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Abstract. Reliability measures the ability of a system to provide its
intended level of service. It is influenced by many factors throughout a
system lifecycle. A detailed understanding of their impact often remains
elusive since these factors cannot be studied independently. Formulating
reliability studies as a Bayesian regression problem allows to simultane-
ously assess their impact and to identify a predictive model of reliability
metrics.
The proposed method is applied to currently operational particle acceler-
ator equipment at CERN. Relevant metrics were gathered by combining
data from various organizational databases. To obtain predictive models,
different supervised machine learning algorithms were applied and com-
pared in terms of their prediction error and reliability. Results show that
the identified models accurately predict the mean-time-between-failure
of devices – an important reliability metric for repairable systems - and
reveal factors which lead to increased dependability. These results pro-
vide valuable inputs for early development stages of highly dependable
equipment for future particle accelerators.

Keywords: Reliability Prediction · System Lifecycle · Bayesian Learn-
ing.

1 Introduction

Reliability measures the ability of a system to perform as expected during its
intended lifetime. The field-reliability of complex repairable systems is a result of
all actions during all stages of its system lifecycle. These stages are (1) conceptual
design, (2) detailed design and testing, (3) manufacturing, (4) installation, (5)
operation and maintenance, and (6) phase-out and disposal. At each stage an
interplay of complex technical, organizational, and human processes leads to a
more or less desirable outcome in terms of system reliability.
An assessment of all stages and processes is not feasible, since models capturing
the interactions between all relevant processes in system development do not
exist. Therefore, most common reliability methods focus on certain stages and
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aspects during a system lifecycle, which can be modeled and understood - we
provide an overview in section 2. However, such methods struggle to quantify the
overall uncertainty of reliability predictions in a systematic way since relevant
contributions during a system lifecycle might have been disregarded and are not
straight-forward to include.
Instead of focusing on models for certain stages and aspects of a system we
propose to learn a statistical model of the whole product lifecycle to predict the
observed field-reliability with machine learning techniques as depicted in figure
1. For a set of existing comparable systems with known field-reliability so-called
quantitative reliability indicators are gathered. Using the reliability indicators as
input variables and the field-reliability metric as target variables, a statistical
reliability model is learned by a supervised machine learning algorithm.
The learned model will always be an approximation of the true underlying system
lifecycle processes. The lost accuracy due to the statistical model and the limited
granularity of the reliability indicators can be quantified by Bayesian methods.
Thereby, the overall predictive certainty can be quantified in an efficient way
based on the available data.

1) Conceptual 
Design

2) Detailed 
Design and 

Testing

3) 
Manufacturing

4) Installation
5) Operation 

and 
Maintenance

a) Quantitiative

Reliability Indicators
b) ML model c) Field Reliability

Fig. 1. Illustration of the proposed approach. The achieved field-reliability (c) can be
seen as the result of relevant processes during the whole product lifecycle (1-5). It is
not feasible to capture and model all of the relevant processes. Instead, it is proposed to
learn a reduced-order statistical lifecycle model (b) with machine-learning algorithms
based on quantitative reliability indicators (a).

We demonstrate that the learned models accurately predict reliability met-
rics even with a limited set of reliability indicators (as is the case at early stages
of a system’s lifecycle). Compared to traditional reliability assessment methods,
this leads to a reduced workload for reliability predictions and to a systematic
quantification of uncertainties. Furthermore by an appropriate choice of relia-
bility indicators and machine learning algorithms one can study the influence of
each individual reliability indicator. This information assists engineers in design
decisions for highly reliable systems.
The rest of the paper is structured as follows: In section 2, we present related
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methods to reliability predictions. In section 3, we explain the methodology of
our approach and in section 4 we apply it to a use-case.

2 Literature Review

A general review of the challenges in reliability studies is given in [23]. The author
of [23] concludes that the two major challenges in reliability studies are complex-
ity and uncertainty. Reliability studies must consider technical, organizational
and human factors each of which influences the field-reliability of systems. In the
following paragraph a selection of reliability prediction methods to tackle these
problems is given.

Reliability Engineering Methods Scientific literature on reliability engineering
prediction methods of electronic systems is numerous. An attempt to classify
and evaluate the existing methods is given in the IEEE standard 1413 [19, 6]
and its successors. In this standard they have been classified as based on

– handbooks,
– stress and damage models (often referred to as physics-of-failure based), and
– field-data.

