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Abstract. Seamless authentication is a desired feature which is becom-
ing more and more relevant, due to the distribution of personal and
wearable mobile devices. With seamless authentication, biometric fea-
tures such as human gait, become a way to control authorized access
on mobile devices, without actually requiring user interaction. However,
this analysis is a challenging task, prone to errors, with the need to
dynamic adapt to new conditions and requirements, brought by the dy-
namic change of biometric parameters. In this paper we present a novel
deep-learning based framework for gait-based authentication. The paper
presents an in depth study of the building and training of a Recurrent
Convolutional Neural Network with a real dataset based on gait read-
ing performed through five body sensors. We introduce methodologies to
further increase the classification accuracy based on data augmentation
and selective filtering. Finally we will present a complete experimental
evaluation performed on more than 150 different identities.

Keywords: Gait recognition · Behavioral analysis · Seamless continuos
authentication · Deep learning.

1 Introduction

Wearable technology is advancing at a fast pace, with a large interest in indus-
trial and research world. More and more additional computing capacity and sen-
sors are incorporated into smartphones, tablets, (smart)watches, but also shoes,
clothes, and other wearable items. These enhanced objects act as enablers of
pervasive computing [12], collecting data used to provide additional smart ser-
vices to their users.Several of these smart devices come equipped with built-in
accelerometers and gyroscopes, which can be exploited to register the body mo-
tion of users [11], [10], monitoring the unique movement pattern of a user might
become an excellent instrument for seamless authentication [9]. However, the
majority of current solutions for sensor based authentication, are mainly based
on active behavioral mechanisms, which require direct user interaction [6], having
thus limited advantages compared to classical authentication mechanisms, such
as PIN, passwords, or finger pattern recognition. Considering that each individ-
ual person has a unique manner of walking, gait can be interpreted as a biometric
trait and consequently, the aforementioned inertial sensors have great potential
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to play an important role in the field of biometry [9]. If correctly exploited, the
gait can be used as a method for seamless continuous authentication, able to au-
thenticate users of wearable devices continuously during time, without requiring
any active interaction. In this paper, we present a deep study on gait analysis
for identity recognition based on inertial sensors and deep learning classification.
The presented methodology exploits a public dataset [17] collected on a set of
175 users through five body sensors, presenting the design and implementation of
a recurrent convolutional neural network for deep learning-based classification.
Through experimental evaluation, we show the effectiveness of the methodology
in recognizing single user on which the recurrent convolutional network has been
trained on and also the ability of the presented system to understand if the mon-
itored gait belongs to an unknown person. The results show an accuracy close
to 1, demonstrating the feasibility of the presented approach as a methodology
for seamless continuous authentication, which can be exploited by mobile and
wearable smart devices. The contributions of this paper are:

– The presentation of a deep-learning method based on Recurrent-Convolutional-
Neural-Network for identity classification through gait analysis;

– An analysis of the sensor orientation problem solved considering the magni-
tude of the 3 axis acceleration vectors;

– It will be detailed the process of designing the network and consecutive
training based on analysis of a variable number of body sensors, implemented
through the Keras framework for deep learning;

– The paper will introduce a methodology for data augmentation which aims at
increasing the classification accuracy and prevent overfitting, by generating
well instrumented artificial data;

– An extended analysis of the gait recognition will be discussed by propos-
ing a threshold-based method to filter out outliers and increase the overall
accuracy. Moreover a study on sensor filtering to demonstrate the high recog-
nition accuracy with less sensor will be presented;

– A study of cross session classification to understand the capability of the
network to learn the different walking patterns of a person is also introduced;

This paper extends the one presented in [2] by presenting as new contribu-
tions (i) the introduction of a new deep learning network based on Recurrent
Convolutional Neural Network, which improves the accuracy in recognizing iden-
tities, (ii) the application of a sensor data orientation invariance method (iii) the
sensor filtering approach and related experiments, (iv) a study on cross session
classification. The rest of the paper is organized as follows: Section 2 reports
background notions on gait analysis and deep learning. Section 3 describes the
used dataset and the data preprocessing steps. Section 4 reports the description
of the design and implementation of the network and its training metodology.
Section 5 reports the classification results for different scenarios and reducing the
number of sensors consideres. Section 6 lists some related work. Finally Section
7 briefly concludes proposing some future directions.
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2 Background

In this section we present some background notions exploited in this work.

