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ABSTRACT
We study in this paper a multiobjective dynamic programm-
ming where all the criteria are in the form of total expected
sum of costs till absorption in some set of states M. We
assume that instantaneous costs are strictly positive and
make no assumption on the ergodic structure of the Markov
Decision Process. Our main result is to extend the linear
program solution approach that was previously derived for
transient CMDPs (Constrained Markov Decision Processes)
to general ergodic structure. Several (additive) cost met-
rics are defined and (possibly randomized) routing policies
are sought which minimize one of the costs subject to con-
straints over the other objectives.

1. INTRODUCTION
When one has to select a path between a source S and a

destination R, one often has several criteria. In road traf-
fic problems it may be the minimization of the delay as
well as the tolls. In communication networks it may be the
minimization of delays, of loss probabilities of packets, of
blocking probabilities of calls or of starvation probabilities
in streeming video traffic. This motivates us to study the
more general framework of CMDPs (Constrained Markov
Decision Processes) which can be solved by transforming it
to a linear program. The existing theory for solving such
problems requires strong assumptions on the ergodic struc-
ture of the problem. In particular, for the shortest path
multiobjective problem these conditions translate to a re-
strictive condition on the topology of the graph which fails
to hold if there are cycles in the network. Our contribution
is to extend existing solution methods to our multiobjective
CMDP.

2. MODEL
Constrained Markov decision process (CMDP) A

CMDP is described by the following objects. There is a set
X of states which we asssume to be finite, a finite set A(x)
of actions available at state x, a set of transition probabili-
ties {Px,a,y}, where x, y ∈ X, a ∈ A(x). Px,a,y denotes the
probability to move from state x to state y if action a is
chosen at state x.

We consider K+1 cost criteria where one cost criterion, C,
will be minimized subject to constraints on the other costs
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D1, ..., DK of the form Dk(u) ≤ Wk where Wk are given
constants.

Instantaneous costs In order to define the costs we first
introduce the instantaneous costs c and dk, k = 1, ...,K
where c and dk are each strictly positive functions of the
state-and action.

Histories and Policies. Define
hn = (x0, a0, x1, a1, ..., xn−1, an−1, xn) to be a history of
length n + 1 where ak ∈ A(xk). A policy u is a sequence
(u0, u1, ...) where um(·|hm) is a probability measure over the
action set A(xm) conditioned on the observed history hm.
Define the class of stationary policies: w is a stationary pol-
icy if the dependence of wk on the history hk is only through
the current state xk. Under a stationary policy w, the state
process is a Markov chain with a transition probability ma-
trix P (w) satisfying

Pxy(w) =
∑
a

w(a|x)Pxay

Each distribution β over the initial states x0 and policy
u define a probability measure Puβ over the set of histories
H. We denote by Euβ the corresponding expectation oper-
ator. We shall use the notation Xn, An, Hn to denote the
stochastic state process, the stochastic action process and
the history stochastic process.

Cost criteria We consier in this paper the total expected
cost till a setM of states is reached for the first time. More
precisely, we assume that the set X of all states is the disjoint
union of the two sets X′ and M. Let TM the time till
some state withinM is reached for the first time. The total
expected costs till absorption in M are defined as

C(β, u) = Euβ

TM∑
t=1

[c(Xt, At)]

Dk(β, u) = Euβ

TM∑
t=1

[dk(Xt, At)]

We shall assume without loss of generality that the set
M is absorbing, i.e. Pxay = 0 for all x ∈ M, a ∈ A(x) and
y 6∈ M. We further assume that c(x, a) = dk(x, a) = 0 for
all x ∈M, a ∈ A(x), k = 1, ...,K. We then have

C(β, u) = Euβ

∞∑
t=1

[c(Xt, At)] , D
k(β, u) = Euβ

∞∑
t=1

[dk(Xt, At)]

For a stochastic matrix P and the set of statesM, we de-



fine byMP the Taboo matrix which is obtained by replacing
in P the entries of each column x ∈M with zeros.

3. OCCUPATION MEASURE
For any initial distribution β, any policy u, state x and

set of actions A ∈ A(x) define

puβ(t, x,A) := Puβ (Xt = x,At ∈ A, TM > t)

f(β, u, x,A) =

∞∑
t=1

puβ(t;x,A)

and s(β, u, x) = f(β, u;x,A(x)). Define the following
polyhedron Q(β) to be the set of non-negative measures
over the set of state action pairs, that satisfy for all x ∈ X,∑
a∈A(x)

ρ(x, a) =
∑
y∈X

∑
a∈A(x)

ρ(y, a)(Py,a,x1{x ∈ X′}) + β(x).