Most methods are based on early designs of the considered system and the se-
lected components.
A common criticism for handbook based models is that they do not consider
interactions of components but only single-component faults. However, faults
due to single-component failures are not dominant [18, 5, 7, 1, 14]. As a result
the actual field-reliabilities can deviate from the predicted ones by orders of
magnitude [12]. The author of [5] argues that some methods should not be used
to predict the field-reliabilities but rather as part of a review process at a stage
when limited information on the final design is available.
Stress- and damage models are in general more accurate than handbook-based
methods. However, the development of such methods requires more effort [18].
Instead of assessing the system on the component level, some approaches use
a top-down approach in which the field-reliability of new systems is estimated
from field-data of similar systems in operation [9, 11].

Reliability Program Assessment A different approach to evaluate the field-reliability
of systems is taken in [16]. The likelihood of achieving the required field-reliability
is estimated by a review of the design processes. Each system is assigned a score
depending on its design processes and it is shown that this score correlates with
the probability of fulfilling field-reliability requirements. Thereby organizational
aspects of reliability are taken into account.
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Organizational and Human Reliability Analysis In the review article [23] section
3.1.3 is dedicated to non-technical factors in reliability studies since its contri-
bution to the field-reliability can be significant.

In our work we propose to infer the most relevant processes or factors in a
system lifecycle from the field-reliability data of a set of systems. This includes
organizational and human reliability factors. The method can be applied at any
stage of a system lifecycle to guide engineering decisions.

3 Methodology

In this section we define the relevant terms, explain the methods used and de-
scribe the general methodology.

3.1 Definitions

System Reliability It is generally defined as the ability of a system to provide its
intended level of services for a specified time t. For a constant failure rate and
repairable systems, it is usually measured as availability A, which is defined by

A =
MTBF

MTBF +MTTR
(1)

with MTBF being the mean-time-between-failure and MTTR being the mean-
time-to-repair. The MTBF is being calculated as

MTBF =
toperation
nfaults

(2)

with toperation being the cumulative operational time of the considered devices
and nfaults being the total number of faults within the operational time. The
MTTR can be evaluated by

MTTR =
tinrepair
nfaults

(3)

with tinrepair being the total time a system is in repair and nfaults the total
number of faults during the operational time. The un-availability UA is given by
UA = 1−A.

System Lifecycle It is the overall process describing the lifetime of a system. It
is a concept from systems engineering to address all stages of a product from its
beginning to end. Here these stages shall be divided into (1) conceptual design,
(2) detailed design and testing, (3) manufacturing, (4) installation, (5) operation
and maintenance, (6) and phase-out and disposal.3

3 Depending on the system under study the definitions of the stages may change. The
proposed methodology is not restricted to this specific choice of stages.
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System Definition This discussion is focused on repairable electronic systems. A
more precise definition will be given for the use-case in section 4. 4

3.2 Method

The central assumption is that the observed field-reliability is the outcome of
all technical, organizational and human processes during all stages of a system’s
lifecycle. It is unfeasible to model all these interactions due to their complexity
and non-linearity. Therefore, we restrict ourselves to learning statistical mod-
els of the observed field-reliability of comparable systems based on reliability
indicators collected throughout the system lifecycle. Modern machine learning
algorithms are capable of learning accurate predictive models of field-reliability
based on the relevant reliability indicators. The loss of information due to the
limited availability of data and the intrinsic uncertainty of the problem can be
assessed by using Bayesian machine learning methods.

Lifecycle Analysis by Machine Learning To arrive at a firm mathematical
description of the proposed method, let us hypothesize the existence of a deter-
ministic model F : Z 7→ Y to determine any field-reliability metric Y ∈ Y from
all relevant input variables Z ∈ Z in the form of

Y = F(Z). (4)

This would be a model to quantify the contribution of all relevant processes
towards the field-reliability during the whole system lifecycle. Since it is not
possible to derive such a formula or to gather all relevant inputs, we try to
approximate the true field-reliability metrics Y by a reduced model

Y ≈ y = f(x), (5)

with x ∈ X , dim(X ) � dim(Z) being the set of collected reliability indicators
and f : x 7→ y,y ∈ Y being an approximate model. When supplied with pairs of
input and output data D = {(x1,Y1), ..., (xN,YN)}, a statistical learning algo-
rithm can learn such a model by minimizing a certain loss function l : Y×Y 7→ R.
This is essentially a regression problem which can be studied with a vast range
of learning algorithms.

