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THE MULTISCALE HYBRID MIXED METHOD IN GENERAL

POLYGONAL MESHES

GABRIEL R. BARRENECHEA, FABRICE JAILLET, DIEGO PAREDES, AND FRÉDÉRIC VALENTIN

Abstract. This work extends the general form of the Multiscale Hybrid-Mixed (MHM) method
for the second-order Laplace (Darcy) equation to general non-conforming polygonal meshes. The
main properties of the MHM method, i.e., stability, optimal convergence, and local conservation,
are proven independently of the geometry of the elements used for the first level mesh. More
precisely, it is proven that piecewise polynomials of degree k and k + 1, k ≥ 0, for the Lagrange
multipliers (flux), along with continuous piecewise polynomial interpolations of degree k + 1
posed on second-level sub-meshes are stable if the latter is fine enough with respect to the mesh
for the Lagrange multiplier. We provide an explicit sufficient condition for this restriction.
Also, we prove that the error converges with order k + 1 and k + 2 in the broken H1 and L2

norms, respectively, under usual regularity assumptions, and that such estimates also hold for
non-convex; or even non-simply connected elements. Numerical results confirm the theoretical
findings and illustrate the gain that the use of multiscale functions provides.

1. Introduction

Multiscale finite element methods have undergone an intense development in the last decades,
both in theoretical and practical aspects, for their capacity to be accurate on coarse meshes
without assuming neither scale separation nor periodicity of the exact solution, and to be prompt
to leverage the new generation of massively parallel computers. Such properties have made
multiscale numerical methods attractive to deal with real industrial applications compared to,
for instance, more classical homogenization strategies, although its basics remain an important
and challenging subject in the applied mathematics field. Starting with the original work [5]
for the one-dimensional Laplace problem, the MsFEM was extended and analyzed for multi-
dimensional problems in [27, 16]. Since, a large variety of approaches has been proposed leading
to the VMS [28] and RFB [33, 12] methods, the HMM [15], and the LOD method [30], just to
cite a few.

Recently, hybridisation has been used as a platform to develop multiscale methods. The
Multiscale Hybrid-Mixed (MHM for short) method appears as a result of a hybrid formulation
that starts at the continuous level posed on a coarse partition. Then, a decomposition of the
exact solution is obtained in terms of a variable defined in the skeleton (the flux) and a constant
per element of the coarse partition. The global problem needs for its construction the solution
of local problems that fulfill the role of upscaling the under-mesh structures. Introduced and
analysed in [24, 2, 31] for the Laplace (Darcy) equation, the MHM method has been further
extended to other elliptic problems in [25, 23] as well as to mixed and hyperbolic models in
[3] and [29], respectively. See also [26] for an abstract setting for the MHM method. This
method shares similarities, but also fundamental differences, with related approaches such as
the Multiscale Mortar method [4], the DEM [19], and the HDG method [11]. Also, in its fully
discrete version, and accordingly to the choices made for the interpolation spaces, the underlying
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algebraic system associated to MHM method may be identified as being part of the family of
FETI domain decomposition methods [20].

All the methods mentioned above are defined on conforming meshes, either simplicial, quadri-
lateral, or prismatic. The need for conformity of the meshes just mentioned makes some situ-
ations like non-matching interfaces resulting from, for example, moving domains, multi-physics
mesh gluing, or front tracking, far from trivial. Due to this, among other reasons, in the last few
years there has been an explosive development of numerical methods defined on general poly-
hedral meshes. Just to name a few, the Virtual Finite Element (VEM) [7, 6] uses virtual basis
functions while keeping the conformity of the approach, and the discontinuous Galerkin methods
uses unmapped polynomials on polygonal meshes [9, 8]. Also, the HHO method [18] appears
after a hybridisation process, and as such, it has been recently linked to the HDG method in
[10]. Motivated by the need to glue non-conforming meshes in a domain decomposition setting,
the works [1, 21] propose a discretisation posed in polygonal elements, where the coupling is
done by means of a Robin interface condition.

The main purpose of this work is to use the flexibility given by the MHM approach to extend
its use to polygonal meshes. In fact, the first step in the derivation of the method is a new
weak formulation having as unknowns the fluxes on the edges of the coarse partition and the
mean value of the solution in each element. This formulation can be derived independently of
the geometry of the elements. Thus, besides stating this fact rigorously, the bulk of the work
is devoted to the proposal of a stable finite element method for this new weak problem. For
this, we need two main ingredients, namely, a finite element space to approximate the fluxes
over the edges (i.e., the Lagrange multipliers) and a finite element method to approximate the
solution of the local problems. For the former we propose to use discontinuous polynomials of
degree k or k+ 1 (k ≥ 0) in a sub-partition of the skeleton, while we use continuous Lagrangian
polynomials of degree k+ 1 on a conforming sub-mesh for the latter. It is important to mention
that the meshes used in each element don’t need to match at the interfaces. We focus in a
diffusion equation in two space dimensions, but the results can be extended, without major
complications, to three space dimensions and more complicated operators.

Other than the extension of the MHM framework to polygonal meshes, we now highlight the
main contributions of this work:

• the method, and its analysis, has been extended to allowing discontinuous spaces for
approximating the fluxes. This is new even for the MHM method proposed on simplicial
meshes;
• the possibility of using equal order approximations for both the flux and the primal

variable is also new, even in the case of conforming simplicial meshes. It is important to
mention that this possibility does not require any extra stabilisation term to be added
to the formulation. This comes at the price of supposing that the subelement-meshes
are finer than the sub-partitions of the skeleton, but an explicit sufficient condition is
given for this;
• error estimates, qualitatively similar (super-convergence) to the ones given in the last

six rows of the summary given in [10, Table 1] are proven without post-processing pro-
cedures;
• convergence has been proven without the need for the coarse partition to be refined. It is

enough that the sub-partitions to approximate the Lagrange multiplier and the sub-mesh
used to solve the local problems get refined.

This work is outlined as follows. We end this section by presenting the model, notations and
some preliminary results. Section 2 is dedicated to the presentation of the MHM method and
important considerations on the second-level sub-meshes. Well-posedness and error analysis are
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the subjects of Section 3 and Section 4, respectively. Section 5 assesses theoretical results through
two numerical tests, followed by conclusions in Section 6. Two technical lemmas instrumental
to the proof of the existence of a Fortin operator are left to the appendix.

1.1. Notations and the model problem. Let Ω ⊂ R2 be an open, bounded, polygonal

domain with a Lipschitz boundary ∂Ω. Given f ∈ L2(Ω) and g ∈ H
1
2 (∂Ω), this work aims at

approximating the following boundary value problem: Find u ∈ H1(Ω) such that u|∂Ω = g and

(1.1)

∫
Ω
A∇u · ∇vdx =

∫
Ω
fvdx for all v ∈ H1

0 (Ω) .

Here, A ∈ L∞(Ω)2×2 is a symmetric matrix and may involve multiscale features. It is supposed
to be uniformly elliptic in Ω. More precisely, we will assume that there exist positive constants
Amin and Amax such that

(1.2) Amin|ξ|2 ≤ ξTA(x)ξ ≤ Amax|ξ|2 for all ξ ∈ R2 and x ∈ Ω ,

where | · | stands for the Euclidean norm in R2. We shall also make use of the following value

(1.3) ω :=
Amax
Amin

,

and note that if the entries of A are constant functions, then ω is simply the condition number of
A. Above, and hereafter, we adopt standard notation for Sobolev and Lebesgue spaces aligned
with, e.g., [17].

1.2. Partitions, triangulations, and spaces. We start by introducing P, a collection of
closed, bounded, disjoint polygons, denoted K, such that Ω̄ = ∪K∈PK. The shape of the
polygons K is, a priori, arbitrary, but we will suppose they satisfy a minimal angle condition
(see Assumption 1 below for a more precise statement). The diameter of K is HK and we denote
H = maxK∈P HK . We will not suppose necessarily that H tends to zero, but it may do so in
many cases of pratical interest. For each K ∈P, nK denotes the unit outward normal to ∂K.
We also introduce ∂P, the set of boundaries ∂K, with K ∈ P, and E the set of the edges of
P, that is

(1.4) E := {E = K ∩K ′ or K ∩ ∂Ω : K,K ′ ∈P, and it is not reduced to a single point} .
Associated to the partition P, for m ≥ 0 (where H0 = L2, as usual) we define the function
spaces

Hm(P) := {v : v|K ∈ Hm(K) for all K ∈P} ,(1.5)

L2(E) := {q : q|E ∈ L2(E) for all E ∈ E} ,(1.6)

with norms

(1.7) ‖v‖m,P :=

{∑
K∈P

‖v‖2m,K

} 1
2

and ‖q‖0,E :=

{∑
E∈E
‖q‖20,E

} 1
2

.

In addition, the following spaces will be useful in what follows

V := H1(P) with norm ‖v‖V :=

{∑
K∈P

‖v‖21,K

} 1
2

,(1.8)

V0 := {v ∈ L2(Ω) : v|K ∈ P0(K) for all K ∈P} ,(1.9)

Λ := {τ · nK |∂K : τ ∈ H(div,Ω) for all K ∈P} ,(1.10)
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and the space Λ is endowed with the norm

‖µ‖Λ := inf
τ∈H(div,Ω)

τ ·nK=µ on ∂K,K∈P

‖τ‖div,Ω .(1.11)

We also denote by (·, ·)D the L2(D)-inner product (we don’t make a distinction between vector-
valued and scalar-valued functions). We define the product on P as follows

(1.12) (v, w)P :=
∑
K∈P

(v, w)K ,

and the broken product on ∂P as

(1.13) 〈µ, v〉∂P :=
∑
K∈P

〈µ, v〉∂K ,

where the product on ∂K is the duality pairing between H−
1
2 (∂K) and H

1
2 (∂K). Following

closely the arguments given in [2] we can prove that
√

2

2
‖µ‖Λ ≤ sup

v∈V

〈µ, v〉∂P

‖v‖V
≤ ‖µ‖Λ ,(1.14)

and above and hereafter we lighten the notation and understand the supremum to be taken over
sets excluding the zero function, even though this is not specifically indicated.

