We let µ̃(`)

a,s

denote the empirical mean of the first s observations of arm a made after time t = τ̂
(`)
a + 1. To upper

bound Term (D), we introduce a sum over all arms and rewrite the sum in t as a sum of consecutive
intervals [τ

(`)
a + 1, τ

(`+1)
a ].

(D) ≤
A∑
a=1

E
[
1(ET )

NCa∑
`=0

τ
(`+1)
a∑

t=τ
(`)
a +1

(
µa?t (t)− µ

(`)
a

)
1
(
At = a,UCBa(t) ≥ µa?t (t)

) ]

≤
A∑
a=1

E
[
1(ET )

NCa∑
`=0

τ
(`+1)
a∑

t=τ
(`)
a +1

(
µa?t (t)− µ

(`)
a

)
1
(
At = a,UCBa(t) ≥ µ(`),∗

a

) ]

≤
A∑
a=1

NCa∑
`=0

E
[
1(ET )τ̂

(`)
i + 1(ET )

τ
(`+1)
a∑

t=τ̂
(`)
a +1

∆
(`)
a 1

(
At = a,UCBa(t) ≥ µ(`),∗

a

) ]

with ∆
(`)
a := max

t∈[τ
(`)
a +1,τ

(`+1)
a ]

(
µa?t (t)− µ

(`)
a

)
. Introducing a sum over 1(na(t) = s) and swapping

the sums yields

(D) ≤
A∑
a=1

NCa∑
`=0

d(`)
a (α, δ) +

A∑
a=1

NCa∑
`=1

∆
(`)

a E
[
1(C(`)

a )

na(τ(`+1)
a )∑
s=1

1
(
s× kl(µ̃(`)

a,s, µ
(`),∗
a ) ≤ f(τ (`+1)

a − τ (`)
a )
) ]
.

Conditionally to F
τ̂

(`)
a

, when C(`)
a holds, for s ∈ {1, . . . , na(τ (`+1)

a )}, µ̃(`)
a,s is the empirical mean

from i.i.d. observations of mean µ(`)
a . Therefore, introducing µ̂s as a sequence of i.i.d. random

variables with mean µ(`)
a , it follows from the law of total expectation that

(D) ≤
A∑
a=1

NCa∑
`=0

d(`)
a (α, δ) +

A∑
a=1

NCa∑
`=1

∆
(`)
i ×

τ
(`+1)
a −τ (`)

a∑
s=1

P
(
s× kl(µ̂s, µ

(`),∗
a ) ≤ f(τ (`+1)

a − τ (`)
a )
)
.

If ∆
(`)
a 6= 0, then µ(`),∗

a > µ̄
(`)
a and we can use the same analysis as in the proof of Fact 2 in

Appendix A.2 of Cappé et al. (2013) to show that

τ
(`+1)
a −τ (`)

a∑
s=1

P
(
s× kl(µ̂s, µ

(`),∗
a ) ≤ f(τ (`+1)

a − τ (`)
a )
)
≤ ln(τ

(`+1)
a − τ (`)

a )

kl
(
µ

(`)
a , µ

(`),∗
a

) +O
(√

ln(T )
)
.

If ∆
(`)
a = 0, then µ(`),∗

a = 0 and kl
(
µ

(`)
a , µ

(`),∗
a

)
= +∞, thus it also trivially holds that

∆
(`)
a

τ
(`+1)
a −τ (`)

a∑
s=1

P
(
s× kl(µ̂s, µ

(`),∗
a ) ≤ f(τ (`+1)

a − τ (`)
a )
)
≤ ln(τ

(`+1)
a − τ (`)

a )

kl
(
µ

(`)
a , µ

(`),∗
a

) +O
(√

ln(T )
)

and the proof of (21) is complete.
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D.4 Proof of Lemma 15

With the event C(`)
a defined in (22) and the convention τ (NCa+1)

a = T , a simple union bound yields

P(EcT ) ≤
A∑
a=1

NCa+1∑
`=1

P
(
τ̂ (`)
a ≤ τ (`)

a

∣∣∣ C(`−1)
a

)
︸ ︷︷ ︸

(a)

+

A∑
i=1

NCa∑
`=1

P
(
τ̂ (`)
a ≥ τ (`)

a + d(`)
a

∣∣∣ C(`−1)
a

)
︸ ︷︷ ︸

(b)

.