There are three additional requirements, which render algorithms fitter for
the intended purpose. Firstly, to quantify the uncertainty of the predictions of
the reliability metrics, probabilistic models shall be learned

p(Y|x). (6)

4 There is no implicit restriction for the proposed method to electronic repairable
systems. It can also be used for non-repairable systems and for mechanic, electric,
electronic, or software systems. However, the definitions of the fault metrics must be
adapted.
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Our method is based on an arbitrary non-linear mapping from reliability indi-
cators to features Φ : X 7→ Rn. Since it is of interest which features are relevant,
secondly, algorithms of parametric form will yield that additional information,

p(Y|w · Φ(x)), (7)

with w ∈ Rn being a weight vector indicating the relevance of each feature.
Thirdly, methods learning sparse models based on fewer features are preferred
from a practical point of view, since they require a reduced data collection effort
for predicting field-reliability. A general justification of such methods on philo-
sophical grounds is given by Occam’s razor [8].
We present concrete algorithms fulfilling these criteria in section 4. Even though
the outlined requirements are not mandatory, they facilitate the data collection
and model assessment process by providing additional feedback.

Data Collection, Model Selection and Reliability Prediction The col-
lection of data and the training and selection of a model should be seen as an
integrated process. The problem domain and a-priori available expert knowledge
allows to draw guidelines for the data collection. We present these guidelines in
the paragraphs below. After that, we show how to learn a predictive model with
the collected data and how further refinements of the data collection are assisted
by properly selected learning algorithms.

Collection of Training Systems Since the method is based on the field-reliability
of existing comparable systems, the choice of the collected systems will have
an influence on the accuracy of the predictions for future systems. Two general
recommendations can be given for this selection:

– Only systems which have been in use for a significant exploitation period
with accurately monitored reliability metrics shall be used.

– The choice of systems for which a field-reliability model is learned shall in-
clude systems which are comparable to the system for which a field-reliability
shall be predicted. In reliability studies, comparable systems are similar in
terms of technical, organizational, and human factors throughout their life-
cycle.

Collection of Reliability Indicators The choice of these indicators largely influ-
ences the quality of the models in terms of their accuracy and interpretability.
The following statements can be made:

– Based on expert knowledge, recommendations can be given for indicators
which carry important reliability information; e.g. operational conditions
such as load, temperature or humidity can contribute significantly to the
failure rate. Systems, which are mass-produced, will achieve different field-
reliabilities than prototypes. Different organizational structures or project
management strategies influence the reliability of a final system. [17, 22].
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– In engineering practice the collection of data is facing practical limitations
due to time or other restrictions. Therefore, a natural choice is to begin
to collect the indicators based on a trade-off between collection effort and
expected information content. For the use-case in section 4, we show that ac-
curate predictions can be obtained from a very limited set of meta-variables
as reliability indicators. Furthermore, one always needs to consider the avail-
ability of the indicators for the systems in the data-set.5

Collection of System Reliability Metrics The choice of reliability metrics is usu-
ally given by the system under study. For our choice of system and assuming a
constant failure rate,6 these are given by MTBF and MTTR. Based on these
other metrics can be derived.

Model Selection and Validation Using the collected data, one is able to compile
a data-set D = {(x1,Y1), ..., (xN,YN)} for which xi and Yi are the collected
reliability indicators and the field-reliability metrics for system i, respectively.
A reliability model shall be learned with this data-set. We use a general model
selection and assessment approach as is e.g. discussed in chapter 7 of [10] with
minor modifications due to the particularities of the problem setting.
The first step is to split the data-set into a training data-set Dtrain and a test
data-set Dtest. This splitting is not performed arbitrarily. Instead the training
data-set shall contain systems with an age higher than a certain threshold age as
and the test data-set shall exclusively contain systems younger than the thresh-
old age. Thereby, we test the approach for its applicability to future systems.
For the model selection and assessment the training data-set will be used exclu-
sively.7 With a five-fold cross-validation method we compare different learning
algorithms in terms of their applicability to the problem setting and their pre-
diction errors. For algorithms which additionally require the tuning of hyperpa-
rameters, we used so-called nested cross-validation in which the hyperparameters
are optimized in a five-fold inner cross-validated grid-search nested within each
of the five outer cross-validation folds [4]. The expected mean and variance of
the cross-validation error ErrCV is reported for each of the evaluated models.
It serves as an estimate for the expected generalization error [10].
The confidence of the predictions and the relevance of the selected reliability
indicators can be studied with a learning algorithm which satisfies equations 6
and 7. Investigating the identified model parameters and predictions obtained by
such an algorithm for one or several cross-validation folds gives this additional
information. The confidence or uncertainty of the predictions provides feedback

5 If availability indicators are unavailable for some of the selected systems, supervised
learning techniques for incomplete data-sets can be employed.

