P. Biler, L. Corrias, and J. Dolbeault, Large mass self-similar solutions of the parabolicparabolic Keller-Segel model of chemotaxis, J. Math. Biol, vol.63, pp.1-32, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00411913

A. Blanchet, J. Dolbeault, and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, issue.44, p.32, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00113519

H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, 2011.

H. M. Brezis, C. , and T. , A nonlinear heat equation with singular initial data, J. Anal. Math, vol.68, pp.277-304, 1996.

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in R 2, Commun. Math. Sci, vol.6, pp.417-447, 2008.

L. Corrias, M. Escobedo, and J. Matos, Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane, J. Differential Equations, vol.257, pp.1840-1878, 2014.

M. A. Herrero and J. J. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci, vol.24, issue.4, pp.633-683, 1997.

T. Hillen and A. Potapov, The one-dimensional chemotaxis model: global existence and asymptotic profile, Math. Methods Appl. Sci, vol.27, pp.1783-1801, 2004.

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I. Jahresber. Deutsch. Math.-Verein, vol.105, pp.103-165, 2003.

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, II. Jahresber. Deutsch. Math.-Verein, vol.106, pp.51-69, 2004.

J. Jabir, D. Talay, and M. Toma?evi?, Mean-field limit of a particle approximation of the one-dimensional parabolic-parabolic keller-segel model without smoothing, Electron. Commun. Probab, vol.23, p.pp, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01668926

I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol.113, 1991.

N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Related Fields, vol.131, pp.154-196, 2005.

N. Mizoguchi, Global existence for the Cauchy problem of the parabolic-parabolic Keller-Segel system on the plane, Calc. Var. Partial Differential Equations, vol.48, pp.491-505, 2013.

T. Nagai and T. Ogawa, Global existence of solutions to a parabolic-elliptic system of drift-diffusion type in R 2, Funkcial. Ekvac, vol.59, pp.67-112, 2016.

K. Osaki, Y. , and A. , Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac, vol.44, pp.441-469, 2001.

Z. Qian, F. Russo, and W. Zheng, Comparison theorem and estimates for transition probability densities of diffusion processes, Probab. Theory Related Fields, vol.127, pp.388-406, 2003.

Z. Qian and W. Zheng, Sharp bounds for transition probability densities of a class of diffusions, C. R. Math. Acad. Sci. Paris, vol.335, pp.953-957, 2002.

A. Sznitman, InÉcole d'Été de Probabilités de Saint-Flour XIX-1989, Lecture Notes in Math, vol.1464, pp.165-251, 1991.

D. Talay and M. Toma?evi?, A new stochastic interpretation of Keller-Segel equations: the 1-D case. Submitted

M. Toma?evi?, On a prbabilistic interpretation of the parabolic-parabolic Keller-Segel model, 2018.

D. Trevisan, Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients, Electron. J. Probab, vol.21, p.41, 2016.