In Section 2.1 a characterisation of the weak solution of (1.1) will be derived using the par-
tition P described above. That characterisation will be the starting point of the finite element
method analysed in this work, which will need some further notations and partitions. More
precisely, we introduce two partitions which do not coincide, but are not independent. We start
describing the discretisation of the set of edges E . For this we introduce EH , a partition of E for
which each E ∈ E is split into segments F of length HF ≤ H := maxF ′∈EH HF ′ . We will not
assume the segments are of equal length, but we will require that neighbouring edges are not
too dissimilar. More precisely, we impose the following assumption on EH :

Assumption (A1): The mesh EH is such that in every K ∈ P a shape regular simplicial tri-

angulation ΞH(K) of K can be built in such a way that its trace on ∂K coincides with EH .

The triangulation ΞH(K) will be useful in the definition of the method, but not explicitely
used. More precisely, we make the following definitions:

- for each F ∈ EH , we denote by κKF (or simply κF , when it is clear from the context
to which element it does belong) the only element in ΞH(K) such that F = κKF ∩ ∂K.
Just to simplify the presentation, we will suppose that, for two different F, F ′ ∈ EH ,
κKF 6= κKF ′ ;

- the triangulation ΞH := ∪K∈PΞH(K) will be referred to as virtual triangulation. This
(conforming) partition will be very useful in the proofs below, but not used explicitly in
the implementation of the method;

- for each K ∈ P, we introduce a shape regular family of simplicial triangulations
{T K

h }h>0 built in the following way:
(1) first, on each K ∈ P, the triangulation ΞH(K) is refined once using a red refine-

ment. The resulting triangulation is called minimal triangulation;
(2) then, for each K, the family {T K

h }h>0 is formed by regular refinements of the
minimal triangulation.
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The diameter of T ∈ T K
h is denoted by hT, and h := maxK∈P maxT∈T K

h
hT, denote Th :=

∪K∈PT K
h , and, define the broken space

H(div,Th) := {τ : τ |T ∈ H(div,T) , ∀ τ ∈ Th} .

It is important to remark that, if E = K ∩K ′ ∈ E , then the traces of the two neighbouring
triangulations T K

h and T K′
h do not need to coincide.

E

K

P

K

T F

Figure 1. A domain partitioned with non-conforming polygonal elements K.
Observe the sub-meshes discretising two different elements K with different gran-
ularity. The red dots represent the degrees of freedom associated with the sub-
meshes and the gray dots with the mesh skeleton.

Associated to EH and T K
h , for k ≥ 0, we introduce the following finite element spaces:

(1.15)

Vh :=
∏
K∈P

Vh(K) where Vh(K) := {vh ∈ C0(K) : vh|T ∈ Pk+1(T), ∀T ∈ T K
h } ,

Ṽh :=
∏
K∈P

Ṽh(K) where Ṽh(K) := Vh(K) ∩ L2
0(K) ,

ΛH := {µH ∈ Λ : µH |F ∈ P`(F ), ∀F ∈ EH} with ` = k or ` = k + 1 .

We also introduce a projection onto ΛH . We start by defining, for every F ∈ EH the projection

Π`
F : L2(F )→ P`(F ) as

(1.16) (Π`
F (µ), q)F = (µ, q)F for all q ∈ P`(F ) ,

and then we define the global projection Π` : L2(E) → ΛH by Π`(µ)|F = Π`
F (µ) for every

µ ∈ L2(E). In addition, we introduce Ch : H1(Ω) → Vh, a variant of the Clément interpo-

lation operator defined locally. That is, for every v ∈ V we define Ch(v)|K = CK
h (v), where

CK
h : H1(K) → Vh(K) is the usual Clément interpolation operator. This mapping satisfies the

following (see [17]): there exists C > 0, depending only on the shape of the elements T ∈ T K
h

such that, for all v ∈ H1(K) and all T ∈ T K
h ,

‖CK
h (v)‖1,T ≤ C ‖v‖1,ωT

,(1.17)

‖v − CK
h (v)‖0,T ≤ Ch |v|1,ωT

,(1.18)
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where ωT := {T′ ∈ T K
h : T ∩ T′ 6= ∅}.

Finally, in what follows C will denote a positive constant whose value does not depend on any
mesh size, or the shape of K ∈ P. The constant C is only allowed to depend on the shape of
the elements of Th, and its value may change whenever it is written in two different locations.

Remark 1.1. Assumption (A1) implies a restriction on the shape of K, and/or how refined
the partition EH is. More precisely, if the diameter of the polygons K ∈ P tends to zero, and
their smallest angle is not bounded below, then the triangulation ΞH(K) can not be built, as the
smallest angle in ΞH(K) would degenerate as well. On the other hand, even if the smallest angle
of P is uniformly bounded below, if the polygons K ∈P are very anisotropic, or irregular, then
EH needs to be fine enough so ΞH(K) can be built.

Remark 1.2. The restriction of ΞH and Th to be simplicial is made only for simplicity. The
results presented in this work can be extended without major complications to the case in which
those meshes are built using quadrilaterals. In addition, the way the triangulations T K

h are built
has been done mostly to make the presentation of the method (and the proofs) clearer. All the
results presented below follow, with minor modifications, if we suppose that EH and T K

h are
independent, but linked by the following assumption: For every E = K ∩ K ′ ∈ E and every
F ∈ EH , F ⊆ E, there exist two pairs of triangles TK1 ,T

K
2 ∈ T K

h and TK
′

1 ,TK
′

2 ∈ T K′
h such that

they share one node and(
∂TK1 ∪ ∂TK2

)
∩ E ⊆ F and

(
∂TK

′
1 ∪ ∂TK

′
2

)
∩ E ⊆ F .

This restriction requires the triangulations T K
h to be fine enough such that for every E ∈ ΛH ,

there are at least two triangles in T K
h whose edges lying on ∂K are totally included in E. With

this assumption the proofs of stability and convergence done in the subsequent sections follow
almost exactly in the same way.

2. The MHM method

2.1. A characterisation of the exact solution. A fundamental point of the MHM method
is a characterisation of u, weak solution of (1.1), as a function of a pair (λ, u0), solution of a
mixed hybrid problem. To derive this characterisation we define the mappings T ∈ L(Λ, V ) and

T̂ ∈ L(L2(Ω), V ) as follows:

• for all µ ∈ Λ, Tµ ∈ H1(K) ∩ L2
0(K) is the unique solution of

(2.1)

∫
K
A∇Tµ · ∇v dx = −〈µ, v〉∂K for all v ∈ H1(K) ∩ L2

0(K) , ∀K ∈P ;

• for all q ∈ L2(Ω), T̂ q ∈ H1(K) ∩ L2
0(K) is the unique solution of

(2.2)

∫
K
A∇T̂ q · ∇v dx =

∫
K
qv dx for all v ∈ H1(K) ∩ L2

0(K) , ∀K ∈P .

Following very closely the derivation from [2] the solution of (1.1) can be written as follows

(2.3) u = u0 + Tλ+ T̂ f ,

where (λ, u0) ∈ Λ× V0 solves the following mixed problem: Find (λ, u0) ∈ Λ× V0 such that

(2.4)
a(λ, µ) + b(µ, u0) = −〈µ, T̂ f〉∂P + 〈µ, g〉∂Ω for all µ ∈ Λ ,

b(λ, v0) = (f, v0)P for all v0 ∈ V0 ,
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and the continuous bilinear forms a(·, ·) and b(·, ·) are given by

a : Λ× Λ→ R a(λ, µ) := 〈µ, Tλ〉∂P ,(2.5)

b : Λ× V0 → R b(µ, v0) := 〈µ, v0〉∂P .(2.6)

The well-posedness of (2.4) is stated next.

Theorem 2.1. Let N be the space defined by

N := {µ ∈ Λ : b(µ, v0) = 0 for all v0 ∈ V0} ,(2.7)

then there exist positive constants α (depending on Amin) and β such that

a(µ, µ) ≥ α ‖µ‖2Λ for all µ ∈ N ,(2.8)

sup
µ∈Λ

b(µ, v0)

‖µ‖Λ
≥ β ‖v0‖V for all v0 ∈ V0 .(2.9)

Consequently, (2.4) has a unique solution (λ, u0) ∈ Λ× V0. Moreover, u given in (2.3) satisfies
(1.1) and A∇u · nK |∂K = −λ for all K ∈P.

Proof. Regarding (2.8), the proof follows exactly as in [2]. As for (2.9), we omit the details since
it is very similar to the one of Theorem 3.1 below. �

We finish this section by two quick remarks on the solution (λ, u0) of (2.4). First, the dual
variable σ := A∇u belongs to H(div,Ω) since the flux λ = −σ ·nK |∂K ∈ Λ for all K ∈P. So,
the relaxation of the continuity of u does not affect the continuity of the fluxes. In addition,
since Tλ and T̂ f have zero mean value in every K ∈P the following holds

u0|K =
1

|K|

∫
K
u dx .

2.2. The method. We start by defining the discrete equivalents of the operators defined in
(2.1)-(2.2). Using the finite element spaces defined in (1.15) we introduce the following approx-
imate mappings:

• for all µ ∈ Λ, Thµ ∈ Ṽh is the unique solution of

(2.10)

∫
K
A∇Thµ · ∇vh dx = −〈µ, vh〉∂K for all vh ∈ Ṽh(K) , ∀K ∈P ;

• for all q ∈ L2(Ω), T̂hq ∈ Ṽh is the unique solution of

(2.11)

∫
K
A∇T̂hq · ∇vh dx =

∫
K
qvh dx for all vh ∈ Ṽh(K) , ∀K ∈P .

Using the mappings (2.10)-(2.11) and the following approximate bilinear form

(2.12) ah : Λ× Λ→ R where ah(λ, µ) = 〈µ, Thλ〉∂P ,

the MHM method associated to (2.4) reads: Find (λH , u
h
0) ∈ ΛH × V0 such that

(2.13)
ah(λH , µH) + b(µH , u

h
0) = −〈µH , T̂hf〉∂P + 〈µH , g〉∂Ω for all µH ∈ ΛH ,

b(λH , v0) = (f, v0)P for all v0 ∈ V0 .

