Evaluating Explanations by Cognitive Value

Abstract : The transparent AI initiative has ignited several academic and industrial endeavors and produced some impressive technologies and results thus far. Many state-of-the-art methods provide explanations that mostly target the needs of AI engineers. However, there is very little work on providing explanations that support the needs of business owners, software developers, and consumers who all play significant roles in the service development and use cycle. By considering the overall context in which an explanation is presented, including the role played by the human-in-the-loop, we can hope to craft effective explanations. In this paper, we introduce the notion of the “cognitive value” of an explanation and describe its role in providing effective explanations within a given context. Specifically, we consider the scenario of a business owner seeking to improve sales of their product, and compare explanations provided by some existing interpretable machine learning algorithms (random forests, scalable Bayesian Rules, causal models) in terms of the cognitive value they offer to the business owner. We hope that our work will foster future research in the field of transparent AI to incorporate the cognitive value of explanations in crafting and evaluating explanations.
Complete list of metadatas

Cited literature [42 references]  Display  Hide  Download

https://hal.inria.fr/hal-02060044
Contributor : Hal Ifip <>
Submitted on : Thursday, March 7, 2019 - 10:36:36 AM
Last modification on : Friday, March 8, 2019 - 1:23:51 AM
Long-term archiving on : Monday, June 10, 2019 - 3:11:02 PM

File

 Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed until : 2021-01-01

Please log in to resquest access to the document

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Citation

Ajay Chander, Ramya Srinivasan. Evaluating Explanations by Cognitive Value. 2nd International Cross-Domain Conference for Machine Learning and Knowledge Extraction (CD-MAKE), Aug 2018, Hamburg, Germany. pp.314-328, ⟨10.1007/978-3-319-99740-7_23⟩. ⟨hal-02060044⟩

Share

Metrics

Record views

57