The final result follows by proving that the terms (a) and (b) are both upper bounded by δ.

Upper bound on (a): controlling the false alarms τ̂
(`)
a ≤ τ (`)

a implies that there is a false alarm
for the detection of the `-th change on arm a, which is not likely:

(a) ≤ P
(
∃s < t ≤ na(τ (`)

a ) : s× kl
(
µ̃

(`−1)
a,1:s , µ̃

(`−1)
a,1:t

)
+ (t− s)× kl

(
µ̃

(`−1)
i,s+1:t, µ̃

(`−1)
a,1:t

)
> β(t, δ) | C(`−1)

a

)
≤ P

(
∃s < t : s× kl(µ̂1:s, µ

(`−1)
a ) + (t− s)× kl(µ̂s+1:t, µ

(`−1)
a ) > β(t, δ)

)
,

with µ̂s:s′ =
∑s′

r=s Zi,r where Zi,r is an i.i.d. sequence with mean µ(`−1)
a . Indeed, conditionally

to C(`−1)
a , the na(τ

(`)
a ) successive observations of arm a arm starting from τ̂

(`)
a are i.i.d. with mean

µ
(`−1)
a . Using Lemma 9, term (a) is upper bounded by δ.

Upper bound on term (b): controlling the delay Assume that C(`−1)
a holds. For t > τ̂

(`−1)
a , we

now that at least the first `−1 change-points on arm a have been detected, hence the current number of
episodes kt is larger than `. It follows from Proposition 3 that there exists t ∈

{
τ

(`)
a , . . . , τ

(`)
a + d

(`)
a

}
such that na(t) − na(τ (`)

a ) = r where r = bα`A d
(`)
a c. This is because the mapping t 7→ na(t) −

na(τ
(`)
a ) is non-decreasing, is 0 at t = τ

(`)
a and its value at τ (`)

a +d
(`)
a is larger than r by Proposition 3

as αkt ≥ α`. Using that

(τ̂ (`)
a ≥ τ (`)

a + d(`)
a ) ∩ C(`−1)

a ⊆ (τ̂ (`)
a ≥ t) ∩ C(`−1)

a ,

the probability (b) = P(τ̂
(`)
a ≥ τ (`)

a + d
(`)
a |C(`−1)

a ) is further upper bounded as follows:

(b) ≤ P
(
na(τ (`)

a ) kl
(
µ̃`−1

i,na(τ
(`)
a )

, µ̃`−1
i,na(t)

)
+ r kl

(
µ̃`−1

i,na(τ
(`)
a ):na(t)

, µ̃`−1
i,na(t)

)
≤ β(na(τ (`)

a ) + r, δ)
∣∣∣ C(`−1)
a

)
,

where µ̃`−1
i,s denotes the empirical mean of the s first observation of arm a since the (`− 1)-th restart

τ̂
(`−1)
i and µ̃`−1

i,s:s′ the empirical mean that includes observation number s to number s′. Conditionally

to C(`−1)
i , µ̃`−1

i,na(τ
(`)
a )

is the empirical mean of na(τ
(`)
a ) i.i.d. replications of mean µ̄`−1

i , whereas

µ̃`−1

i,na(τ
(`)
a ):na(t)

is the empirical mean of r i.i.d. replications of mean µ̄`i .