2.1 Gait Analysis

Gait is the motion of human walking, whose movements can be faithfully re-
flected by the acceleration of the body sections [17]. Human gait recognition has
been recognized as a biometric technique to label, describe, and determine the
identity of individuals based on their distinctive manners of walking [14]. Basi-
cally, due to the fact that walking is a daily activity, human gait can be measured,
as a user identity recognition technique, in daily life without explicitly asking the
users to walk. This fact distinguishes gait from other accelerometer measurable
actions, like gestures, as well as other commonly used biometrics, such as fin-
gerprints, signatures, and face photos, whose data collection usually interrupts
the users from normal activities for explicit participation [17]. Moreover, since
portable or wearable accelerometers are able to monitor gait continuously during
arbitrary time period, accelerometer-based gait recognition would be especially
great tool in continuous identity verification [7].

2.2 Deep Learning

A neural network is a class of machine learning algorithms, in which a collection
of neurons are connected with a set of synapses. The collection is designed
in three main parts: the input layer, the hidden layer, and the output layer.
In the case that neural network has multiple hidden layers, it is called deep
network. Hidden layers are generally helpful when neural network is designed
to detect complicated patterns, from contextual, to non obvious, like image or
signal recognition. Synapses take the input and multiply it by a weight, where it
represents the strength of the input in determining the output [3]. The output
data will be a number in a range like 0 and 1. In forward propagation, a set
of weights is applied to the input data and then an output is calculated. In
back propagation, the margin of error of the output is measured and then the
weights accordingly are adjusted to decrease the error. Neural networks repeat
both forward and back propagation until the weights are calibrated to accurately
predict an output [3]. Network with many layers and many neurons that are fully
connected can become computationally infeasible to train.

Convolutional Neural Networks Convolutional Neural Networks (CNN),
is born with the task to reduce the number of parameters to train, limiting
the number of connections of the neurons in the hidden layer to only some
of the input neurons. This connections are called local receptve field of the
convolutional layer and the weights of that region are shared. Each group is
generally composed by as many neurons as needed to cover the entire input
data. This way, it is as if each group of neurons in the hidden layer calculated a
convolution of the input data with their weights. The results of the convolution is
a feature. Commonly a pooling layer is applied to the result of the convolutional
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layer. It permits to provide translation invariance of the learned features and
to reduce the dimensionality of the neurons. The result is a smaller version of
the input features. These steps can be repeatedly applied as many times as
desired: a new convolutional layer can be applied on the pooled layer, followed
by another pooling layer, and so forth. The majors advantages of the CNN
are the reduction of the network parameters thanks to sharing weights and the
automatic features extraction at different semantic concept layer from the lower
to the higher level representation, which provides a better data representation
than the hand crafted feature descriptor. Recently, CNNs have been used as
very powerful technique to solve and advanced the state-of-the-art accuracies in
computer vision tasks such as face recognition [19], object recognition [20].

Recurrent Neural Networks Recurrent Neural Networks (RNNs) are suc-
cessfully applied to model sequential informations such as speech recognition
[21], language translation [22] and so on. Different from the traditional neural
networks it assumes the values of the input sequence dependent between them.
RNNs perform the same computation for every element of the input sequence
and the output is dependent on the previous computation. Bidirectional RNNs
is a variant of RNN based on the idea that the output at a certain time is de-
pendent not only on the previous element but also on the future element of the
sequence.

3 DATASET DESCRIPTION AND PROCESSING

In what follows, we present in detail the dataset description and the preprocess-
ing steps done in order to prepare the data for the classification process.

3.1 Dataset Description

In this study, we exploit the ZJU-gaitAcc dataset that is public available and
described in [8]. This dataset contains the gait acceleration series of records col-
lected from 175 subjects. Out of these 175 series, we consider the records related
to 153 subjects, which are divided in two sessions, such that the first session
represents the first time that data has been collected, while the second session
shows the second time that the data has been recorded. For the remaining 22
identities only a single session has been recorded, hence they have been discarded
for the classification task, but they have been considered as unknown subjects
to estimate the ability of the network to understand if a monitored gait belongs
to an unknown person. For each subject, the time interval between first and
second data acquisition varies from one week to six months. For each subject,
six records are presented in each session, where every record contains 5 gait
acceleration series (Normally composed by 7-14 full step cycles) simultaneously
measured with 5 sensor placed on the right wrist, left upper arm, right side of
pelvis, left thigh, and right ankle as depicted in Fig. 1.

