J. Samper-gonzlez, N. Burgos, S. Bottani, S. Fontanella, P. Lu et al., Reproducible evaluation of classification methods in Alzheimer's disease: Framework and application to MRI and PET data, NeuroImage, vol.183, pp.504-521, 2018.

J. Samper-gonzalez, N. Burgos, S. Fontanella, H. Bertin, M. Habert et al., Yet Another ADNI Machine Learning Paper? Paving The Way Towards Fully-reproducible Research on Classification of Alzheimer's Disease, 2017.

M. W. Bondi, A. J. Jak, L. Delano-wood, M. W. Jacobson, D. C. Delis et al., Neuropsychological contributions to the early identification of Alzheimer's disease, Neuropsychology Review, vol.18, pp.73-90, 2008.

M. Ewers, R. A. Sperling, W. E. Klunk, M. W. Weiner, and H. Hampel, Neuroimaging markers for the prediction and early diagnosis of Alzheimer's disease dementia, Trends in Neurosciences, vol.34, pp.430-442, 2011.

Y. Fan, N. Batmanghelich, C. Clark, D. , and C. , Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline, Neuroimage, vol.39, issue.4, pp.1731-1743, 2008.

C. Davatzikos, S. Resnick, X. Wu, P. Parmpi, C. et al., Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI, Neuroimage, vol.41, issue.4, pp.1220-1227, 2008.

B. Magnin, L. Mesrob, S. Kinkingnehun, M. Pelegrini-issac, O. Colliot et al., Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI, Neuroradiology, vol.51, issue.2, pp.73-83, 2009.

S. Duchesne, A. Caroli, C. Geroldi, C. Barillot, G. Frisoni et al., MRI-based automated computer classification of probable AD versus normal controls, IEEE Trans Med Imaging, vol.27, issue.4, pp.509-529, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00333460

E. Gerardin, G. Chetelat, M. Chupin, R. Cuingnet, B. Desgranges et al., Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging, Neuroimage, vol.47, issue.4, pp.1476-86, 2009.

R. Cuingnet, M. Chupin, H. Benali, C. , and O. , Spatial and anatomical regularization of SVM for brain image analysis, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01439123

R. Cuingnet, J. A. Glaunes, M. Chupin, H. Benali, C. et al., Spatial and Anatomical Regularization of SVM: A General Framework for Neuroimaging Data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, pp.682-696, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00790079

P. Vemuri, J. L. Gunter, M. L. Senjem, J. L. Whitwell, K. Kantarci et al., Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies, Neuroimage, vol.39, pp.1186-97, 2008.

S. Kloppel, C. M. Stonnington, C. Chu, B. Draganski, R. I. Scahill et al., Automatic classification of MR scans in Alzheimer's disease, Brain, vol.131, pp.681-690, 2008.

R. Cuingnet, E. Gerardin, J. Tessieras, G. Auzias, S. Lehricy et al., Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database, NeuroImage, vol.56, pp.766-781, 2011.

K. Hett, V. Ta, J. V. Manjon, and P. Coupe, Adaptive fusion of texture-based grading for Alzheimer's disease classification, Computerized Medical Imaging and Graphics: The Official Journal of the Computerized Medical Imaging Society, vol.70, pp.8-16, 2018.

E. E. Bron, M. Smits, W. M. Van-der-flier, H. Vrenken, F. Barkhof et al., Alzheimer's Disease Neuroimaging Initiative, NeuroImage, vol.111, pp.562-579, 2015.

P. Coupe, S. F. Eskildsen, J. V. Manjon, V. S. Fonov, and D. L. Collins, Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease, NeuroImage, vol.59, pp.3736-3747, 2012.

K. R. Gray, P. Aljabar, R. A. Heckemann, A. Hammers, R. et al., Random forest-based similarity measures for multi-modal classification of Alzheimer's disease, NeuroImage, vol.65, pp.167-175, 2013.