6 This assumption can be relaxed by e.g. predicting a parameterized failure rate dis-
tribution over time. Then, instead of MTBF and MTTR the reliability metrics are
the parameters of the distribution. This requires a different data collection and can
be considered for future work.

7 Using the test data-set would lead to an over-fitting of the models and an underes-
timation of the generalization error.
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on the amount and quality of the collected data. The weight vector w indicates
the relevance of the features and the reliability indicators. Depending on the
complexity of the mapping Φ : X 7→ Rn from the reliability indicators to the
features we can identify the most important reliability indicators. Using this in-
formation and expert knowledge, we can refine our data-set (choice of systems
and reliability indicators) and feature mapping Φ to obtain more precise models.
This idea is illustrated in figure 3.2

(1) Set of 
systems

(2) Reliability 
indicators for 
the systems

(3) Feature 
mapping

(4) Model 
selection and 

evaluation

(b) Reliability indicator weights

(a) Expected prediction error

(c) Predictive uncertainty

Fig. 2. Illustration of the iterative data collection and reliability prediction process.
The choice of (1) systems, (2) reliability indicators and (3) feature mappings influences
the quality of the predictive model (4). The learning algorithm provides feed-back in the
form of an expected prediction error (a), relevance weights for the reliability indicators
(b) and uncertainty bounds for the field-reliability predictions (c).

Obtaining Reliability Predictions Once satisfying models in terms of their pre-
dictive errors and interpretability are found with the procedure described above,
they are tested with the full data-set. Since the data-set is split by the age of the
systems, this testing simulates a prediction scenario - we identify a model based
on data of systems in the past and evaluate its applicability to future systems.
The predictive models are now trained with the whole training data-set.8 Based
on the input values of the test data-set xtest the models can predict the expected
field-reliability ytest. As the prediction is simulated, we know the observed field-
reliabilities Ytest and can compare these to the predicted ones to obtain the test
error Errtest.

9 When the test error is of the order of the expected generalization
error ErrCV obtained during model selection and validation one can conclude
that the model is capable of predicting the field-reliability for new systems.
The overall data collection, model selection and reliability prediction process is

8 Again, hyperparameters are optimized by a cross-validated grid search over a hyper-
parameter grid.

9 We note that in a realistic application scenario the true observed field-reliabilities
are not available. However, the available data can always be split by system age to
test the generalizability of the identified models to newer systems.
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summarized in the pseudo-algorithm below. The use-case in section 4 follows the
presented procedure closely.

Pseudoalgorithm illustrating the overall model selection and reliability predic-
tion process:

1. D = {(x1,Y1), ..., (xN,YN)} ← Initial data collection.
2. Sort D by system age.
3. Split D in Dtrain and Dtest with atest < as ≤ atrain.
4. While satisfying predictive model has not been found do:
(a) Shuffle Dtrain randomly.
(b) Evaluate ErrCV by (nested) CV.
(c) Evaluate parameter weights w and predictive uncertainty

for one fold.
(d) If Model has large ErrCV or predictive uncertainty then

– Change set of systems, reliability indicators, or feature
mapping.

(e) Else jump to 5.
5. Train predictive model with Dtrain.
6. Evaluate Errtest and compare with ErrCV .
7. Evaluate parameter weights w and predictive distributions.

4 Use-Case

This section describes how the proposed method was used to learn a model
for the expected field-reliability of accelerator power converters. The system of
interest, the collected data and features, the used learning algorithms and the
results are discussed.

System Definition The considered systems are magnet power converters at the
CERN particle accelerator facilities. A power converter is a device to transform
electrical energy. The conversion is in terms of voltage, current and waveform.
Magnet power converters control the flow of current through particle accelerator
magnets. In order to achieve precise magnetic fields these converters generally
need to control the output current very precisely.