The acceleration readings have been measured at 100 Hz in straightly walks,
through a level floor of 20m length. The raw data for each recording are composed
by the x, y and z acceleration series during time.
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Fig. 1: Body sensors

3.2 Data Processing

The data processing part can be summarized in four main steps, namely cycles
extraction, filtering, and normalization, respectively. In addition in this section
is described a data augmentation process in order to generate more sintetic data
to improve the accuracy and prevent overfitting.

Cycles Extraction. The gait cycle is used to simplify the representation
of complex pattern of human walking. It starts with initial contact of the right
heel and it continues until the right heel contacts the ground again. When the
heel touches the ground, the association between the ground reaction force and
inertial force make the z−axis signal strongly sensitive to change, forming peaks
with high magnitude. Those peak points are utilized to identify the gait cycles.
The ZJU dataset provides the manual annotations of the step cycles.

Cycles Normalization. Each gait cycle differs in terms of duration, due
to the different speed which varies during walking, but not in shape. In ZJU
dataset, the majority of cycles are constituted by a length between 90 and 118
samples. The features extraction phase performed by the CNN requires in input
a fixed number of samples for each gait cycle. For this reason each gait cycle is
normalized to a length of 118 samples through linear interpolation [4].

Noise reduction. The data collected from accelerometer sensors are af-
fected by several noise sources due to the nature of the sensor. To reduce it and
improving dataset quality, a filtering step is required. To this end a low pass
butterworth filter [5] is applied to smooth the signal and remove high peaks.

Magnitude computation. Most gait recognition studies that employ wear-
able sensors, consider as unreal assumption that the position and the orientation
of the sensors do not change over time. Altough the ZJU dataset not suffers of
this problem, in order to reproduce a more realistic result, we applied a sensor
data transformation to remove the effect of sensor orientation from the raw sen-
sor data. To this end, instead to consider, as input of the network, the 3-axis
accelerometer vectors, we simply considered the magnitude of the acceleration
vectors computed as the euclidean norm as: magnitude =

√
x2 + y2 + z2 .

Data augmentation In order to improve the performance of the deep learn-
ing network and to prevent overfitting, we have artificially increased the number
of training examples by data augmentation. It is the application of one or more
deformations applied to the labeled data without change the semantic meaning of
the labels. In our case, the augmentation is produced varying each signal sample
with translation drawn from a uniform distribution in the range [−0.2, 0.2]. The
process produces a copy of the original gait cycle different in values but with an
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equal semantic of the walking cycle. Starting from, approximately 95 gait cycles
per identity, with augmentation we reached 190 gait cycle per identity, passing
from 14.573 training data to 29.146.

4 DATA ANALYSIS

In this section we describe the design and implementation of the recurrent convo-
lutional neural network, how it has been trained and the metrics used to evaluate
the proposed method are given.

4.1 Network description and Training

In this paper, we proposed a deep neural network architecture applied to the
problem of gait classification of 153 persons. Given a gait cycle, the task is to
determine to which person the cycle belongs. We designed and implemented
two network architectures suitables respectively for single sensor and multiple
sensors experiments. As reported in Figure 2, both the single sensor and the
multiple sensors architectures are based on the same core. It extracts, from a
single input gait cycle magnitude, features of two different abstraction level and
applies a temporal aggregation on the features extracted in the second level. The
first two level features are extracted automatically from the input data through
two stacked 1D convolutional layers, which compute respectively 128 and 256
features vectors with kernel size 2 and 3. The second features vectors level is
passed to a bidirectional recurrent layer based on Gated Recurrent Units (GRU)
[1] with 256 neurons. It produces a temporal aggregation feature vector that
is passed to two different pooling layers, which compute a feature subsampling
respectively using the average and the maximum pooling. The functionality of
that layer is to reduce the spatial size of the representation reducing the amount
of parameter to train. The final result is the concatenation of the pooling results
that represent the feature vector extracted from the input gait cycle. Each one of
the convolutional layer output are passed through a batch normalization layer
to regularize the model then trhough a Rectified Linear Unit (ReLu). In the
single sensor scenario, the feature vector extracted are passed directly to a fully
connected classifier containing 153 softmax units which compute the probability
of the input gait cycle to belong to a specific subject. Thus, in the multiple
sensor scenario, the feature vector is calculated for each sensor, aggregated with
a concatenation operation and finally passed to the fully connected classifier.
Our recognition problem is posed as a classification problem. Training data are
groups of accelerometer data labeled with the owner identity. The optimization
objective is average loss over all the identities in the data set. The loss is used in
backpropagation steps, in order to update the weights. We used Adam optimiza-
tion algorithm [23] to update network weights iterative based in training data.
We start with a base learning rate of 0.001 and gradually decrease it as the train-
ing progresses. We use a momentum of µ = 0.9 and weight decay λ = 5 · 10−4.
With more passes over the training data, the model improves until it converges.
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Fig. 2: Recurrent Convolutional gait recognition network

