Random polytopes and the wet part for arbitrary probability distributions

Abstract : We examine how the measure and the number of vertices of the convex hull of a random sample of $n$ points from an arbitrary probability measure in $\mathbf{R}^d$ relates to the wet part of that measure. This extends classical results for the uniform distribution from a convex set [B\'ar\'any and Larman 1988]. The lower bound of B\'ar\'any and Larman continues to hold in the general setting, but the upper bound must be relaxed by a factor of $\log n$. We show by an example that this is tight.
Type de document :
Pré-publication, Document de travail
2019
Liste complète des métadonnées

https://hal.inria.fr/hal-02050632
Contributeur : Xavier Goaoc <>
Soumis le : mercredi 27 février 2019 - 11:52:18
Dernière modification le : mardi 19 mars 2019 - 23:58:18

Lien texte intégral

Identifiants

  • HAL Id : hal-02050632, version 1
  • ARXIV : 1902.06519

Citation

Imre Barany, Matthieu Fradelizi, Xavier Goaoc, Alfredo Hubard, Günter Rote. Random polytopes and the wet part for arbitrary probability distributions. 2019. 〈hal-02050632〉

Partager

Métriques

Consultations de la notice

29