Dataset, Reliability Metrics and Reliability Indicators

Set of Systems At CERN there are currently more than 6000 power convert-
ers of approximately 600 different types in use. Their field-reliability is con-
tinuously tracked by a centralized computerized maintenance management sys-
tem (CMMS). After removal of converter types with a cumulative operational
time toperation of less than ten years and cleaning the data, approximately 300
power converter types remained for reliability analysis. Table 1 gives an overview
of minimal and maximal characteristic attributes of power converters in the
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dataset. Considering the vast range of converter types one would not expect a
global model to accurately predict the field-reliability. Therefore, both local- and
global-models were trained.

Table 1. Illustration of characteristic power converter attributes of the studied dataset.

Power [W] Current [A] Voltage [U] Age [yrs] MTBF [hrs]

Minimum 10−6 10−4 10−3 2.2 103

Maximum 108 4 · 104 105 49.7 6 · 105

Reliability Indicators for the Systems The initial choice of reliability indicators
depends on

– the system development stage at which the prediction shall be carried out,
– recommendations from system experts,
– the time or effort which can be attributed to the data collection.

The following list shows the collected reliability indicators. The selection is based
on recommendations from CERN engineers in charge of the complete lifecycle
of the studied systems. Naturally, the selection is also limited by the availability
of data:

– I: Rated current of the converter. Depending on the rated current different
converter technologies have to be used. One major stress effect of high cur-
rents in terms of reliability is an increased heat load which requires a proper
heat management [17, 13].

– U: Rated voltage of the converter. Higher voltages require the appropri-
ate electrical insulation and can cause failure mechanisms such as arcing or
corona discharge [17, 13].

– P: Rated power of the converter. Similarly to currents increased power leads
to increased heat loads.

– Quantity: This refers to the quantity of each type of power converter that is
used at CERN. The quantity of a power converter is not related to a physi-
cal wear-out mechanism. However, throughout the lifecycle converter types
produced and operated in large quantities are treated differently than power
converters of small quantities both in terms of technical and organizational
matters.

– Avg. Age: The average age of converters for each converter type. Depend-
ing on the maintenance strategy a decreasing or constant availability as a
function of the age is expected, respectively.

– Cum. Age: The cumulative age of converters for each converter type. A
dependency of the availability on the cumulative age could indicate both a
organizational learning curve in terms of a more efficient maintenance and
a degradation with age of the converters.
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– Pol 0-9: The polarity of the converter. This indicates the operating modes,
technology and complexity of the converter.10

– Acc. 1-9: The accelerator in which the converter type is used. Depending on
the accelerator the converter type is exposed to different operating condi-
tions11 and operation modes.

– in Acc.: The number of different particle accelerators in which each power
converter is used.

We probed different indicators for their information content by appropriate
Bayesian learning methods. The required learning algorithms are introduced
later in this section.

Reliability Metrics for the Systems The studied field-reliability metrics areMTBF
and MTTR as defined in section 3.12 These are directly computed in the CMMS
with the necessary variables for power converter type i which are defined as fol-
lows:

– toperation,i: Cumulative time in operation of all converters of converter type
i. Note that commissioning and testing times are not counted towards oper-
ation time.

– nfaults,i: Cumulative number of faults of all converters of converter type
i during the operational time toperation,i. Note that only internal faults of
the system which require an external action to alleviate the problem are
included. Internal faults which are automatically resolved or are very short
and faults due to external reasons are not included. This ensures that a
model for the reliability of the considered systems itself is learned and not
of its surroundings.

– tinrepair,i: Cumulative time in repair of all converters of converter type i
during the operational time toperation,i. The repair time starts by a request
from the system operators to the system experts and ends when the problem
was resolved and the system can continue to operate.

Algorithms By formulating the reliability prediction problem as a supervised
machine learning problem we can choose from a range of existing learning al-
gorithms to generate the desired statistical model for predictive purposes. Since
the uncertainty in the field-reliability predictions shall be quantified (i.e. finding

10 The discrete set of polarities is given by: (1) Unipolar, (2) Bipolar Switch Mechanic,
(3) Bipolar I - Unipolar U - 2 Quadrants, (4) Unipolar I Bipolar U 2 Quadrants, (5)
Bipolar Pulse-Width-Modulation, (6) Bipolar Relay, (7) Bipolar Electronic I/U, (8)
Bipolar Anti-Parallel 4 Quadrants, (9) Bipolar I-circulation 4 Quadrants and, (0)
un-specified or other Polarity.