M. Liu, D. Zhang, and D. Shen, Ensemble sparse classification of Alzheimer's disease, NeuroImage, vol.60, pp.1106-1116, 2012.

M. Liu, J. Zhang, E. Adeli, and D. Shen, Landmark-based deep multi-instance learning for brain disease diagnosis, Medical Image Analysis, vol.43, p.9, 2018.

E. Moradi, A. Pepe, C. Gaser, H. Huttunen, and J. Tohka, Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects, NeuroImage, vol.104, p.119, 2015.

O. Querbes, F. Aubry, J. Pariente, J. Lotterie, J. Dmonet et al., Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve, Brain: A Journal of Neurology, vol.132, p.322, 2009.

S. J. Teipel, J. Kurth, B. Krause, and M. J. Grothe, The relative importance of imaging markers for the prediction of Alzheimer's disease dementia in mild cognitive impairment Beyond classical regression, NeuroImage: Clinical, vol.8, pp.583-593, 2015.

J. Tohka, E. Moradi, and H. Huttunen, Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia, Neuroinformatics, vol.14, issue.3, p.18, 2016.

X. Zhu, H. Suk, and D. Shen, A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis, NeuroImage, vol.100, p.106, 2014.

H. J. Yun, K. Kwak, J. Lee, and A. D. Initiative, Multimodal Discrimination of Alzheimers Disease Based on Regional Cortical Atrophy and Hypometabolism, PLOS ONE, vol.10, p.129250, 2015.

M. Liu, J. Zhang, D. Nie, P. Yap, and D. Shen, Anatomical Landmark based Deep Feature Representation for MR Images in Brain Disease Diagnosis, IEEE Journal of Biomedical and Health Informatics, vol.22, p.3, 2018.
DOI : 10.1109/jbhi.2018.2791863

H. Suk, S. Lee, and D. Shen, Deep ensemble learning of sparse regression models for brain disease diagnosis, Medical Image Analysis, vol.37, p.15, 2017.

S. F. Eskildsen, P. Coupe, V. S. Fonov, J. C. Pruessner, C. et al., Structural imaging biomarkers of Alzheimer's disease: predicting disease progression, Neurobiology of Aging, vol.36, pp.23-31, 2015.
DOI : 10.1016/j.neurobiolaging.2014.04.034

URL : https://hal.archives-ouvertes.fr/hal-01060331/file/EskildsenNBA2014-HAL-version.pdf

P. Coupe, S. F. Eskildsen, J. V. Manjon, V. S. Fonov, J. C. Pruessner et al., Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease, NeuroImage: Clinical, vol.1, p.58, 2012.

C. Misra, Y. Fan, D. , and C. , Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI, NeuroImage, vol.44, pp.1415-1422, 2009.

S. Adaszewski, J. Dukart, F. Kherif, R. Frackowiak, and B. Draganski, How early can we predict Alzheimer's disease using computational anatomy?, Neurobiology of Aging, vol.34, pp.2815-2826, 2013.
DOI : 10.1016/j.neurobiolaging.2013.06.015

X. Liu, D. Tosun, M. W. Weiner, and N. Schuff, Locally linear embedding (LLE) for MRI based Alzheimer's disease classification, NeuroImage, vol.83, pp.148-157, 2013.
DOI : 10.1016/j.neuroimage.2013.06.033

URL : http://europepmc.org/articles/pmc3815961?pdf=render

S. F. Eskildsen, P. Coupe, D. Garcia-lorenzo, V. Fonov, J. C. Pruessner et al., Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning, NeuroImage, vol.65, pp.511-521, 2013.

S. G. Costafreda, I. D. Dinov, Z. Tu, Y. Shi, C. Liu et al., Automated hippocampal shape analysis predicts the onset of dementia in Mild Cognitive Impairment, NeuroImage, vol.56, pp.212-219, 2011.

K. R. Gray, R. Wolz, R. A. Heckemann, P. Aljabar, A. Hammers et al., Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease, NeuroImage, vol.60, pp.221-229, 2012.