(1)

4. MAIN RESULTS
Below we identify a linear program that allows to com-

pute the optimal value and an optimal stationary policy for
CMDP. A similar result was already available in [1] but re-
quired the strong assumption that s(β, u) is finite for any u.
This excludes the shortest path problem in which policies
that include cycles may have infinite cost. In order to han-
dle such situations we note that one may assume throughout
that c and d are uniformly bounded below by some positive
constant c. The following Lemma shows that although we do
not assume that all policies have finite occupation measures,
those having infinite occupation measures are not optimal.
It further shows that one may restrict the search of solutions
to CMDP to stationary policies.

Lemma 1. (i) Fix some initial distribution β and a policy
u. Then either C(β, u) is infinite or f(β, u) satisfies (1) and
both f(β, u) and s(β, u) are finite measures.
(ii) Fix some initial distribution β and a stationary policy
w. Then s(β,w;x) is the minimal solution to

r = β + rMP (w), r ≥ 0 (2)

(in matrix notation, where r and β are row vectors).

Proof. (i) We have

C(β, u) =
∑
x,a

c(x, a)f(β, u;x, a) ≥ c
∑
x

s(β, u;x) = cEuβ [TM]

where c := minx,ac(x, a). Thus if C(β, u) is finite then
s(β, u) and f(β, u) are indeed finite measures. That f(β, u)
satisfies (1) follows by noting that

puβ(t;x) =
∑
y,a

puβ(t− 1; y, a)Py,a,x1{x ∈ X ′}

and taking the sum over t.
(ii) See Lemma 7.1 (i) in p. 76 in [1]. Although the state-
ment in that reference is for for transient MDPs, the proof
does carry on to our framework.

Theorem 2. Choose any initial distribution β and policy
u. Then either C(β, u) = ∞ or there exists a stationary
policy w such that C(β,w) ≤ C(β, u),

Proof. This is an extension of thm 8.1 in p.100 of [1].
Choose some policy u. Assume C(β, u) is finite. Consider a
stationary policy w satisfying f(β, u;x, a) = s(β, u;x)w(a|x).
Note that f and s are finite measures otherwize C(β, u)
would be infinite. It then follows that

s(β, u;x) = β(x) +
∑
y∈X

s(β, u; y)MPyx(w).

see the derivation of eq 8.6 page 102 in [1]. Note that in
[1], s(β, u;x) is finite for all β, u and x but eq. 8.6 in [1]
holds also in our framework. Hence by Lemma 1, for all x,
s(β,w;x) ≤ s(β, u;x). Thus f(β,w;x, a) ≤ f(β, u;x, a) for
all state action pairs x, a. As the costs c and d are strictly
positive, we conclude that

C(β, u) =
∑
y∈X

∑
a∈A(y)

f(β, u; y, a)c(y, a)

≥
∑
y∈X

∑
a∈A(y)

f(β,w; y, a)c(y, a) = C(β,w)

and similarly, Dk(β, u) ≥ Dk(w), k = 1, ...,K

Consider the following LP:
LP (β): Find the infimum C∗ of C(ρ) :=< ρ, c > over ρ

subject to

Dk(ρ) :=< ρ, dk >≤Wk, k = 1, ...,K, ρ ∈ Q(β)

where Q(β) is defined in (1).

Theorem 3. (i) To each policy u ∈ U in CMDP there
corresponds a point ρ(u) := f(β, u) in Q(β) whose corre-
sponding costs are the same:

C(β, u) = C(ρ), D(β, u) = D(ρ). (3)

(ii) Conversely, for each ρ ∈ Q(β), there corresponds a sta-
tionary policy w(ρ) whose performance is at least as good as
the one of ρ. More precisely, select a stationary policy w(ρ)
so that

wρ
∗
(a|y) =

ρ(y, a)∑
a′∈A(y) ρ(y, a′)

(4)

for all y for which the denominator is finite and strictly
positive. Then

C(β,w(ρ)) ≤ C(ρ), D(β,w(ρ)) ≤ D(ρ).

(iii) The optimal value C(β) of CMDP is equal to the op-
timal value C∗ of LP(β). Let ρ∗ be an optimal solution of

LP(β). Then the stationary policy wρ
∗

given in eq. (4) is
optimal for CMDP.

Proof. (i) From Lemma 1 (i) it follows that either
C(β, u) is infinite, or f(β, u) satisfies (1) and hence is in
Q(β). in both cases (3) holds. (ii) follpws from Lemma 1
(ii). (iii) We may assume that there exists a policy u such
that Dk(u) ≤Wk and C(u) is finite, otherwise the statement
is trivial. The statement follows then from (i) and (ii) of the
Theorem.
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