A non-iterative method for robustly computing the intersections between a line and a curve or surface - Archive ouverte HAL Access content directly
Journal Articles International Journal for Numerical Methods in Engineering Year : 2019

A non-iterative method for robustly computing the intersections between a line and a curve or surface

(1) , (2) , (1)
1
2

Abstract

The need to compute the intersections between a line and a high-order curve or surface arises in a large number of finite element applications. Such intersection problems are easy to formulate but hard to solve robustly. We introduce a non-iterative method for computing intersections by solving a matrix singular value decomposition (SVD) and an eigenvalue problem. That is, all intersection points and their parametric coordinates are determined in one-shot using only standard linear algebra techniques available in most software libraries. As a result, the introduced technique is far more robust than the widely used Newton-Raphson iteration or its variants. The maximum size of the considered matrices depends on the polynomial degree $q$ of the shape functions and is $2q \times 3q$ for curves and $6 q^2 \times 8 q^2$ for surfaces. The method has its origin in algebraic geometry and has here been considerably simplified with a view to widely used high-order finite elements. In addition, the method is derived from a purely linear algebra perspective without resorting to algebraic geometry terminology. A complete implementation is available from http://bitbucket.org/nitro-project/.

Dates and versions

hal-02009104 , version 1 (06-02-2019)

Identifiers

Cite

Xiao Xiao, Laurent Busé, Fehmi Cirak. A non-iterative method for robustly computing the intersections between a line and a curve or surface. International Journal for Numerical Methods in Engineering, 2019, International Journal for Numerical Methods in Engineering, 120 (3), pp.382-390. ⟨10.1002/nme.6136⟩. ⟨hal-02009104⟩
94 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More