The hyperparameter tuning (number of epochs, learning rate, number of layers,
number of neurons per layer) is made through a manually search of the best
hyperparameter settings. Using knowledge you have about the problem guess
parameters and observe the result. Based on that result tweak the parameters.
Repeat this process until you find parameters that work well or you run out of
time.

4.2 Evaluation metrics

Gait recognition is the process of assign a given waling gait pattern to its own
identity. In our case we consider as gait pattern a walking step cycle. As de-
scribed in Section 4.1, the gait recognition network returns a probability vector,
which reports the belonging probabilities of the given gait cycle for each subject
class. Sorting the resulting probability vector, can be possible determine in which
rank the given gait cycle has been assigned. Thanks to that it is possible, not
only compute the recognition accuracy on the first rank (1-rank), but also the
accuracy in recognizing the identity within the top k-ranks. More in detail the
recognition accuracy of unseen walking record at 1-rank is given by the number
of step cycles correctly identified at 1-rank, divided by the total number of step
cycles in the walking record. In the same manner the accuracy at 2-rank is given
by the number of step cycles correctly identified at 1-rank or 2-rank divided
by the total number of step cycles in the walking record. In the same way is
computed the accuracy for the rest of ranks. In order to evaluate the recogni-
tion capacity of the method presented, the following metrics are introduced (i)
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the overall recognition accuracy of unseen walking record on the 1-rank; (ii) the
overall recognition accuracy of unseen walking record on the top k ranks, with
1 < k < 153. Finally another important statistics to consider are the mean value
and the standard deviation of the correct and wrong probabilities predicted at
1-rank: PT1rank, StDevT1rank, PF1rank, StDevF1rank. They provide us an esti-
mation of the difference between the resulting probabilities of the corrects and
wrong predictions that can be useful to determine the probability threshold as
discussed in Section 5.1.

5 EXPERIMENTAL ANALYSIS

In this section we report the description and results of the performed experiments
to evaluate the effectiveness of the proposed methodology. It has been analyzed
the accuracy of the gait recognition network on the ZJU dataset in cross and
single session, first, considering all the sensors, then reducing the number of
sensors considered. Finally we proposed metodologies to improve the overall
accuracy based on data augmentation and filtering threshold.

Single session. In this scenario, we explored the capacity of the network in
recognize a subject in one single session (walking gaits recorded in the same day).
To this end, we consider only session 1 splitting the data as reported in Figure
3(a). For each subject we considered the first five walking records as training
set and the sixth walking record as testing set. This setting is better suited for
training because it uses 80% of dataset, 5.850, for training (about 38 gait cycle
per identities), and roughly 20% for testing, 1.453 testing samples. After the
augmentation, which is applied only on the training set, the number of train-
ing samples becomes 17.550 (about 114 gait cycle per identities). Figure 4(a),
shows the CMC curve that reports the recognition accuracy for the single session
scenario using 5 sensors. At 1-rank the accuracy is 99.06% with augmentation
and 98.86% without augmentation. Furthermore an accuracy of 100% at rank
17 and 28 is achieved respectively for the augmentation and non-augmentation
experiments.

Cross session. In this scenario, we explored the capacity of the network to
learn different walking pattern of the same user. To this end we considered the
two sessions recorded over time. As reported in Figure 3(b) we split the data
considering the first five walking records of both sessions as training set and the
last walking record of both sessions as testing set. The total amount of data is
11.748 for the training set before augmentation and 2.933 for the testing set.

Figure 4(b), shows the CMC curve that reports the recognition accuracy
for the cross session scenario using 5 sensors. At 1-rank the accuracy is 98.70%
with augmentation and 97.50% without augmentation. We obtain an accuracy
of 100% at rank 20 and rank 35 respectively for the augmentation and non
augmentation experiment.
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(a) Single session training and test-
ing set

(b) Cross sessions training and test-
ing dataset

Fig. 3: Training and testing sets

(a) CMC single session - 5 sensors (b) CMC cross session - 5 sensors

Fig. 4: 5 sensors results.