Then, conditionally to C(`−1)
a , na(τ

(`)
a ) ∈

{⌊
α`
A

(
τ

(`)
a − τ̂ (`−1)

a

)⌋
, . . . , τ

(`)
a − τ̂ (`−1)

a

}
due to

Proposition 3 and to the fact that d(`−1)
a ≤ (τ

(`)
a − τ (`−1)

a )/2 by Assumption 11. Hence

na(τ
(`)
a ) ∈

{⌊α`
A

(
τ (`)
a − τ (`−1)

a − d(`−1)
a

)⌋
, . . . ,

(
τ (`)
a − τ (`−1)

a

)}
na(τ

(`)
a ) ∈

{⌊ α`
2A

(
τ (`)
a − τ (`−1)

a

)⌋
, . . . ,

(
τ (`)
a − τ (`−1)

a

)}
:= I`.
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Introducing µ̂a,s (resp. µ̂b,s) the empirical mean of s i.i.d. observations with mean µ̄(`−1)
a (resp.

µ̄
(`)
a ), such that µ̂a,s and µ̂b,r are independent, it follows that

(b) ≤ P
(
∃s ∈ I` : s kl

(
µ̂a,s,

sµ̂a,s + rµ̂b,r
s+ r

)
+ r kl

(
µ̂b,r,

sµ̂a,s + rµ̂b,r
s+ r

)
≤ β(s+ r, δ)

)
,

where we have also used that µ̃`−1
a,na(t)

=
na(τ

(`)
a )µ̃`−1

a,na(τ
(`)
a )

+rµ̃`−1

a,na(τ
(`)
a ):na(t)

na(τ
(`)
a )+r

.

Using Pinsker’s inequality and the expression of the gap ∆
c,(`)
a = µ̄

(`−1)
a − µ̄(`)

a , one can write

(b) ≤ P
(
∃s ∈ I` :

2sr

s+ r
(µ̂a,s − µ̂b,r)2 ≤ β(s+ r, δ)

)
≤ P

(
∃s ∈ N :

2sr

s+ r

(
µ̂a,s − µ̂b,s −∆c,(`)

a

)2
≥ β(s+ r, δ)

)
+ P

(
∃s ∈ I` :

2sr

s+ r

(
µ̂a,s − µ̂b,r −∆c,(`)

a

)2
≤ β(s+ r, δ),

2sr

s+ r
(µ̂a,s − µ̂b,r)2 ≤ β(s+ r, δ)

)
Using Lemma 10 stated in Appendix B.2 and a union bound, the first term in the right hand side

is upper bounded by δ (as β(r + s, δ) ≥ β(s, δ) ≥ ln(3s
√
s/δ)). For the second term, we use the

observation

2sr

s+ r

(
µ̂a,s − µ̂b,r −∆c,(`)

a

)2
≤ β(s+ r, δ) ⇒ |µ̂a,s − µ̂b,r| ≥ |∆c,(`)

a | −
√
s+ r

2rs
β(s+ r, δ)

and finally get

(b) ≤ δ + P

(
∃s ∈ I` : |∆c,(`)

a | ≤ 2

√
s+ r

2sr
β(s+ r, δ)

)
.

Let smin =
⌊
α`
A (τ

(`)
a − τ (`−1)

a )/2
⌋

. Using that the mappings s 7→ (s+ r)/sr and s 7→ β(s+ r, δ)

are respectively decreasing and increasing in s, one can further write

(b) ≤ δ + P
(
∃s ∈ I` :

(
∆(`)
a

)2
≤ 2

smin + r

sminr
β(τ (`)

a − τ (`−1)
a + r, δ)

)
≤ δ + P

(
∃s ∈ I` :

(
∆(`)
a

)2
≤ 4

r
β

(
3

2
(τ (`)
a − τ (`−1)

a ), δ

))
, (23)

where in the last step we use that by Assumption 11, it holds that r ≤ smin ≤ (τ
(`)
a − τ (`−1)

a )/2. To
conclude the proof, it remains to observe that by definition of the delay d(`)

a ,

r =
⌊α`
A
d(`)
a

⌋
>

4(
∆
c,(`)
a

)2β

(
3

2
(τ (`)
a − τ (`−1)

a ), δ

)

hence the probability in the right hand side of (23) is equal to zero, which yields (b) ≤ δ.
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