11 E.g. the radiation levels differ on the kind of accelerator. However, there is also
different operation conditions within each of the accelerators.

12 Note that the Availability A and Un-Availability UA can be directly obtained from
the MTBF and the MTTR.
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a model as presented in equation 6), the choice of algorithms is narrowed down.
Furthermore, sparse parametric models (as in equation 7) are preferred since
they potentially require fewer reliability indicators to be collected and - more
importantly - since they allow an estimation of the relevance of the choice of
reliability indicators and the generated features.

A summary of the chosen algorithms is given in table 2. Note that the scikit-
learn python implementations of the algorithms were used [20]. A detailed de-
scription of each algorithm can be found on their website and in their user-guide
[3]. Since the algorithms are standard implementations, only references to de-
tailed documentation are given:

Table 2. Summary of learning algorithms.

UQ (6) Feature Weights (7) Sparsity Global/Local

ARD yes yes yes Global

BAR yes yes balanced Global

GP yes no no Local

ENCV no yes yes Global

SVR no only for linear kernel no Local

– ARD - Automatic Relevance Determination Regression: Sparse Bayesian re-
gression technique as described in [2] - Chapter 7.2.1. The implementation
is taken from [3] - Chapter 1.1.10.2.

– BAR - Bayesian Ridge Regression: A Bayesian regression method as intro-
duced in [15]. It is similar to the ARD Regression but fewer parameters have
to be determined from the data. The implementation is taken from [3] -
Chapter 1.1.10.1.

– GP - Gaussian Process Regression. A kernel-trick based Bayesian Regression
technique. The implementation is described in [21] - Algorithm 2.1 and was
taken from [3] - Chapter 1.7.1. The kernel is based on a combination of a
radial-basis-function kernel and a white-kernel. The kernel parameters were
optimized in the learning process.

– EN: Elastic Net Regression. The implementation is taken from [3] - Chapter
1.1.5 - which includes a description of the algorithm. Hyperparameters were
optimized in a cross-validated grid-search.

– SVR - Support Vector Machine Regression: A kernel-trick based regression
method. A description is given in [3] - Chapter 1.4.2. Linear basis functions
were used and the hyperparameters were optimized by a cross-validated grid-
search.

Model Selection and Validation This section closely follows the procedure
presented in section 3. The data-set D was compiled from the data collection
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described above including 281 collected systems, nine reliability indicators and
two field-reliability metrics. To simulate a prediction scenario the whole data-
set of 281 different converter types was split into a training set Dtrain with
210 converter types which are at least fifteen years old and a test set with 71
converter types which are less than fifteen years old.13

For the model selection and validation we restricted ourselves to the training
data which we shuffled randomly. A scaling operator re-scaled the features or
inputs xtrain to zero mean and unit variance. The same scaling operator was later
applied to the features in the test data-set xtest. Furthermore, the logarithms of
the reliability metrics log(Y) were taken instead of their nominal value for the
full data-set.
Based on the introduced (nested) cross-validation we compared the follfowing
different choices of the set of systems, reliability indicators and feature mappings
for all the introduced algorithms:

– Choice of systems: We trained models with the complete set of power con-
verter types and with a random sub-selection of only 42 converter types.

– Choice of reliability indicators: We trained models with the complete set of
reliability indicators and a set in which the quantity of converters per type
was removed.

– Choice of feature mapping: Based on the reliability indicators, following fea-
tures were generated:
• Based on the numeric indicators xnum linear features and logarithmic

features were chosen - Φ(xnum) = [xnum, log(xnum)]
T

.
• The categorical indicators xcat were split into binary features, whereas

the number of binary variables corresponds to the number of categories
per categorical variable.

A feature vector of 34 dimensions was obtained by combining all features.
This was the first choice for the feature mapping and we refer to it as first-
order feature mapping.
The second choice of feature mapping accounts for second-order interactions
of the numeric variables and we refer to it as second-order feature mapping:

Φ(xnum) =
[
xnum, log(xnum), [xnum, log(xnum)] · [xnum, log(xnum)]

T
]T
.

(8)
By this more complex mapping we obtain 629 features. One could expect
that a more accurate model can be learned when including second-order
interactions which is balanced by a lack of interpretability of the individual
feature weights.

