R. Attar, M. Pereanez, A. Gooya, X. Alba, L. Zhang et al., High throughput computation of reference ranges of biventricular cardiac function on the UK Biobank population cohort, 2019.

C. Barillot, G. Edan, and O. Commowick, Imaging biomarkers in multiple sclerosis: from image analysis to population imaging, Medical Image Analysis, vol.33, pp.134-139, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01333583

M. De-bruijne, Machine learning approaches in medical image analysis: from detection to diagnosis, Medical Image Analysis, vol.33, pp.94-97, 2016.

I. Cetin, G. Sanroma, S. Petersen, S. Napel, O. Camara et al., A radiomics approach to computer-aided diagnosis with cardiac cineMRI, Proc. Statistical Atlases and Computational Models of the Heart (STACOM), ACDC challenge, MICCAI'17 Workshop, 2017.

A. Fry, T. Littlejohns, C. Sudlow, N. Doherty, L. Adamska et al., Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population, Am J Epidemiol, vol.186, issue.9, pp.1026-1034, 2017.

F. Isensee, P. Jaeger, P. Full, I. Wolf, S. Engelhardt et al., Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features, Proc. Statistical Atlases and Computational Models of the Heart (STACOM), ACDC challenge, MICCAI'17 Workshop, 2017.

M. Jolly, C. Guetter, X. Lu, H. Xue, and J. Guehring, Automatic segmentation of the myocardium in cine MR images using deformable registration, Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges, pp.98-108, 2013.

R. Kawadiwale and M. Rane, Clustering techniques for brain tumor detection, Proc. of Int. Conf. on Recent Trends in Information, pp.299-305, 2014.

M. Khened, V. Alex, and G. Krishnamurthi, Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest, Proc. Statistical Atlases and Computational Models of the Heart (STACOM), ACDC challenge, MICCAI'17 Workshop, 2017.

M. Khened, V. Alex, and G. Krishnamurthi, Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers, 2018.

J. Kinani, A. Silva, F. Funes, D. Vargas, E. Diaz et al., Medical imaging lesion detection based on unified gravitational fuzzy clustering, Journal of Healthcare Engineering, 2017.

M. Kohli, R. Summers, and J. Geis, Medical image data and datasets in the era of machine learningwhitepaper from the 2016 C-MIMI meeting dataset session, Journal of Digital Imaging, vol.30, pp.392-399, 2017.

D. Komura and S. Ishikawa, Machine learning methods for histopathological image analysis, Computational and Structural Biotechnology, vol.16, pp.34-42, 2018.

M. Liu, J. Zhang, D. Nie, P. Yap, and D. Shen, Anatomical landmark based deep feature representation for MR images in brain disease diagnosis, IEEE Journal of Biomedical and Health Informatics, vol.22, pp.1476-1485, 2018.

X. Lu, B. Georgescu, M. Jolly, J. Guehring, A. Young et al., Cardiac anchoring in MRI through context modeling, Med Image Comput Comput Assist Interv, vol.13, issue.1, pp.383-390, 2010.

L. Van-der-maaten and G. Hinton, Visualizing data using t-sne, J. Mach. Learn. Research, vol.9, pp.2579-2605, 2008.

A. Madabhushi and G. Lee, Image analysis and machine learning in digital pathology: Challenges and opportunities, Med Image Anal, vol.33, pp.170-175, 2017.

S. Moldovanu, C. Obreja, and L. Moraru, Threshold selection for classification of MR brain images by clustering method, AIP Conference Proceedings, 2015.

T. Moriya, H. Roth, S. Nakamura, H. Oda, K. Nagara et al., Unsupervised segmentation of 3D medical images based on clustering and deep representation learning, Proceedings of the SPIE 10578, 2018.

S. Parisot, S. Ktena, E. Ferrante, M. Lee, R. Guerrero et al., Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer's disease, Medical Image Analysis, vol.48, pp.117-130, 2018.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

S. Petersen, N. Aung, M. Sanghvi, F. Zemrak, K. Fung et al., Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort, J Cardiovasc Magn Reson, vol.19, issue.1, p.18, 2017.

S. Petersen, P. Matthews, J. Francis, M. Robson, F. Zemrak et al., UK Biobank's cardiovascular magnetic resonance protocol, J Cardiovasc Magn Reson, vol.18, issue.8, p.8, 2016.

K. Raza and N. Singh, A tour of unsupervised deep learning for medical image analysis, 2018.

D. Reshed, Y. Reshef, H. Finucane, S. Grossman, G. Mcvean et al., Detecting novel associations in large data sets, Science, vol.334, pp.1518-1524, 2011.

D. Reynolds, Gaussian mixture models. Encyclopedia of Biometrics, pp.659-663, 2009.

D. Rueckert, B. Glocker, and B. Kainz, Learning clinically useful information from images: past, present and future, Medical Image Analysis, vol.33, pp.13-18, 2016.

A. Suinesiaputra, A. Mcculloch, M. Nash, B. Pontre, and A. Young, Cardiac image modelling: breadth and depth in heart disease, Medical Image Analysis, vol.33, pp.38-43, 2016.

A. Suinesiaputra, M. Sanghvi, N. Aung, J. Paiva, F. Zemrak et al., Fully-automated left ventricular mass and volume MRI analysis in the UK Biobank population cohort: evaluation of initial results, Int J Cardiovasc Imaging, vol.34, issue.2, pp.281-291, 2018.

A. Toga and K. Crawford, The Alzheimer's disease neuroimaging initiative informatics core: a decade in review, Alzheimers Dement, vol.11, pp.832-839, 2015.

J. Weese and C. Lorenz, Four challenges in medical image analysis from an industrial perspective, Medical Image Analysis, vol.33, pp.44-49, 2016.

E. Wit, E. Van-den-heuvel, and J. Romeijn, All models are wrong ...': an introduction to model uncertainty, Statistica Neerlandica, vol.66, pp.217-236, 2012.

J. Wolterink, T. Leiner, M. Viergever, and I. Isgum, Automatic segmentation and disease classification using cardiac cine MR images, Proc. Statistical Atlases and Computational Models of the Heart (STACOM), ACDC challenge, MICCAI'17 Workshop, 2017.

S. Zhang and D. Metaxas, Large-scale medical image analytics: Recent methodologies, applications and future directions, Medical Image Analysis, vol.33, pp.98-101, 2016.

Q. Zheng, H. Delingette, and N. Ayache, Explainable cardiac pathology classification on cine mri with motion characterization by semi-supervised learning of apparent flow, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01975880

Q. Zheng, H. Delingette, N. Duchateau, and N. Ayache, 3D consistent and robust segmentation of cardiac images by deep learning with spatial propagation, IEEE Trans Med Imaging, vol.37, issue.9, pp.2137-2148, 2018.

Q. Zheng, H. Delingette, N. Duchateau, and N. Ayache, 3D consistent biventricular myocardial segmentation using deep learning for mesh generation, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01755317