C. Cabral, P. M. Morgado, D. Campos-costa, and M. Silveira, Predicting conversion from MCI to AD with FDG-PET brain images at different prodromal stages, Computers in Biology and Medicine, vol.58, p.22, 2015.

C. Davatzikos, P. Bhatt, L. M. Shaw, K. N. Batmanghelich, and J. Q. Trojanowski, Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification, Neurobiology of Aging, vol.32, pp.19-27, 2011.

X. Tang, D. Holland, A. M. Dale, L. Younes, and M. I. Miller, Baseline Shape Diffeomorphometry Patterns of Subcortical and Ventricular Structures in Predicting Conversion of Mild Cognitive Impairment to Alzheimers Disease, Journal of Alzheimer's disease : JAD, vol.44, issue.2, pp.599-611, 2015.

Y. Cui, B. Liu, S. Luo, X. Zhen, M. Fan et al., Identification of conversion from mild cognitive impairment to Alzheimer's disease using multivariate predictors, PloS One, vol.6, issue.7, p.21896, 2011.

L. Srensen, C. Igel, N. Liv-hansen, M. Osler, M. Lauritzen et al., Alzheimer's Disease Neuroimaging Initiative and the Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing, Human Brain Mapping, vol.37, pp.1148-1161, 2016.

A. Chincarini, P. Bosco, P. Calvini, G. Gemme, M. Esposito et al., Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease, NeuroImage, vol.58, pp.469-480, 2011.

B. Cheng, M. Liu, D. Zhang, B. C. Munsell, and D. Shen, Domain Transfer Learning for MCI Conversion Prediction, IEEE Transactions on Biomedical Engineering, vol.62, pp.1805-1817, 2015.

J. Young, M. Modat, M. J. Cardoso, A. Mendelson, D. Cash et al., Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment, NeuroImage: Clinical, vol.2, pp.735-745, 2013.

H. Suk, S. Lee, and D. Shen, Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis, NeuroImage, vol.101, pp.569-582, 2014.

F. Li, L. Tran, K. Thung, S. Ji, D. Shen et al., A Robust Deep Model for Improved Classification of AD/MCI Patients, IEEE Journal of Biomedical and Health Informatics, vol.19, pp.1610-1616, 2015.

H. Choi and K. H. Jin, Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging, Behavioural Brain Research, vol.344, pp.103-109, 2018.

M. R. Arbabshirani, S. Plis, J. Sui, C. , and V. D. , Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls, NeuroImage, vol.145, pp.137-165, 2017.

F. Falahati, E. Westman, and A. Simmons, Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging, Journal of Alzheimer's disease: JAD, vol.41, issue.3, pp.685-708, 2014.

S. Rathore, M. Habes, M. A. Iftikhar, A. Shacklett, D. et al., A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages, NeuroImage, vol.155, pp.530-548, 2017.

K. J. Gorgolewski, T. Auer, V. D. Calhoun, R. C. Craddock, S. Das et al., The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01345616

A. Routier, J. Guillon, N. Burgos, J. Samper-gonzalez, J. Wen et al., Clinica: an open source software platform for reproducible clinical neuroscience studies, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01760658

S. M. Landau, C. Breault, A. D. Joshi, M. Pontecorvo, C. A. Mathis et al., Amyloid-imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods, Journal of Nuclear Medicine, vol.54, pp.70-77, 2013.

J. Ashburner, A fast diffeomorphic image registration algorithm, NeuroImage, vol.38, pp.95-113, 2007.

J. Ashburner and K. J. Friston, Unified segmentation, NeuroImage, vol.26, pp.839-851, 2005.

J. Dukart, M. L. Schroeter, and K. Mueller, Age correction in dementia-matching to a healthy brain, PloS One, vol.6, issue.7, p.22193, 2011.

G. Varoquaux, P. R. Raamana, D. A. Engemann, A. Hoyos-idrobo, Y. Schwartz et al., Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines, NeuroImage, vol.145, pp.166-179, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01332785