In the following we report the results of our model selection procedure. For
each algorithm the cross-validation error ErrCV

14 is reported and the feature
weights w of the learned models and the obtained predictions are plotted for the

13 In other words we pretended to be in 2003 and tried to predict the field-reliability
of power converters between 2003 and 2018.

14 Note that the mean-squared-error was used throughout.
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last cross-validation fold.15 All results are provided in terms of the two chosen
reliability metrics MTBF and MTTR.

Reference Configuration The first configuration we studied is based on the com-
plete set of power converters, the complete set of reliability indicators and the
first-order feature mapping. The cross-validation errors ErrCV are given in ta-
ble 3a for the MTBF and in table 4a for the MTTR. As the values for the
target variables were not scaled to unit-variance but simply by a logarithmic
function, the values from the MTBF table cannot be compared with values of
the MTTR table. Only values within a table are comparable. We noted that all
algorithms yielded models with comparable cross-validation errors.
The obtained parameter weights w for the last cross-validation fold are shown in
figure 3b for the MTBF and in figure 3d for the MTTR. All algorithms identi-
fied similar models. For the MTBF the dominant parameter was the logarithm
of the quantity of converters per type log(Qty) for all models and the rated power
P was dominant for the MTTR. From the predictions obtained with the BAR
algorithm for the last fold, figure 3a for the MTBF and figure 3c for the MTTR,
we noted that the model for the MTTR did not identify a significant variation
whereas the MTBF was predicted properly. We concluded that a precise model
for the MTBF had been learned with the collected data, the selected feature
mappings, and algorithms. For the MTTR no such model could be identified
and a further refinement would be necessary.
In the following we present variations of the reference configuration in terms of
selected systems, reliability indicators and feature mappings.

Reduced Set of Training Systems The second configuration is similar to the ref-
erence configuration except for using a random sub-selection of only 42 converter
types in the training data-set. This illustrates the dependence of the confidence
levels of the identified feature weights w and the predictions for the Bayesian
algorithms (ARD and BAR) on the amount of training data.
The cross-validation errors ErrCV in table 3b for the MTBF and table 4b for
the MTTR were larger than those of the reference configuration. The obtained
parameters weights w for the last cross-validation fold in figure 3f (MTBF )
and in figure 3h (MTTR) deviated slightly in absolute terms and largely in
terms of their confidence levels from the reference configuration for the ARD
and BAR algorithm. The predictive uncertainties of the BAR algorithm in fig-
ure 3e (MTBF ) and figure 3g (MTTR) increased only slightly in comparison
with the reference configuration. Again, no predictive model of the MTTR could
be identified. We concluded that a reduced set of training data manifests itself
in increased uncertainties in parameters or predictions.

15 Note that only predictions obtained by the BAR algorithm are illustrated due to
space limitations. It assigns relevance weights to the feature functions and and it
quantifies uncertainties of both the field-reliability predictions and the feature func-
tion weights. Therefore, it is suited to study the earlier mentioned additional infor-
mation provided by algorithms which satisfy equations 6 and 7.
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Fig. 3. (a),(c),(e),(g):Prediction of the log(MTBF )/log(MTTR) for the last fold
of the cross-validation procedure. The orange line depicts the mean of the pre-
dictive distribution and the orange shaded area the 95% confidence intervals. The
blue dots mark the actual observed field-reliabilites. Note that the different con-
verter types were ordered by the mean of the predictive distribution for illustration
purposes.(b),(d),(f),(h):Estimated feature weights for the parametric models. Figures
(a),(b),(c),(d) are for the reference configuration and figures (e),(f),(g),(h) for a reduced
set of data items in the learning data.
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Reduced Set of Reliability Indicators The third configuration resembles the refer-
ence configuration except for the removal of the variable indicating the quantity
of systems per converter type. This variable had been identified as the single
most important reliability indicator for MTBF predictions.
The cross-validation errors ErrCV in table 3c for the MTBF were much larger
than those of the reference configuration and slightly larger for the MTTR mod-
els (table 4c). The obtained parameter weights w for the last cross-validation
fold in figure 4b for the MTBF models were totally different than the reference
configuration. The weights for the MTTR models (figure 4d) were similar to the
reference configuration. The predictive uncertainties of the BAR algorithm in
figure 3e increased drastically for the MTBF and only slightly for the MTTR
(figure 3g) in comparison with the reference configuration. This is consistent with
our expectation, since we removed the most important reliability indicator for
the MTBF models. This time no proper predictive model of either the MTTR
or the MTBF could be identified. We concluded that the choice of reliability
indicators has a strong influence on the quality of the models.