5.1 Sensor Filtering

As an additional set of experiments, we have evaluated the accuracy results by
considering different subsets of the five initial sensors. Conducting this type of
experiments we evaluated the behavior of the proposed method in recognizing
gait cycles in a less intrusive way. Considering the powerful of the data augmen-
tation in improving accuracy as demonstrated in Figure 4, the results reported
for the cross filtering refer only to data augmentation case.

Single session filtering experiments As first experiment we explored the
capacity of recognition exploiting a single sensor. The Figure 5(a), shows the
CMC curves comparison between the 5 sensors taken standalone in the single
session scenario. The best accuracy result is given by the sensor S3 (right side of
the pelvis) with 88.75% of recognition accuracy at 1-rank. The obtained results
provide us the criterion to create the multi sensors experiments selecting the most
promising sensors subsets. The following sensors combinations have been tested:
S3-S2 (right side of the pelvis-left upper arm), S3-S2-S4 (right side of the pelvis-
left upper arm-left thigh) and S3-S2-S4-S1 (right side of the pelvis-left upper
arm-left thigh-right wrist). In addition to this combinations has been tested
the sensors combinations S3-S1 (right side of the pelvis-right wrist) that reflect
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(a) CMC single session - single sensor (b) CMC single session - multiple sen-
sors

Fig. 5: Single session results.

a real case scenario, combining sensor located on the right wrist representing
a smartwatch, and another one located on right side of pelvis representing a
smartphone kept in the front pocket. The CMC curve is plotted in Figure 5(b).
As aspected, increasing the number of sensors, the 1-rank accuracy increase
considerably. The 1-rank accuracy in the real case scenario is 96.62% reaching
100% of accuracy at rank 21.

Cross session filtering experiments The same experiments have been
conducted in the cross session scenario. Figure 6(a), shows the CMC curves
comparison between the five sensors taken standalone.

(a) CMC cross sessions - single sensor (b) CMC cross sessions - multiple sen-
sors

Fig. 6: Cross session results.

The 1-rank accuracies are slightly lower than the single session scenario due
to the fact that the network has to associate different gait patterns to the same
identity. However, the most promising sensor remains the right side of pelvis
with 87.51% of recognition accuracy at 1-rank. On the basis of single sensor
accuracy, we tested the following sensors combinations: S3-S2 (right side of the
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pelvis-left upper arm), S3-S2-S5 (right side of the pelvis-left upper- right ankle)
and S3-S2-S5-S4 (right side of the pelvis-left upper- right ankle-left thigh). The
CMC curve is reported in Figure 6(b). The 1-rank accuracies are approximately
0.60% lower respect to the single sensor scenario. The 1-rank accuracy in the
real case is 94.35% with 100% accuracy at rank 68. The differences between the
single and cross session scenario is valuable only increasing the 1-ranks. In fact
100% accuracy is reached at very high ranks in the case of cross session respect
to the single one. This is due to the fact that in the cross session the network
assignes very low probabilities to the false negative gait cycles.

Threshold method based Another important statistics to considering are
the mean value probability and its standard deviation of correct and wrong pre-
dictions (PT1rank,StDevT1rank,PF1rank,StDevF1rank). We computed this values
for the sensors combinations reported in the Table 1.

Table 1: Mean probability and standard deviation of correct (TP) and wrong
(FP) prediction

Scenario Sensors PT1rank StDevT1rank PF1rank StDevF1rank

Single session
5 sensors 0.99 0.03 0.59 0.19
real case 0.98 0.06 0.65 0.20

Cross session
5 sensors 0.99 0.04 0.54 0.20
real case 0.97 0.08 0.62 0.20

Since the probabilities for true positives is much higher than the one for false
positives, it is possible to set a probability threshold to distinguish these two
values. This leads to improve the overall recognition accuracy. In fact, setting
a probability threshold equal to the mean probability of the correct prediction
minus its mean standard deviation as: threshold = PT1rank − StDevT1rank and
filtering out all values lower than the threshold, grants a recognition accuracy
of 100%.