The approximate solution uh is given by

uh := uh0 + ThλH + T̂hf .(2.14)
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Remark 2.1. The fact that the exact flux λ is locally conservative is inherited by its discrete
counterpart λH in each K ∈P. In fact, from the second equation in (2.13) we get∫

∂K
λH ds =

∫
K
f dx for all K ∈P .

On the other hand, unless a mixed finite element method is used as a second order solver (see [14]
for an example) in the second level mesh, this is not guaranteed. More precisely, for T ∈ T K

h
we, in general, have

−
∫
T
∇ · σh dx 6=

∫
T
f dx ,

where σh := A∇uh . Finally, it is worth mentioning that the choice of numerical method to

define Th and T̂h is virtually unlimited. In this paper we have restricted the presentation to a
Galerkin method, but other choices, such as stabilised, enriched, or DG-related methods, just to
name a few, are also possible, leading to similar theoretical results.

Remark 2.2. It is interesting to remark that wh := Thµ+ T̂hf ∈ Ṽh(K) is the unique solution
of the problem∫

K
A∇(Thµ+ T̂hf) · ∇vh dx = −〈µ, vh〉∂K +

∫
K
fvh dx =

∫
K
A∇(Tµ+ T̂ f) · ∇vh dx ,

for all vh ∈ Ṽh(K). Thus, using Cea’s Lemma, the following estimate follows

(2.15) ‖Tµ+ T̂ f − wh‖1,K ≤ CK inf
vh∈Ṽh(K)

‖Tµ+ T̂ f − vh‖1,K ,

where CK depends on ratio ω given in (1.3) for each K, but is independent of h,H, or H. This
fact will be of paramount importance in the proof of optimal convergence of the method, even in
the case the polygons K ∈P are not convex.

Lemma 2.3. There exist constants C, independent of h, H, H, and A, such that

(2.16) ‖Thµ‖V ≤ C A−1
min ‖µ‖Λ and ‖Tµ‖V ≤ C A−1

min ‖µ‖Λ ,

(2.17) ‖T̂hf‖V ≤ C A−1
min ‖f‖0,Ω and ‖T̂ f‖V ≤ C A−1

min ‖f‖0,Ω .

Proof. Let µ ∈ Λ, from (2.10) and (1.14) we get

C Amin ‖Thµ‖2V ≤
∑
K∈P

∫
K
A∇Thµ · ∇Thµdx = −

∑
K∈P

〈µ, Thµ〉∂K

≤ sup
vh∈Vh

〈µ, vh〉∂P

‖vh‖V
‖Thµ‖V

≤ ‖µ‖Λ‖Thµ‖V ,
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and the result involving T follows using an analogous argument which proves (2.16). Next, let
f ∈ L2(Ω). From (2.11) and using the Cauchy-Schwarz inequality, we get

C Amin ‖T̂hf‖2V ≤
∑
K∈P

∫
K
A∇T̂hf · ∇T̂hf dx =

∑
K∈P

(f, T̂hf)K

≤
∑
K∈P

‖f‖0,K ‖T̂hfK‖0,K

≤

(∑
K∈P

‖f‖20,K

) 1
2
(∑
K∈P

‖T̂hf ‖20,K

) 1
2

≤ ‖f‖0,Ω ‖T̂hf‖V ,

and the result involving T̂ follows using an analogous argument which gives (2.17). �

Remark 2.4. Observe that the right-hand side of (2.13) may be rewritten using the following
equivalence

−〈µ, T̂hf〉∂K =

∫
K
A∇Thµ · ∇T̂hf dx =

∫
K
Thµ f dx ,(2.18)

for all µ ∈ Λ and K ∈P. Also, if f ∈ P0(K) then T̂hf |K = 0 and the right-hand side of (2.13)
simplifies.

3. Well-posedness

We address the well-posedness of the MHM method given in (2.13). The main ingredient is
the construction of a Fortin operator. This will be detailed for the choice ` = k, and sketched
for the choice ` = k + 1.

3.1. The Pk(F )×Pk+1(T) element. We start considering the case ` = k. The following result
ensures the existence of a Fortin operator acting on V with image in Vh, and using the space
ΛH . This result will be key to the well-posedness of (2.13).

Lemma 3.1. Let us assume Assumption (A1). Then, there exists a mapping Πh : V → Vh such
that, for all v ∈ V :∫

F
Πh(v)µHds =

∫
F
vµHds for all µH ∈ ΛH and F ∈ EH ,(3.1)

‖Πh(v)‖V ≤ C ‖v‖V ,(3.2)

where C > 0 does not depend on h,H, or the shape of K ∈P.

Proof. We will prove the result for the case in which the mesh T K
h is the minimal mesh allowed.

That is, T K
h is obtained by performing only one red refinement of the mesh ΞH(K). Since the

discrete spaces Vh(K) associated to further refinements of this mesh include the one associated
to the minimal mesh, the stability proved below will also apply to those choices.

Let K ∈ P, and let us define the mapping ρKh : H1(K) → Vh(K) as follows. For every

F ∈ EH ∩ ∂K, there are exactly two neighboring triangles T1,T2 ∈ T K
h with at least one

edge contained in F . Let e1 and e2 be these edges, so that F = e1 ∪ e2. Let us denote
by x1, . . . ,xk+1 the position of k + 1 degrees of freedom of Vh(K) in F ◦ (the interior of F ),
and let ϕ1, . . . , ϕk+1 ∈ Vh(K) be the basis functions of Vh(K) associated to these degrees of
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freedom. In addition, we fix a basis {µ̂1, . . . , µ̂k+1} of Pk(0, 1) satisfying |µ̂i(x̂)| ≤ 1 in (0, 1) for
i = 1, . . . , k+ 1. Then, we map (0, 1) onto F to build a basis {µ1, . . . , µk+1} of Pk(F ), and then
we have that |µi(x)| ≤ 1 for all x ∈ F .

Next, let (αF1 , . . . , α
F
k+1)T be the solution of the linear system

(3.3)

k+1∑
j=1

∫
F
µi(s)ϕj(s)dsα

F
j =

∫
F
v(s)µi(s)ds i = 1, . . . , k + 1 .

This system can be written in matrix form as

(3.4) AαF =

[∫
F
v(s)µi(s)ds

]k+1

i=1

,

where αF = (αF1 , . . . , α
F
k+1)T , and

(3.5) A = (aij)i,j=1,...,k+1 , aij =

∫
F
µi(s)ϕj(s)ds .

We notice that, changing variables A = HF Â, where Â = (âij)i,j=1,...,k+1 and

(3.6) âij =

∫ 1

0
µ̂i(ŝ)ϕ̂j(ŝ)dŝ ,

where {ϕ̂1, . . . , ϕ̂k+1} is the corresponding basis in (0, 1). We notice that we can always choose

the position of x1, . . . ,xk+1 in such a way that this basis in (0, 1) remains unchanged, so Â is

independent of F . Due to Lemma 6.1 (see the Appendix) Â is invertible, which also shows the
invertibility of A.

With these ingredients we define

(3.7) ρKh (v) :=
∑

F∈EH∩∂K
ρKF (v) where ρKF (v) =

k+1∑
i=1

αFi ϕi ,

and, for each F , αFi , i = 1, . . . , k + 1, solve (3.3).
We now analyse the stability of ρKh . First,

(3.8) Aα =

[∫
F
v(s)µi(s)ds

]k+1

i=1

=⇒ αF = H−1
F Â−1

[∫
F
v(s)µi(s)ds

]k+1

i=1

.

Thus, using (3.8) and since Â does not depend on F , and using Cauchy-Schwarz’s inequality
and |µi| ≤ 1 on F ⊂ EH we arrive at

k+1∑
i=1

(αFi )2 ≤ CH−2
F

k+1∑
i=1

(∫
F
v(s)µi(s)ds

)2

≤ C H−2
F ‖v‖

2
0,F max

i=1,...,k+1
‖µi‖20,F

≤ CH−2
F HF ‖v‖20,F

≤ CH−1
F ‖v‖

2
0,F ,(3.9)

where C > 0 depends only on Â, but not on h,H, or the shape or size of K, but may depend
on the degree k.
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Hence, recalling that κF is the unique triangle in ΞH(K) that has F as one of its edges, using
(3.9) and a local trace inequality in κF we arrive at

‖ρKh (v)‖20,K =
∑

F∈EH∩∂K
‖ρKF (v)‖20,T1∪T2

=
∑

F∈EH∩∂K

∫
T1∪T2

(
k+1∑
i=1

αFi ϕi

)2

≤ C
∑

F∈EH∩∂K
|T1 ∪ T2|

k+1∑
i=1

(αFi )2

≤ C
∑

F∈EH∩∂K
|T1 ∪ T2|H−1

F ‖v‖
2
0,F

≤ C
∑

F∈EH∩∂K

{
‖v‖20,κF + h2

T1
|v|21,κF

}
,(3.10)

where we have used the relation between H and h and the regularity of T K
h in the last step.

Analogously, an inverse inequality and (3.10) gives

(3.11) |ρKh (v)|21,K =
∑

F∈EH∩∂K
|ρKF (v)|21,T1∪T2

≤ C
∑

F∈EH∩∂K

(
h−2
T1
‖v‖20,κF + |v|21,κF

)
.

We now define the Fortin operator as follows:

(3.12) Πh(v)|K := CK
h (v) + ρKh (v − CK

h (v)) .

The proof of (3.1) follows by noting that, thanks to (3.3), for each F ∈ EH ∩ ∂K and any
µH ∈ ΛH , the following holds∫

F
Πh(v)µHds =

∫
F

CK
h (v)µHds+

∫
F
ρKh (v − CK

h (v))µHds

=

∫
F

CK
h (v)µHds+

∫
F

(v − CK
h (v))µHds

=

∫
F
vµHds .

