B. Bonnard and M. Chyba, Singular trajectories and their role in control theory, Mathématiques & Applications, vol.40, 2003.

B. Bonnard, O. Cots, J. Rouot, and T. Verron, Time minimal saturation of a pair of spins and application in Magnetic Resonance Imaging, Math. Control Relat. Fields, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01779377

B. Bonnard and I. Kupka, Théorie des singularités et optimalité des trajectoiressingulì eres dans leprobì eme temps minimal, Forum Math, vol.5, pp.111-159, 1991.

B. Bonnard and G. Launay, Time minimal control of batch reactors, ESAIM: Control, Optimisation and Calculus of Variations, vol.3, pp.407-467, 1998.

B. Bonnard, G. Launay, and M. Pelletier, Classification générique de synthèses temps minimales avec cible de codimension un et applications, Annales de l'I.H.P. Analyse non linéaire, vol.14, issue.1, pp.55-102, 1997.

B. Bonnard and M. Pelletier, Time minimal synthesis for planar systems in the neighborhood of a terminal manifold of codimension one, J. of Mathematical Systems, Estimation and Control, vol.5, issue.3, pp.379-381, 1995.

U. Boscain and &. Piccoli, Optimal Syntheses for Control Systems on 2-D Manifolds, p.43, 2004.

I. Ekeland, Discontinuité des champs hamiltoniens et existence des solutions optimales en calcul des variations, Inst. HautesÉtudesHautes´HautesÉtudes Sci. Publ. Math, issue.47, pp.5-32, 1977.

M. Feinberg, On chemical kinetics of a certain class, Rational Mech. Anal, vol.46, issue.1, 1972.

F. Horn and R. Jackson, General mass action kinetics, Rational Mech. Anal, vol.47, issue.1, pp.81-116, 1972.

A. J. Krener, The high order maximal principle and its application to singular extremals, SIAM J. Control Optim, vol.15, issue.2, pp.256-293, 1977.

I. Kupka, Geometric theory of extremals in optimal control problems. I. The fold and Maxwell case, Trans. Amer. Math. Soc, vol.299, issue.1, pp.225-243

I. Kupka, The ubiquity of Fuller's phenomenon, Nonlinear controllability and optimal control, pp.313-350, 1990.

M. Lapert, Y. Zhang, M. Braun, S. J. Glaser, and &. Sugny, Singular extremals for the time-optimal control of dissipative spin 1/2 particles, Phys. Rev. Lett, vol.104, issue.2, p.83001, 2010.

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The mathematical theory of optimal processes, 1964.

E. D. , Sontag Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction, IEEE Trans. Automat. Contr, vol.46, issue.7, pp.1028-1047, 2001.

H. J. Sussmann, Synthesis, presynthesis, sufficient conditions for optimality and subanalytic sets, Nonlinear Controllability and Optimal Control, 1920.

J. Zhu, E. Trélat, and M. Cerf, Geometric optimal control and applications to aerospace, Pac. J. Math. Ind, vol.9, issue.1, p.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01443192