5.2 Unknown identities recognition

The proposed method, is only able to classify identities on which it has been
trained on. Hence, if presented with a set of steps coming from an unknown
identity, the Recurrent Convolutional Neural network will try to match the new
gait with a known one. However, we argue that is still possible exploiting the
RCNN to understand if a set of steps is belonging to an unknown identity rather
than to a known one. It is worth noting that such a feature would be useful in the
design of anti-theft applications for mobile and wearable devices. To this scope,
we exploited the 22 unknown identites presented on the dataset to only one
session and we measured the mean probability of the false positive prediction
in cross and single session scenario. Table 2 shows that. It is evident as the
predicted probabilities of the unknown identities is highly lower than the known
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Table 2: Mean prediction probability
and std-dev for unknown identities

Scenario Sensors PF1rank StDevF1rank

Single session
5 sensors 0.75 0.15
real case 0.73 0.23

Cross session
5 sensors 0.78 0.13
real case 0.76 0.12

Table 3: False positive and False
negative varying threshold

Scenario Sensors Threshold FP FN

Single session
5 sensors 0.98 0 1.02
real case 0.96 0.07 2.25

Cross session
5 sensors 0.98 0.12 1.54
real case 0.96 0.91 2.13

ones. Imposing again a probability threshold, we obtain a limitating error in
recognizing unknown identities as known. The results reported in Table 3, shows
the variation of the False Positive (known gait cycles, classified as unknown) and
False Negative per identities (unknown gait cycles, classified as known) varying
threshold value.

6 Related Work

In [15] a two-phase view-invariant multiscale gait recognition method (VI-MGR)
is proposed, which is robust to variation in clothing and presence of a carried
item. In phase 1, VI-MGR uses the entropy of the limb region of a gait en-
ergy image (GEI) to determine the matching gallery view of the probe using
2-dimensional principal component analysis and Euclidean distance classifier. In
phase 2, the probe subject is compared with the matching view of the gallery
subjects using multiscale shape analysis. In [16], the three types of sensors, color
sensors, depth sensors and inertial sensors, are combined for gait data collection
and gait recognition, which can be used for important identification applications,
such as identity recognition to access a restricted building or area. Being based
on deep learning, the accuracy of our framework is increased if the training is
performed with a larger and diverse dataset. However, real data collection could
be an issue which also brings privacy concerns. In [18] a framework for privacy
preserving collaborative data analysis is presented, which could be exploited
by our framework to increase the accuracy, without violating users’ privacy. In
[24], an accelerometer-based gait recognition, named iGait, is proposed. The
core function of iGAIT extracts 31 features from acceleration data, including 6
spatio-temporal features, 7 regularity and symmetry features, and 18 spectral
features. The proposed framework has been used to analyze the gait pattern of
15 control subjects, where a (HTC) phone was attached to the back of partici-
pants by belts. In each trial, participants walked 25m along a hallway at their
preferred walking speed. The first advantage of our approach comparing to what
is proposed by Yang et. al [24] is that deep-learning-based approaches learn fea-
tures gradually. Hence, our methodology finds the most discriminating features
through self training process. The second advantage is related to time needed to
reach to 100% accuracy. In our approach 10 steps is enough to identify a person
while in [24] 25 minutes walk is required. At the end, the proposed approach in
[24] is evaluated through 15 subjects, whilst our technique is evaluated through
153 persons. The accelerometer-based gait recognition approach proposed in [17]
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is evaluated on the same dataset we exploited in our experiments. The work, first
consider the problem of step-cycle detection which suffer from failures and inter-
cycle phase misalignment. To this end, an algorithm is proposed which makes use
of a type of salient points, named signature points (SPs). Experimental results
on the equivalent dataset of our experiment shows 1-rank accuracy of 95.8% for
identification and the error rate of 2.2% for user verification. However, this ac-
curacy is obtained on 14 steps, while in our proposed approach 100% is achieved
in 10 steps.

7 Conclusion and Future Work

Gait analysis is an enabling technology for seamless user authentication, still
it requires fast, accurate and flexible mechanism for an effective classification.
In this paper we have presented a classification methodology based on deep
learning, to perform accurate user recognition through gait analysis. The re-
ported accuracy on the considered dataset made of more than 150 identities,
has proven to be extremely precise, especially when to the standard classifica-
tion process, we apply sensor filtering, data augmentation and threshold based
analysis. Furthermore, we have demonstrated that the present approach is effec-
tive in recognizing users in a plausible use case where only sensors representing
smartphone and smartwatch have been used, i.e. the authentication process does
not require the presence of additional sensors whose only task is to perform the
identification, instead it is integrated in popular personal items. As future work,
we plan to consider a real use case, where the framework is directly installed on
personal devices and the training and classification are performed at runtime. In
addition, in order to obtain a more general architecture for authentication, we
plan to explore a siamese neural network architecture training it starting from
the features extracted by the network presented.
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