To prove (3.2) we use (3.10), (3.11), (1.17) and (1.18) and obtain

‖Πh(v)‖21,K ≤ C
(
‖CK

h (v)‖21,K + ‖ρKh (v − CK
h (v))‖21,K)

≤ C
(
‖v‖21,K +

∑
F∈EH∩∂K

h−2
T1
‖v − CK

h (v)‖20,κF + |v − CK
h (v)|21,κF

)
≤ C‖v‖21,K ,

and the proof is finished adding over K ∈P. �

We are ready to prove the well-posedness of the MHM method. This is stated in the next
result.

Theorem 3.1. Let us suppose that Assumption (A1) is satisfied. Then,
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a) There exists β0 > 0 such that, for all v0 ∈ V0:

(3.13) sup
µH∈ΛH

b(µH , v0)

‖µH‖Λ
= sup

µH∈ΛH

〈µH , v0〉∂P

‖µH‖Λ
≥ β0 ‖v0‖V .

b) There exists α0 > 0 such that

(3.14) ah(µH , µH) ≥ α0 ‖µH‖2Λ for all µH ∈ NH ,

where NH is the discrete kernel of b(·, ·), that is,

(3.15) NH := {µH ∈ ΛH : b(µH , v0) = 0 for all v0 ∈ V0} .

Thus, (2.13) is well-posed.

Proof. We start proving (3.13). Over the partition ΞH we consider the space

(3.16) XH := {τH ∈ H(div,Ω) : τH |κ ∈ RT0(κ) for all κ ∈ ΞH} .

That is, the global Raviart-Thomas space of the lowest order defined in ΞH . Let now v0 ∈ V0.
Then, there exists τ̃H ∈ XH such that ∇ · τ̃H = v0 in Ω and β0‖τ̃H‖div,Ω ≤ ‖v0‖0,Ω = ‖v0‖V ,
where β0 does not depend on H, H, or h. Thus

(3.17) β0‖τ̃H‖div,Ω‖v0‖V ≤
∫

Ω
∇ · τ̃Hv0 dx =

∑
K∈P

〈τ̃H · nK , v0〉∂K ,

where we have also used the fact that v0 is continuous in everyK ∈P and the normal component
of τ̃H is continuous across every internal edge of Ξ. Thus, defining µ̃H |F = τ̃H · nK |F on every
F ∈ EH , and using the definition of the norm in Λ, we arrive at

(3.18) β0‖µ̃H‖Λ‖v0‖V ≤
∑
K∈P

〈τ̃H · nK , v0〉∂K =
∑
K∈P

〈µ̃H , v0〉∂K = b(µ̃H , v0) ,

which proves (3.13).
To prove the ellipticity (3.14), let µH ∈ NH . Then, for all vh ∈ Vh (not necessarily having

zero mean value in K) the following equality holds

(3.19)

∫
K
A∇ThµH · ∇vh dx = −〈µH , vh〉∂K .

Next, (1.14) and Lemma 3.1 imply the existence of a constant C > 0, independent of h,H,H,
and the shape of the elements in P, such that

√
2

2
‖µH‖Λ ≤ sup

v∈V

〈µH , v〉∂P

‖v‖V

≤ C sup
v∈V

〈µH ,Πhv〉∂P

‖Πhv‖V

≤ C sup
vh∈Vh

〈µH , vh〉∂P

‖vh‖V

= C sup
vh∈Ṽ

−
∑

K∈P

∫
K A∇ThµH · ∇vh dx
‖vh‖V

≤ C

{∑
K∈P

AKmax‖∇ThµH‖20,K

} 1
2

,(3.20)
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where we also used (3.19). Hence, using the definition of ah(·, ·) we arrive at
(3.21)

ah(µH , µH) = 〈µH , ThµH〉∂P =
∑
K∈P

∫
K
A∇ThµH ·∇ThµH dx ≥ Amin‖∇ThµH‖20,P ≥ C ω−1‖µH‖2Λ ,

which proves (3.14) with α0 = C ω, and ω given in (1.3). This last result implies the stability
and well-posedness of the discrete problem (2.13). �

3.2. The Pk+1(F )×Pk+1(T) element. Method (2.13) can also be implemented when the space
of Lagrange multipliers ΛH is built using polynomials of degree ` = k + 1, k ≥ 0. The main
difference for this case resides on the minimal mesh. More precisely, we need to consider the
following cases:

• For k = 0, 1: The mesh T K
h needs to be the result of at least two red refinements of the

mesh ΞH(K).
• For k ≥ 2: The mesh T K

h needs to be the result of at least one red refinement of the
mesh ΞH(K).

We notice that for k ≥ 2 the same situation as for the one treated in the last section is assumed,
while for the lowest order case some extra mesh refinement is required to allow for the proof of
stability. Then, with these considerations on the meshes used, for k ≥ 0, we consider here the
following finite element spaces

Vh :=
∏
K∈P

Vh(K) where Vh(K) := {vh ∈ C0(K) : vh|T ∈ Pk+1(T), ∀T ∈ T K
h } ,(3.22)

ΛH := {µH ∈ Λ : µH |F ∈ Pk+1(F ), ∀F ∈ EH} .(3.23)

A close inspection of the results proven in the last section shows that the only difference lies in
the proof of existence of a Fortin operator, that is, Lemma 3.1. Its proof shows that the only
difference that appears when considering ` = k+ 1 lies on the invertibility of the matrix A built
in (3.5), which follows in this case from Lemma 6.2 (see the appendix for the proof), taking into
consideration the minimal mesh requirement needed when k = 0, 1. Then, the stability of the
discrete scheme can be proved using Lemma 3.1.

4. Convergence

The results in this section treat, in a unified manner, both cases ` = k and ` = k+1. We start
by presenting an interpolation estimate for the space ΛH . This estimate, in addition to extending
[32, Lemma 9] to polygonal meshes, gives an error estimate depending on the parameter H, i.e.
the discretisation parameter associated to the mesh EH , and not depending on H, associated to
the mesh P.

Lemma 4.1. Suppose w ∈ H`+2(P) ∩ H1
0 (Ω), A∇w ∈ H`+1(P), with ` ≥ 0, and A∇w ∈

H(div,Ω). Let µ ∈ Λ be defined by µ|E :=
(
A∇w|K · nK

)
|E for each E ∈ E. Then, there exists

a positive constant C, independent of h, H, H and A, such that

inf
µH∈ΛH

‖µ− µH‖Λ ≤ C H`+1 |A∇w|`+1,P ,(4.1)

where ΛH is given in (1.15).

Proof. Let w ∈ H`+2(P) and E ∈ E . Let K ∈ P be such that F ⊂ ∂K. We define χE :=

A∇w · nE ∈ H`+1(P) where nE must be understood as the trivial extension of the normal
vector nK |E to E to a constant function in the whole of K, with |nE | = 1. Observe that
µ := χE |F ∈ L2(F ) for each F ⊂ E ∈ E .
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Now, let us recall that κF denotes the unique element in ΞH(K) such that κF ∩∂K = F . Let

T̂ be the standard reference element with vertices (0, 0), (1, 0) and (0, 1), and let FF : T̂ → κF
be the invertible affine transformation such that FF (F̂ ) = F , where F̂ = [0, 1]. First, we observe
that

Π̂`
F µ = Π`

F̂
µ̂ .(4.2)

So ∫
F

(µ−Π`
F µ) v ds = HF

∫
F̂

(µ̂− Π̂`
F µ) v̂ dŝ

= HF

∫
F̂

(µ̂−Π`
F̂
µ̂) v̂ dŝ .(4.3)

In addition, a scaling argument (see, e.g., [17]) and the mesh regularity of ΞH(K) give

|ẑ|`+1,T̂ ≤ C H
`
F |z|`+1,κF

and |v̂|1,T̂ ≤ C |v|1,κF ,(4.4)

for all z ∈ H`+1(κF ) and v ∈ H1(κF ). Now, using [13, Lemma 3] and (4.4), we get, for all
v ∈ V , ∫

F̂
(µ̂−Π`

F̂
µ̂) v̂ dŝ ≤ C |χ̂E |`+1,T̂

|v̂|
1,T̂

≤ C H`
F |χE |`+1,κF

|v|1,κF ,(4.5)

where C is a positive constant that only depends on the shape of κF .

Next, we define µ̃H := Π`
F µ, and in each F ⊂ ∂K and K ∈P. A change of variables, (4.5),

(4.4), the regularity of ΞH(K), and the fact that the elements κF do not overlap give

〈µ− µ̃H , v〉∂K =
∑
F⊂∂K

∫
F

(µ− µ̃H) v ds =
∑
F⊂∂K

HF

∫
F̂

(µ̂− ̂̃µH) v̂ dŝ

≤ C
∑
F⊂∂K

H`+1
F |χE |`+1,κF

|v|1,κF

≤ C H`+1

{ ∑
F⊂∂K

|χE |2`+1,κF

} 1
2
{ ∑
F⊂∂K

|v|21,κF

} 1
2

≤ C H`+1 |A∇w|`+1,K |v|1,K ,

for all v ∈ V , where we used |χE |`+1,κF
= |A∇w · nE |`+1,κF

≤ |A∇w|`+1,κF
.

Finally, adding over K ∈P, and collecting the above results, we arrive at

b(µ− µ̃H , v) = 〈µ− µ̃H , v〉∂P ≤ C H`+1 |A∇w|`+1,P |v|1,P ≤ C H`+1 |A∇w|`+1,P ‖v‖V ,

which immediately leads to

sup
v∈V

b(µ− µ̃H , v)

‖v‖V
≤ C H`+1 |A∇w|`+1,P ,

and (4.1) follows from (1.14). �

We are ready to present the main convergence result for the present method. From now on,
we will assume that the solution u of (1.1) is such that all the norms on the right-hand side of
the estimates are finite.
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Theorem 4.1. There exists C > 0, independent of h,H, and H, such that

(4.6) ‖u0 − uh0‖V + ‖λ− λH‖Λ ≤ C
(
hk+1 |u|k+2,P +H`+1 |A∇u|`+1,P

)
.

In addition, if we denote uh := uh0 + ThλH + T̂hf , then the following error estimate holds

(4.7) ‖u− uh‖V ≤ C
(
hk+1 |u|k+2,P +H`+1 |A∇u|`+1,P

)
.

