, However, the functional space where the spatiotemporal field lives has not be estimated. Dealing with this space

, Acknowledgement This work was partly funded in the Programme d'Investissements d'Avenir, grant PIA-FSN2-Calcul intensif et simulation numérique-2-AVIDO. This work was granted access to the HPC resources of CINES under the allocation 2018A0040610366 made by GENCI

R. Smith, Uncertainty quantification, SIAM, 2014.

M. Baudin, A. Dutfoy, B. Iooss, and A. Popelin, Open TURNS: An industrial software for uncertainty quantification in simulation, Springer Handbook on Uncertainty Quantification, pp.2001-2038, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01107849

, Springer Handbook on Uncertainty Quantification, 2017.

B. Welford, Note on a method for calculating corrected sums of squares and products, Technometrics, vol.4, issue.3, pp.419-420, 1962.

T. F. Chan, G. H. Golub, and R. J. Leveque, Updating formulae and a pairwise algorithm for computing sample variances, COMPSTAT 1982 5th Symposium, pp.30-41, 1982.

T. Finch, Incremental calculation of weighted mean and variance, 2009.

J. Bennett, R. Grout, P. Pébay, D. Roe, and D. Thompson, Cluster Computing and Workshops, 2009. CLUSTER'09. IEEE International Conference on, pp.1-8, 2009.

P. Pébay, Formulas for robust, one-pass parallel computation of covariances and arbitrary-order statistical moments

P. Pébay, D. Thompson, J. Bennett, and A. Mascarenhas, Design and performance of a scalable, parallel statistics toolkit, Parallel and Distributed Processing Workshops and Phd Forum, pp.1475-1484, 2011.

J. C. Bennett, V. Krishnamoorthy, S. Liu, R. W. Grout, E. R. Hawkes et al., Feature-based statistical analysis of combustion simulation data, IEEE transactions on visualization and computer graphics, vol.17, issue.12, pp.1822-1831, 2011.

S. Lakshminarasimhan, J. Jenkins, I. Arkatkar, Z. Gong, H. Kolla et al.,

S. Ku, J. Ethier, C. Chen, S. Chang, and . Klasky, Isabela-qa: querydriven analytics with isabela-compressed extreme-scale scientific data, Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, p.31, 2011.

J. C. Bennett, H. Abbasi, P. Bremer, R. Grout, A. Gyulassy et al., Combining in-situ and in-transit processing to enable extreme-scale scientific analysis, High Performance Computing, Networking, Storage and Analysis (SC), 2012 International Conference for, pp.1-9, 2012.

L. Gilquin, E. Arnaud, C. Prieur, and H. Monod, Recursive estimation procedure of Sobol' indices based on replicated designs
URL : https://hal.archives-ouvertes.fr/hal-01291769

T. Terraz, A. Ribes, Y. Fournier, B. Iooss, B. Raffin et al., Large scale in transit sensitivity analysis avoiding intermediate files, in: International Conference for High Performance Computing, Networking, Storage and Analysis (SC'17, 2017.

T. Terraz, B. Raffin, A. Ribes, and Y. Fournier, Proceedings of the Second Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, ISAV2016, ACM, 2016.

T. Tu, C. A. Rendleman, D. W. Borhani, R. O. Dror, J. Gullingsrud et al., A Scalable Parallel Framework for Analyzing Terascale Molecular Dynamics Simulation Trajectories, vol.56, p.12, 2008.

M. Dorier, G. Antoniu, F. Cappello, M. Snir, L. Orf et al., How to Efficiently Leverage Multicore Parallelism to Achieve Scalable, Jitterfree I/O, in: CLUSTER-IEEE International Conference on Cluster Computing, 2012.

F. Zheng, H. Zou, G. Eisnhauer, K. Schwan, M. Wolf et al., FlexIO: I/O middleware for Location-Flexible Scientific Data Analytics, in: IPDPS'13, 2013.

M. Dreher and B. Raffin, A Flexible Framework for, 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid'14), 2014.
URL : https://hal.archives-ouvertes.fr/hal-00941413

, Uncertainty in industrial practice, 2008.

J. Morio and M. Balesdent, Estimation of rare event probabilities in complex aerospace and other systems, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01299041

B. Iooss and A. Marrel, Advanced methodology for uncertainty propagation in computer experiments with large number of inputs, Nuclear Technology
URL : https://hal.archives-ouvertes.fr/hal-01907198

P. W. Glynn, Importance sampling for monte carlo estimation of quantiles, Proceedings of Second International Workshop on Mathematical Methods in Stochastic Simulation and Experimental Design, pp.180-185, 1996.

T. Hesterberg and B. Nelson, Control variates for probability and quantile estimation, Management Science, vol.44, pp.1295-1312, 1998.

C. Cannamela, J. Garnier, and B. Iooss, Controlled stratification for quantile estimation, Annals of Apllied Statistics, vol.2, pp.1554-1580, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00355016

A. Popelin and B. Iooss, Visualization tools for uncertainty and sensitivity analyses on thermal-hydraulic transients, Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013), 2013.
URL : https://hal.archives-ouvertes.fr/hal-00952930

A. Ribés, J. Pouderoux, A. Popelin, and B. Iooss, Visualizing statistical analysis of curves datasets in Paraview, 2014 IEEE Conference on Visual Analytics Science and Technology (VAST), 2014.

S. Nanty, C. Helbert, A. Marrel, N. Pérot, and C. Prieur, Uncertainty quantification for functional dependent random variables, Comput. Stat
URL : https://hal.archives-ouvertes.fr/hal-01075840

H. David and H. Nagaraja, Order statistics, 2003.

H. Robbins and S. Monro, A stochastic approximation method, The Annals of Mathematical Statistics, vol.22, pp.400-407, 1951.

M. Duflo, Random iterative models, 1997.

M. Kohler, A. Krzyzak, and H. Walk, Nonparametric recursive quantile estimation, Statistics and probability Letters, vol.93, pp.102-107, 2014.

J. W. Tukey, Exploratory data analysis, vol.2, 1977.

A. Benveniste, M. Métivier, and P. Priouret, Adaptive algorithms and stochastic approximation iterative models, 1990.

H. Kushner and G. Yin, Stochastic approximation and recursive algorithms and applications, 2003.

S. Smale and Y. Yao, Online learning algorithms, Foundations of Computational Mathematics, vol.6, pp.145-170, 2006.

H. Cardot, P. Cénac, and P. Zitt, Efficient and fast estimation of the geometric median in hilbert spaces with an averaged stochastic gradient algorithm, Bernoulli, vol.19, pp.18-43, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00558481

T. Labopin-richard, F. Gamboa, and A. Garivier, Conditional quantile sequential estimation for stochastic codes
URL : https://hal.archives-ouvertes.fr/hal-01187329

P. Hintjens and Z. , Messaging for Many Applications, 2013.

F. Archambeau, N. Méchitoua, and M. Sakiz, Code_Saturne: a finite volume code for the computation of turbulent incompressible flows, International Journal on Finite, vol.1
URL : https://hal.archives-ouvertes.fr/hal-01115371

Y. Fournier, J. Bonelle, C. Moulinec, Z. Shang, A. Sunderland et al., Optimizing code_Saturne computations on petascale systems, Computers & Fluids, vol.45, issue.1, pp.103-108, 2011.