Proof. Let Λ?H ⊂ ΛH be defined by

Λ?H :=

{
µH ∈ ΛH :

∫
∂K

µH =

∫
K
f for all K ∈P

}
,

and let µH ∈ Λ?H be arbitrary. Observing that λH − µH ∈ NH , we get from Theorem 3.1-(b),
(2.4) and (2.13) that

α0 ‖λH − µH‖2Λ ≤ ah(λH − µH , λH − µH)

= ah(λH , λH − µH)− a(λ, λH − µH) + ah(λ − µH , λH − µH)

+ a(λ, λH − µH)− ah(λ, λH − µH)

≤ C
(
‖λ − µH‖Λ + ‖(T − Th)λ+ (T̂ − T̂h)f‖V

)
‖λH − µH‖Λ ,

where we used the stability of Th given in (2.16). Using that u = u0 +Tλ+ T̂ f ∈ Hk+2(P) and
(2.15) we get

(4.8) ‖Tλ+ T̂ f −
(
Thλ+ T̂hf

)
‖V ≤ Chk+1 |u|k+2,P ,

which gives

‖λH − µH‖Λ ≤ C
(
‖λ − µH‖Λ + ‖(T − Th)λ+ (T̂ − T̂h)f‖V

)
≤ C

(
‖λ − µH‖Λ + hk+1 |u|k+2,P

)
.

Next, we observe that the second equation of (2.4) gives∫
∂K

Π`λ v0 dx =
∑
F⊂∂K

∫
F

Π`λ v0 dx =
∑
F⊂∂K

∫
F
λ v0 ds =

∫
K
f v0 dx for all v0 ∈ V0 ,(4.9)

and then Π`λ ∈ Λ?H . Thus, setting µH = Π`λ and using Lemma 4.1 we get

‖λH − µH‖Λ ≤ C
(
hk+1 |u|k+2,P +H`+1 |A∇u|`+1,P

)
.

Finally, the triangle inequality and Lemma 4.1 lead to

‖λ − λH‖Λ ≤ C
(
hk+1 |u|k+2,P +H`+1 |A∇u|`+1,P

)
.(4.10)

From Theorem 3.1 item (a), there exists ξH ∈ ΛH , with ‖ξH‖Λ = 1, such that

β0 ‖uh0 − u0‖V ≤ b(uh0 − u0, ξH)

= −ah(λH , ξH) + a(λ, ξH) + 〈ξH , (T̂h − T̂ )f〉∂P

= −ah(λH − λ, ξH) + a(λ, ξH)− ah(λ, ξH) + 〈ξH , (T̂h − T̂ )f〉∂P

≤ C
(
‖λH − λ‖Λ + ‖(Th − T )λ+ (T̂h − T̂ )f‖V

)
,
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where we used (2.16), (2.4) and (2.13) once more. From (4.10) and (4.8), the following estimate
holds

‖uh0 − u0‖V ≤ C
(
hk+1 |u|k+2,P +H`+1 |A∇u|`+1,P

)
,(4.11)

and adding (4.10) and (4.11) the result (4.6) follows. To prove (4.7), we see that

‖u− uh‖V ≤ ‖u0 − uh0‖V + ‖Tλ+ T̂ f − (ThλH + T̂hf)‖V
≤ ‖u0 − uh0‖V + ‖Th(λ− λH)‖V + ‖Tλ+ T̂ f − (Thλ+ T̂hf)‖V ,

and the proof is finished applying (2.16), (4.6) and (4.8). �

4.1. An error estimate for ‖σ −σh‖div,Ω. In addition to the convergence result just proved,
the following result states that the MHM method also produces an accurate discrete solution of
the dual variable σ := A∇u in the following H(div,Th) norm

‖τ‖2div,Th
:=

∑
K∈P

∑
T∈T K

h

‖τ‖2div,T for all τ such that τ |T ∈ H(div,T) .(4.12)

In the proof of the result below we will use, for every K ∈P, the following space

(4.13) Wh(K) := {τh ∈ H(div,Ω) : τh|T ∈ RTk(T), ∀T ∈ T K
h } ,

where RTk(T) stands for the local Raviart-Thomas space of order k in T .

Theorem 4.2. Let us assume that f ∈ Hk+1(Th), that the families of partitions {T Kh }h>0 are
quasi-uniform, and that, for all K ∈P and all F ∈ EH ∩ ∂K,

H ≤ C hmin := min{hT : T ∈ T K
h , K ∈P} ,

for some C > 0. Denoting σh := A∇(ThλH + T̂hf), there exists C > 0, independent of any
mesh size, and the shape of K, such that

(4.14) ‖σ − σH‖div,Th
≤ C

(
(H` + hk) ‖u‖k+2,P + hk+1 ‖f‖k+1,Th

)
.

Proof. Since ‖σ − σh‖0,Ω has been bounded in Theorem 4.1, we only bound the difference

∇ · σ − ∇ · σh. Let σh|K := RK(σ), where RK stands for the Raviart-Thomas interpolation
operator with values in Wh(K). Using well-known properties of RK (see, e.g., [17]) we get, for

every T ∈ T K
h and every K ∈P, that

(4.15)
‖σ − σh‖0,T ≤ Chk+1

T ‖σ‖k+1,T ,

‖∇ · σ −∇ · σh‖0,T ≤ Chk+1
T |∇ · σ|k+1,T = Chk+1

T |f |k+1,T .
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Thus, using the triangle inequality, (4.15), an inverse inequality in each T, and Theorem 4.1, we
arrive at

‖∇ · σ −∇ · σh‖20,Th
≤ 2

∑
K∈P

∑
T∈T K

h

(
‖∇ · σ −∇ · σh‖20,T + ‖∇ · σh −∇ · σh‖20,T

)
≤ C

∑
K∈P

∑
T∈T K

h

(
h2k+2
T |f |2k+1,T + h−2

T ‖σh − σh‖
2
0,T

)
≤ Ch2k+2|f |2k+1,Th

+ Ch−2
min

(
‖σh − σ‖20,Ω + ‖σ − σh‖20,Ω

)
≤ Ch2k+2|f |2k+1,Th

+ Ch−2
min

([
h2k+2|u|k+2,P +H2`+2|A∇u|2`+1,P

]
+ h2k+2|σ|2k+1,P

)
≤ C

(
h2k+2|f |2k+1,Th

+ h2k|u|k+2,P +H2`|A∇u|2`+1,P + h2k|σ|2k+1,P

)
,(4.16)

which finishes the proof. �

Remark 4.2. If the second level problems are written in mixed form, then they can alternatively
be solved using a mixed inf-sup stable method. As a result, ∇·σh−∇·σh = 0 in every T ∈ T K

h ,
and then the following improved error estimate can be obtained

(4.17) ‖σ − σh‖div,Ω ≤ C
(
hk+1 ‖f‖k+1,P + (H`+1 + hk+1) ‖u‖k+2,P

)
,

requiring only the mesh regularity. In addition, it is worth mentioning that in the above case,
σh ∈ H(div,Ω). This idea was explored for simplicial elements in [14].

4.2. Error estimates for ‖u − uh‖0,Ω. In order to prove a higher order of convergence in

the L2(Ω) norm for u, we first make the following remark: if every K ∈ P is convex and
A ∈W 1,∞(K)2×2, then the solution of

(4.18) −∇ · (A∇φ) = g in K , A∇φ · nK = 0 on ∂K ,

with
∫
K g dx = 0, belongs to H2(K) and satisfies

(4.19) ‖φ‖2,K ≤ C ‖g‖0,K ,

where C depends only on Amin and ‖A‖1,∞,K (see [22]). In particular, this implies that there
exists C > 0, independent of the shape and size of K, such that

(4.20) ‖T̂ q‖2,K ≤ C ‖q‖0,K ,

for all q ∈ L2(P). As a consequence, arguing as in Remark 2.2, the application of Aubin-
Nitsche’s Lemma gives

‖(T − Th)µ+ (T̂ − T̂h)q‖0,K ≤ C h ‖∇
(
(T − Th)µ+ (T̂ − T̂h)q

)
‖0,K ,(4.21)

for all (µ, q) ∈ Λ × L2(P), where C > 0 is independent of h,H,H, and the shape of K. With
these ingredients we now present a first error estimate in the L2(Ω) norm for which we impose
the hypothesis of convexity of both Ω and K ∈P.

Theorem 4.3. Let us assume that Ω, and every K ∈P, are convex. Then, there exists C > 0,
independent of h,H, and H, such that

(4.22) ‖u− uh‖0,Ω ≤ C
(
hk+2 +H`+2

)
‖u‖k+2,P .
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Proof. First, we observe that (2.18) also holds if one replaces Th and T̂h by T and T̂ , respectively.
Next, define e = u− uh and let w satisfy the following elliptic problem

−∇ · (A∇w) = e in Ω , and w = 0 on ∂Ω .(4.23)

Problem (4.23) is well-posed, w belongs to H1
0 (Ω) ∩H2(Ω) and satisfies the following bound

‖w‖2,P ≤ C ‖e‖0,Ω .(4.24)

As it was done in Section 2.1, w = w0 + Tγ + T̂ e, where (γ,w0) ∈ Λ× V0 satisfies

(4.25)

a(γ, µ) + b(µ,w0) =

∫
Ω
Tµ e dx for all µ ∈ Λ ,

b(γ, v0) =

∫
Ω
e v0 dx for all v0 ∈ V0 .

Now, let (γH , w
h
0 ) ∈ ΛH × V0 be the following discrete approximation of (4.25), i.e.,

ah(γH , µH) + b(µH , w
h
0 ) =

∫
Ω
ThµH e dx for all µH ∈ ΛH ,

b(γH , v0) =

∫
Ω
e v0 dx for all v0 ∈ V0 .

Using Theorem 4.1 and (4.24) we obtain the following error estimate

‖γ − γH‖Λ + ‖w0 − wh0‖V ≤ C (h+H) |w|2,P ≤ C (h+H) ‖e‖0,Ω .(4.26)

From the definitions of the second-level local solvers T and Th, the following Galerkin orthogo-
nality property holds∫

K
A∇(Thλ) · ∇(ThγH) dx = −〈λ, ThγH〉∂K =

∫
K
A∇(Tλ) · ∇(ThγH) dx ,(4.27)

similarly, from the local solvers T̂ and T̂h, we get∫
K
A∇(T̂hf) · ∇(ThγH) dx = (f, ThγH)K =

∫
K
A∇(T̂ f) · ∇(ThγH) dx .(4.28)

Then, using (4.25) we arrive at

‖e‖20,Ω = (u− uh, e)P

= (u0 − uh0 + Tλ− ThλH , e)P + (T̂ f − T̂hf, e)P

= b(γH , u0 − uh0) + (Tλ− TλH , e)P + (TλH − ThλH + T̂ f − T̂hf, e)P

= b(γH , u0 − uh0) + a(λ− λH , γ) + b(λ− λH , w0) + (TλH − ThλH + T̂ f − T̂hf, e)P

= b(γH , u0 − uh0) + a(λ− λH , γ)︸ ︷︷ ︸
(I)

+ (TλH − ThλH + T̂ f − T̂hf, e)P︸ ︷︷ ︸
(II)

where we used b(λ − λH , w0) = 0. Let us estimate (I). Since γH ∈ ΛH , from (2.4) and (2.13),
and Cauchy-Schwarz’s inequality it holds

b(γH , u0 − uh0) + a(λ− λH , γ) = −a(γH , λ) + ah(γH , λH)− 〈γH , T̂ f − T̂hf〉∂P + a(λ− λH , γ)

= a(γ − γH , λ− λH) + ah(γH , λH)− a(γH , λH)− 〈γH , T̂ f − T̂hf〉∂P

≤ C ‖γ − γH‖Λ‖λ− λH‖Λ︸ ︷︷ ︸
(I1)

+ (∇(T − Th)λH +∇(T̂ − T̂h)f,A∇TγH)P︸ ︷︷ ︸
(I2)

,
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where we used (2.1)-(2.2) and symmetry of a(·, ·) and ah(·, ·) in the last inequality. The first
term (I1) is bounded using (4.26) and Theorem 4.1 as follows

‖γ − γH‖Λ‖λ− λH‖Λ ≤ C (h+H) ‖e‖0,Ω‖λ− λH‖Λ ≤ C
(
hk+2 +H`+2

)
‖u‖k+2,P ‖e‖0,Ω .

(4.29)

Next, using (4.27)-(4.28), Cauchy-Schwarz inequality and the stability of T and Th in (2.16),
term (I2) reads

(∇(T − Th)λH +∇(T̂ − T̂h)f,A∇TγH)P

≤ (A∇(T − Th)λ+A∇(T̂ − T̂h)f,∇(T − Th)γH)P + (A∇(T − Th)(λH − λ),∇(T − Th)γH)P

≤ C
(
‖∇(T − Th)λ+∇(T̂ − T̂h)f‖0,P + ‖∇(T − Th)(λH − λ)‖0,P

)
‖∇(T − Th)γH‖0,P

≤ C
(
‖∇(T − Th)λ+∇(T̂ − T̂h)f‖0,P + ‖λH − λ‖Λ

)
‖∇(T − Th)γH‖0,P

≤ C
(
‖∇(T − Th)λ+∇(T̂ − T̂h)f‖0,P + ‖λH − λ‖Λ

)(
‖∇(T − Th)(γH − γ)‖0,P + ‖∇(T − Th)γ‖0,P

)
≤ C

(
‖∇(T − Th)λ+∇(T̂ − T̂h)f‖0,P + ‖λH − λ‖Λ

)(
‖γH − γ‖Λ + ‖∇(T − Th)γ‖0,P

)
≤ C

(
‖∇(T − Th)λ+∇(T̂ − T̂h)f‖0,P + ‖λH − λ‖Λ

)(
‖γH − γ‖Λ + ‖∇(T − Th)γ +∇(T̂ − T̂h)e‖0,P

+ ‖∇(T̂ − T̂h)e‖0,P
)
.

Now, (2.15) and (4.24) give

‖∇
(
(T − Th)γ + (T̂ − T̂h)e

)
‖0,P ≤ C h |w|2,P ≤ C h‖e‖0,Ω .(4.30)

In addition, standard Galerkin error estimates over each K ∈P and (4.20) lead to

(4.31) ‖∇(T̂ − T̂h)e‖0,P ≤ C h |T̂ e|2,P ≤ C h ‖e‖0,Ω .

Thus, thanks to (2.15), Theorem 4.1, (4.26), (4.30), and (4.31) we get the following bound for
(I2)

(∇(T − Th)λH +∇(T̂ − T̂h)f,A∇TγH)P ≤ C
(
hk+1 +H`+1

)
‖u‖k+2,P

(
(h+H) ‖e‖0,Ω + h ‖e‖0,Ω

)
≤ C

(
hk+2 +H`+2

)
‖u‖k+2,P ‖e‖0,Ω .

We next bound (II). Using (4.21) and the stability of T and Th given in (2.16), we get

(4.32) ‖(T − Th)(λH − λ)‖0,Ω ≤ C h ‖∇
(
(T − Th)(λH − λ)

)
‖0,P ≤ C h ‖λH − λ‖Λ ,

and similarly using (4.21) we get the bound

‖(T − Th)λ+ (T̂ − T̂h)f‖0,Ω ≤ C h ‖∇((T − Th)λ+ (T̂ − T̂h)f)‖0,P(4.33)

≤ C hk+2 ‖Tλ+ T̂ f‖k+2,P

≤ C hk+2 ‖u‖k+2,P .
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So, (4.32), (4.33), and Theorem 4.1 give

(TλH − ThλH + T̂ f − T̂hf, e)P ≤ ‖TλH − ThλH + T̂ f − T̂hf‖0,Ω‖e‖0,Ω

≤
(
‖(T − Th)(λH − λ)‖0,Ω + ‖(T − Th)λ+ (T̂ − T̂h)f‖0,Ω

)
‖e‖0,Ω

≤ C h
(
‖λH − λ‖Λ + hk+1 ‖u‖k+2,P

)
‖e‖0,Ω

≤ C h
((

H`+1 + hk+1
)
‖u‖k+2,P + hk+1 ‖u‖k+2,P

)
‖e‖0,Ω

≤ C
(
H`+2 + hk+2

)
‖u‖k+2,P ‖e‖0,Ω .

Finally, the desired result (4.22) follows gathering all previous estimates and adding up (I) and
(II). �

In all the results proven so far, the diameter of the elements K ∈P does not need to tend to
zero to obtain optimal order error estimates. On the other hand, in the proof of the last result
the convexity of the elements K was necessary. If the hypothesis of convexity is relaxed a similar
result can be proven, now under the assumption that the elements K do shrink in size, and the
boundness of the Poincaré constant holds in the sense of [34]. This is stated in the next result.

Theorem 4.4. Assume that Ω is convex. Then, there exists C > 0, independent of h, H and
H, such that

(4.34) ‖u− uh‖0,Ω ≤ CH
(
hk+1 +H`+1

)
‖u‖k+2,P .

Proof. First, observe that the convexity of K ∈ P is employed in the proof of Theorem 4.3 to
obtain the estimates (4.31), (4.32) and (4.33). Thereby, we can avoid such an assumption and
still derive a similar estimate by using the following generalised Poincaré inequality (see [34])

‖v‖0,K ≤ CHK ‖∇v‖0,K for all v ∈ H1(K) ∩ L2
0(K) ,(4.35)

where C is independent of HK .
To obtain an analogue of (4.31), we use that T̂ e |K ∈ L2

0(K) and (2.2), and we get the following
bound

‖∇T̂ e‖20,P ≤ C ‖A1/2∇T̂ e‖20,P
= C (A∇T̂ e,∇T̂ e)P

= C (e, T̂ e)P

≤ C
∑
K∈P

‖e‖0,K ‖T̂ e‖0,K

≤ C
∑
K∈P

HK ‖e‖0,K ‖∇T̂ e‖0,K

≤ CH‖e‖0,Ω ‖∇T̂ e‖0,P ,

where we used the generalised Poincaré inequality (4.35), and then

‖∇T̂ e‖0,P ≤ CH‖e‖0,P .

Following analogous steps, we get

‖∇T̂he‖0,P ≤ CH‖e‖0,P ,



THE MULTISCALE HYBRID MIXED METHOD IN GENERAL POLYGONAL MESHES 21

and, thus, from the triangle inequality it holds

(4.36) ‖∇(T̂ − T̂h)e‖0,P ≤ CH‖e‖0,P .

Proceeding in a very similar manner, we derive the following estimates mimicking (4.32) and
(4.33)

(4.37) ‖(T − Th)(λH − λ)‖0,Ω ≤ CH‖λH − λ‖Λ ,

and

(4.38) ‖(T − Th)λ+ (T̂ − T̂h)f‖0,Ω ≤ CH hk+1 ‖u‖k+2,P .

Thus, following otherwise the same steps as in the proof of the last theorem, we arrive that

(∇(T − Th)λH +∇(T̂ − T̂h)f,A∇TγH)P ≤ C
(
hk+1 +H`+1

)
‖u‖k+2,P

(
h+H +H

)
‖e‖0,Ω ,

≤ CH
(
hk+1 +H`+1

)
‖u‖k+2,P ‖e‖0,Ω ,

and

(TλH − ThλH + T̂ f − T̂hf, e)P ≤ CH
(
hk+1 +H`+1

)
‖u‖k+2,P ‖e‖0,Ω .

Thus, reproducing the exact same steps of the proof of Theorem 4.3, we get

‖e‖20,Ω ≤ CH
(
hk+1 +H`+1

)
‖u‖k+2,P ‖e‖0,Ω ,

and the proof is finished dividing by ‖e‖0,Ω. �

Remark 4.3. We finish this section by summarizing in Table 1 the approximation error for the
primal (u) and dual (σ) variables in the L2(Ω), V , and H(div,Th) norms, when convex and
non-convex elements are used.

Convex K Non-Convex K
k ≥ 0 ‖ · ‖0,Ω ‖ · ‖V ‖ · ‖div,Th

‖ · ‖0,Ω ‖ · ‖V ‖ · ‖div,Th

Pk(F )× Pk+1(T) Hk+2 Hk+1 Hk HHk+1 Hk+1 Hk

Pk+1(F )× Pk+1(T) hk+2 +Hk+3 hk+1 +Hk+2 hk +Hk+1 H(hk+1 +Hk+2) hk+1 +Hk+2 hk +Hk+1

Table 1. Error estimates in the L2(Ω), V and H(div,Th) norms for a partition
P built up on convex and non-convex elements K ∈P.

In view of Table 1, special attention on sub-mesh refinement must be made in the Pk+1(F )×
Pk+1(T) case so as not to “pollute” first-level convergences. Also, observe that rates are similar
to the ones reported in [10, Table 1]. Interestingly, in the present approach there is no need to
post-process the variables, nor to add additional stabilising terms to the formulation in order to
prove these orders of convergence.
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5. Numerical validation

In this section we present two sets of numerical experiments illustrating the performance of
the MHM method proposed in this work. The goal of the first one is to check the results given by
the error analysis using a smooth analytical solution, while the second test case aims at showing
the robustness of the method when applied to a problem with a highly contrasting coefficient.

Since for most of the results the diameter of the elements K ∈P does not need to decrease
in order to have a converging method, we shall distinguish two kinds of convergences, namely,

• H → 0: the mesh-based convergence;
• H → 0 with H fixed: the space-based convergence.

Second-level meshes are made of triangles that respect the requirement for the well-posedness
of the MHM method. Their diameter h tends to zero in both mesh-based and space-based
convergence validations.

5.1. An analytical smooth solution. We take Ω to be the unit square and set the coefficient
A as the identity matrix. We prescribe homogeneous Dirichlet boundary conditions and the
right-hand side in such a way that the exact solution of (1.1) is given by

u(x, y) = sin(2πx) sin(2πy) .

We validate the error estimates using two distinct meshes, namely, conforming quadrilateral
meshes and meshes where the elements are L-shaped. We first study the performance of the
pair Pk(F )× Pk+1(T) with k ∈ {0, 1, 2, 3}. For the mesh-based convergence we use H = H, this
is, we consider F = E and do not divide the edges of the partitions any further (the sub-element
meshes are the minimal triangulations allowed by the stability results presented in Section 3).
The results for quadrilateral elements and k = 0 and k = 3 are depicted in Figure 2, where we
can observe that all the errors tend to zero as predicted by the results in Section 4.
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Figure 2. The mesh-based convergence history on quadrilateral elements for
k = 0 (left) and k = 3 (right).

The same test, still using quadrilateral meshes, is repeated for k = 1 and k = 2 in Figure 3.
In that figure we also report the results obtained for the space-based strategy. For this we fix
the coarse mesh to have 16 squares and then the edges get refined in a structured way, with the
implied refinement in the subelement-meshes T K

h . Interestingly, Figure 3 shows an (unexpected)

extra O(H1/2) in the convergence rate when the space-based approach is adopted. In fact, we
observe a gain of one order of magnitute in accuracy between the space-based and mesh-based
strategies. Other numerical experiments show the same behavior, but the proof of this fact
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is lacking. We next perform the same study with non-convex L-shaped element meshes using
k = 2.
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Figure 3. Comparison between mesh-based and space-based convergences on
quadrilateral elements for k = 1 (left) and k = 2 (right) in the L2 and V norms.

Figure 4 shows the isolines of the primal and dual variables for the L-shaped case. As predicted
by the theory, all the errors tend to zero with optimal rates for the mesh-based strategy. The

errors for the space-based strategy tend to zero with a H
1
2 extra rate (see Figure 5, left), which

is especially noticeable when the results are depicted with respect to the degrees of freedom, as
done in the right-hand side of Figure 5.

Figure 4. Sequence of two refined L-shaped meshes and isolines of uh (left) and
|σh| (right).
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Figure 5. Comparison between mesh-based and space-based convergences on
L-shaped elements for k = 2 in the L2 and V norms with respect to H (left) and
the DoF (right).
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Figure 6. Comparison between mesh-based and space-based convergences on
quadrangular (left) and L-shaped elements (right) using the Pk+1(F )× Pk+1(T)
element with k = 1 in the L2(Ω) and H1(P) norms.

Now, we address the case Pk+1(F )× Pk+1(T) with k = 1, again using both quadrilateral and
L-shaped meshes. The results are depicted in Figure 6 where, again, we can observe that the
errors tend to zero with rates according to the results in Section 4. In particular, the error for
uh in the H1(P)-norm tends to zero as H3 while the error in the L2(Ω)-norm shows an H4

convergence rate. Also, once again, the space-based approach shows a faster convergence rate
than the mesh-based one. More precisely, the errors ‖u− uh‖1,P and ‖u− uh‖0,Ω tend to zero

with rates given by H
7
2 and H

9
2 , respectively. According to the theory presented in the last

section, the convergence order is related to hk+1 +H`+1. So, in order to obtain the convergence
orders reported in the present results, h needs to be small enough with respect to H.

5.2. Heterogeneous media cases. The domain corresponds to a unit square with 3 × 3 or
9×9 square inclusions in which the diffusion has different values. In Figure 7 we depict the case
with 3 inclusions in each direction. The diffusion matrix is given by A = κ I with κ = 1 in the
blue region and κ = 105 in the green one, where I stands for the identity matrix. Homogeneous
Dirichlet conditions are prescribed in the whole boundary, and f = 1 in Ω.
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rin

rex

L

Figure 7. Sketch of the heterogeneous diffusive media with 3 × 3 inclusions.
Here rin = 1

32 , rex = 1
16 , L = 1

3 , and the diffusive coefficient is κ = 1 (blue) and

κ = 105 (green).

Since the analytical solution is not known, we have computed a reference solution on a highly
refined grid containing 524, 288 triangular elements, and the approximate solution is computed
using quadratic elements (the global linear system has approximately one million degrees of
freedom). For the MHM method we have partitioned the domain using a mesh of 32 L-shaped
elements and have used the P1(F ) × P2(T) element. The linear system solved by the MHM
method has 624 unknowns, while each basis function has been computed solving an off-line local
problem on a sub-element mesh of approximately 3, 000 triangular elements. In Figure 8 we
depict a basis function resulting from this process, where we can observe the influence of the
physical coefficient on the shape of the function. It is interesting to notice that the elements do
not follow the jump in the diffusion coefficient.

Figure 8. A multiscale basis function associated with a degree of freedom (black
dot) on a L-shaped mesh with the P1(F ) × P2(T) element. We observe the
influence of the high-contrast coefficients on the basis function.

For further comparison, we also compare the MHM solution to the solution of the Galerkin
method in a mesh containing 512 quadratic elements (3, 283 degrees of freedom). In the case
in which there are 3 inclusions in each direction, we see in Figure 9 that the MHM’s solution
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reproduces the reference solution very accurately while the Galerkin method fails to do so. This
is especially noticeable in the cross-sections shown in Figure 9.

Figure 9. The 3 × 3 inclusion test case: Comparison between the reference
solution (top left) and the Galerkin’s solution on a conforming triangular mesh
with DoF = 3, 283 (top right) and the MHM’s solution (bottom left) on a non-
conforming L-shaped mesh with DoF = 624. Cross sections at x = 0.25 and
x = 0.5 (bottom right) are shown illustrating the lack of accuracy of the Galerkin
method compared to the MHM solution.

Figure 10. The 9 × 9 inclusions test case. Elevation of the reference solution
(left) and the MHM’s solution obtained on a 32 L-shaped element mesh (right)
with DoF = 624.



THE MULTISCALE HYBRID MIXED METHOD IN GENERAL POLYGONAL MESHES 27

Figure 11. The 9 × 9 inclusion test case: Comparison between the reference
solution (top left) and the Galerkin solution on a conform triangular mesh with
DoF = 3, 283 (top right), and the MHM solution (bottom left) on a non-
conforming L-shaped mesh with DoF = 624. Cross sections at x = 0.25 and
x = 0.5 (bottom right) show that the MHM method improves the accuracy when
compared to the Galerkin method with polynomial basis functions.

We next address the case in which there are 9 inclusions in each direction. In Figure 10
we depict elevations of the reference and MHM solutions. We can observe that the use of the
multiscale functions makes it possible to give an accurate approximation of the reference solution
using a small number of degrees of freedom on the online phase. A finer comparison is shown in
Figure 11 where isolines of the solution (along with the computation mesh for the Galerkin and
MHM methods), and cross sections are depicted. We can observe, once again, the gain obtained
when using multiscale functions, when compared to the standard Galerkin method.

6. Conclusion

In this work we have extended the MHM method to general polygonal meshes. Stability and
optimal convergence has been proven even when the polynomial degree used to approximate the
fluxes is the same as the one used to approximate the primal variable, and when the discrete
space for the Lagrange multiplier is formed by discontinuous polynomials. Two converging
scenarios appear. In the mesh-based approach, the polygonal mesh gets refined while keeping
the same sub-partitions of the skeleton, and of the elements. Meanwhile, in the space-based
approach the coarse mesh is fixed at the beginning of the calculation while the sub-partitions
of the skeleton and the sub-element meshes get refined. Our numerical experiments show that
the latter approach leads to a faster convergence than the former. A formal proof of this fact
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is lacking, but this helps to understand the reasons why the method, supplied with an edge
refinement strategy, has given satisfactory results in the past (see, e.g., [25]).

The numerical results show a very robust behaviour of the method, even in a case with high
contrast. On the other hand, a more refined error analysis of this situation is needed, along with
the full error analysis for the three-dimensional case. Also, more intensive, three-dimensional
numerical validation is needed, including the possibility of using elements that are not simply
connected (possibility allowed by the theory, but that we have not tested so far). This last
case would be very attractive to treat cases such as PDEs posed on perforated, non-periodic,
domains. These issues will be the subject of future research.

Appendix

Lemma 6.1. Let k ≥ 0, and let us define the following space

X =
{
q ∈ H1

0 (0, 1) : q|(0,0.5) ∈ Pk+1 (0, 0.5) and q|(0.5,1) ∈ Pk+1 (0.5, 1)
}
.

Then, if µ satisfies

(6.1) µ ∈ Pk(0, 1) and

∫ 1

0
µ(x)q(x)dx = 0 for all q ∈ X ,

then µ = 0 in [0, 1].

Proof. The case k = 0 will be treated first. For k = 0 let

q(x) =

{
x if x ≤ 0.5
1− x if x > 0.5

.

Then, q ∈ X . Thus, if µ ∈ R \ {0}, then∫ 1

0
µq(x)dx = µ

∫ 1

0
q(x)dx =

µ

4
6= 0 ,

which contradicts the hypothesis.
Now, let k ≥ 1, and let µ ∈ Pk(0, 1) satisfying (6.1). Let q1, q2 ∈ X be defined by

(6.2) q1(x) =

{
x(0.5− x) if x ≤ 0.5
0 if x > 0.5

, q2(x) =

{
0 if x ≤ 0.5
(x− 0.5)(1− x) if x > 0.5

.

Since

(6.3)

∫ 1

0
µ(x)q1(x)dx =

∫ 0.5

0
µ(x)x(0.5− x) dx = 0 ,

and q1(x) ≥ 0 in (0, 0.5), then µ changes sign in (0, 0.5), which implies that µ has at least one
root x1 ∈ (0, 0.5). Analogously, since

(6.4)

∫ 1

0
µ(x)q2(x)dx =

∫ 1

0.5
µ(x)(x− 0.5)(1− x) dx = 0 ,

then µ has also a root x2 ∈ (0.5, 1). So, if k = 1, then µ ∈ P1(0, 1) has two roots in (0, 1), and
thus it needs to be identically zero. If k ≥ 2, we define the following functions in X :

(6.5) q3(x) = q1(x)(x− x1) and q4(x) = q2(x)(x− x2) .

If µ does not have any other root in (0, 0.5), then, since µ and q3 change signs at the exact same
points in (0, 0.5), then

(6.6)

∫ 1

0
µ(x)q3(x)dx =

∫ 0.5

0
µ(x)q3(x) dx 6= 0 ,
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which contradicts (6.1). In an analogous way, using the function q4, we deduce the existence of
a fourth root x4 ∈ (0.5, 1). If k = 3, then µ is a quadratic polynomial with four distinct roots
in (0, 1), and then it needs to be identically zero.

For k ≥ 3, following completely analogous steps to the ones just described, we deduce that
µ needs to vanish at, at least, 2(k + 1) − 2 different points in (0, 1), which, for a polynomial
µ ∈ Pk(0, 1), is impossible unless µ = 0. This finishes the proof.

�

The following result extends the previous result to the Pk+1(F )× Pk+1(T) case.

Lemma 6.2. Let k ≥ 0. Then, if µ satisfies

(6.7) µ ∈ Pk+1(0, 1) and

∫ 1

0
µ(x)q(x) dx = 0 for all q ∈ X ,

then µ = 0 in [0, 1], where the space X is defined as:

• For k = 0:

X =
{
q ∈ H1

0 (0, 1) : the restriction of q to (0, 1/4), (1/4, 1/2), (1/2, 3/4), and (3/4, 1) belongs to P1

}
.

• For k = 1:

X =
{
q ∈ H1

0 (0, 1) : the restriction of q to (0, 1/3), (1/3, 2/3), and (2/3, 1) belongs to P2

}
.

• For k ≥ 2:

X =
{
q ∈ H1

0 (0, 1) : q|(0,0.5) ∈ Pk+1 (0, 0.5) and q|(0.5,1) ∈ Pk+1 (0.5, 1)
}
.

Proof. We split the proof in the three cases described above:
k = 0: Let µ ∈ P1(0, 1) satisfying (6.1), and let `1, `2 ∈ X be defined as follows:

(6.8) `1(x) =

 x if x ≤ 0.25
0.25− x if 0.25 ≤ x ≤ 0.5
0 if 0.5 ≤ x

, `2(x) =

 0 if x ≤ 0.5
x− 0.5 if 0.5 ≤ x ≤ 0.75
1− x if 0.75 ≤ x

.

Since µ satisfies (6.1) then

(6.9)

∫ 1

0
µ(x)`1(x) dx =

∫ 0.5

0
µ(x)`1(x) dx = 0 ,

which implies that µ has a root in (0, 0.5) since `1 is positive in that interval. Analogously, since

(6.10)

∫ 1

0
µ(x)`2(x) dx =

∫ 1

0.5
µ(x)`2(x) dx = 0 ,

and `2 is positive in (0.5, 1), we deduce that µ has a root also in (0.5, 1). Since µ ∈ P1(0, 1) and
has two different roots in (0, 1), then it is identically zero.
k = 1 : Let µ ∈ P2(0, 1) satisfying (6.1), and let `3, `4, `5 ∈ X be defined as follows:

`3(x) =

{
x(1/3− x) if x ≤ 1/3
0 if 1/3 ≤ x , `4(x) =

{
(x− 1/3)(2/3− x) if 1/3 ≤ x ≤ 2/3
0 else

`5(x) =

{
0 if x ≤ 2/3
(x− 2/3)(1− x) if 2/3 ≤ x .

Since µ satisfies (6.1) then

(6.11)

∫ 1

0
µ(x)`3(x) dx =

∫ 1/3

0
µ(x)x(1/3− x) dx = 0 ,
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which, due to the positivity of `3 implies the existence of x1 ∈ (0, 1/3) such that µ(x1) = 0. In
a completely analogous way, we deduce there exist x2 ∈ (1/3, 2/3) and x3 ∈ (2/3, 1) such that
µ(x2) = µ(x3) = 0. Thus, µ must necessarily vanish.
k ≥ 2 : From the proof of Lemma 6.1, any function µ that satisfies (6.7) has at least 2k different
roots in (0, 1). Now, for k ≥ 2, 2k ≥ k + 2, and thus, if µ ∈ Pk+1(0, 1) satisfies (6.7) it will
vanish at at least k + 2 different points in (0, 1), which implies that µ is identically zero. This
finishes the proof. �
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Mathématique, 7(3):33–75, 1973.

[14] O. Duran, P. R. B Devloo, A.T.A. Gomes, and F. Valentin. A multiscale hybrid method for Darcy’s problems
using mixed finite element local solvers. Technical Report HAL-01868853, INRIA, 2018.

[15] W. E and B. Engquist. The heterogeneous multi-scale methods. Comm. Math. Sci., 1:87–133, 2003.
[16] Y.R. Efendiev, T.Y. Hou, and X.H. Wu. Convergence of a nonconforming multiscale finite element method.

SIAM J. Numer. Anal., 37(3):888–910 (electronic), 2000.
[17] A. Ern and J.-L. Guermond. Theory and practice of finite elements, volume 159 of Applied Mathematical

Sciences. Springer-Verlag, New York, 2004.
[18] A. Ern and D. D. A. Pietro. Arbitrary-order mixed methods for heterogeneous anisotropic di usion on general

meshes. to appear in IMA (DOI: 10.1093/imanum/drw003), 2016.



THE MULTISCALE HYBRID MIXED METHOD IN GENERAL POLYGONAL MESHES 31

[19] C. Farhat, I. Harari, and L. P. Franca. The discontinuous enrichment method. Comput. Methods Appl. Mech.
Engrg., 190(48):6455–6479, 2001.

[20] C. Farhat, J. Mandel, and F.-X. Roux. Optimal convergence properties of the feti domain decomposition
method. Comm. Numer. Methods Engrg., 115:365–385, 1994.

[21] M. J. Gander, C. Japhet, Y. Maday, and F. Nataf. A new cement to glue nonconforming grids with Robin
interface conditions: the finite element case. In Domain decomposition methods in science and engineering,
volume 40 of Lect. Notes Comput. Sci. Eng., pages 259–266. Springer, Berlin, 2005.

[22] P. Grisvard. Elliptic Problems in Non-Smooth Domains. Pitman Publishing, 1985.
[23] C. Harder, A.L. Madureira, and F. Valentin. A hybrid-mixed method for elasticity. ESAIM: Math. Model.

Num. Anal., 50(2):311–336, 2016.
[24] C. Harder, D. Paredes, and F. Valentin. A family of multiscale hybrid-mixed finite element methods for the

Darcy equation with rough coefficients. J. Comput. Phys., 245:107–130, 2013.
[25] C. Harder, D. Paredes, and F. Valentin. On a multiscale hybrid-mixed method for advective-reactive domi-

nated problems with heterogenous coefficients. SIAM Multiscale Model. and Simul., 13(2):491–518, 2015.
[26] C. Harder and F. Valentin. Foundations of the MHM method. In G. R. Barrenechea, F. Brezzi, A. Cangiani,

and E. H. Georgoulis, editors, Building Bridges: Connections and Challenges in Modern Approaches to
Numerical Partial Differential Equations, Lecture Notes in Computational Science and Engineering. Springer,
2016.

[27] T. Y. Hou, X. Wu, and Z. Cai. Convergence of a multiscale finite element method for elliptic problems with
rapidly oscillating coefficients. Math. Comp., 68(227):913–943, 1999.

[28] T. J. R. Hughes. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid
scale models, bubbles and the origin of stabilized methods. 127:387–401, 1995.

[29] S. Lanteri, D. Paredes, C. Scheid, and F. Valentin. The multiscale hybrid-mixed method for the Maxwell
equations in heterogeneous media. SIAM Multiscale Model. Simul., 16(4):1648–1683, 2018.

[30] A. Malqvist and D. Peterseim. Localization of elliptic multiscale problems. Math. Comp., 83(290):2583–2603,
2014.

[31] D. Paredes, F. Valentin, and H. M. Versieux. On the robustness of multiscale hybrid-mixed methods. Math.
Comp., 86(304):525–548, 2017.

[32] P.A. Raviart and J.M. Thomas. Primal hybrid finite element methods for 2nd order elliptic equations. Math.
Comp., 31(138):391–413, 1977.

[33] G. Sangalli. Capturing small scales in elliptic problems using a Residual-Free Bubbles finite element method.
SIAM Multiscale Model. Simul., 1(3):485–503, 2003.
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