Second-Order Feature Mapping In the fourth configuration the second-order fea-
ture mapping replaces the first-order mapping of the reference configuration. The
cross-validation errors ErrCV in table 3d for the MTBF and table 4d for the
MTTR were of the same order as those of the reference configuration except
for the model learned with the ARD algorithm. The 629 obtained parameter
weights w were not illustrated. The predictions of the BAR algorithm in fig-
ure 4e (MTBF ) and in figure 4f (MTTR) were comparable with the reference
configuration. No model could be identified for the MTTR. We concluded that
the extended feature mapping does not improve the predictive errors and com-
plicates the interpretation of the models.

Prediction The reference configuration was used for the prediction scenario
as it had shown to be interpretable and predicted the MTBF in the model
selection procedure properly. The prediction of the MTTR was not carried out
since no suitable model had been identified. The predictive models were learned
with the full training data-set and their predictions were evaluated with the test
data-set.16 Due to the splitting of the training and test data by the age of the
systems this simulated a prediction scenario.
The test errors Errtest in table 3e were of the same order as the cross-validation
errors ErrCV of the reference configuration (3a). We concluded that the learned
models generalize to newer power converters. The feature weights (5b) and the
predictions (5a) were consistent with our expectations and demonstrate that we
could predict the MTBF accurately.

Discussion One of the major insights created by applying the methods to the
use-case is that the field-reliabilities are strongly dependent on the quantity of

16 Hyperparamters were optimized by cross-validation over a parameter grid.
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Fig. 4. (a),(c),(e),(f):Prediction of the log(MTBF )/log(MTTR) for the last fold of
the cross-validation procedure. The orange line depicts the mean and the orange
shaded area the 95% confidence intervals. The blue dots mark the actual observed
field-reliabilites. Note that the different converter types were ordered by the mean of
the predictive distribution.(b),(d):Estimated feature weights for the parametric models.
Figures (a),(b),(c),(d) are for the configuration with a reduced set of reliability indica-
tors and figures (e),(f) for the second-order feature mapping. Note that the illustrations
of the 629 second-order feature weights were omitted.
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Fig. 5. (a):Predictions of the log(MTBF ) with the final models for the test data-set.
The orange line depicts the mean and the orange shaded area the 95% confidence inter-
vals. The blue dots mark the actual observed field-reliabilites. Note that the different
converter types were ordered by the mean of the predictive distribution.(b):Estimated
feature weights for the predictive models.

Table 3. Obtained mean-squared-errors for the log(MTBF ) - a) ErrCV for the ref-
erence model, b) ErrCV for a reduced set of systems, c) ErrCV for a reduced set of
reliability indicators, d) ErrCV for non-linear numeric feature mappings, and e) Errtest
for the predictions of the test data-set. Comparison of a) and e) indicates if the method
can be extended to future converter types.

ARD BAR GP EN SVR

ErrCV a) 0.39±0.15 0.35±0.13 0.37±0.14 0.34±0.12 0.46±0.16

ErrCV b) 0.90±0.79 0.82±0.73 0.81±0.74 0.65±0.49 0.64±0.50

ErrCV c) 1.03±0.24 1.00±0.19 1.00±0.19 1.01±0.22 1.02±0.24

ErrCV d) 0.59±0.23 0.37±0.05 0.38±0.05 0.32±0.05 0.48±0.12

Errtest e) 0.30 0.33 0.32 0.30 0.38

Table 4. Obtained mean-squared-errors for the log(MTTR) - a) ErrCV for the ref-
erence model, b) ErrCV for a reduced set of systems, c) ErrCV for a reduced set of
reliability indicators, d) ErrCV for non-linear numeric feature mappings, and e) Errtest
for the predictions of the test data-set.

ARD BAR GP EN SVR

ErrCV a) 0.23±0.05 0.22±0.0.04 0.22±0.04 0.22±0.04 0.23±0.05

ErrCV b) 0.32±0.17 0.24±0.11 0.24±0.12 0.23±0.09 0.25±0.17

ErrCV c) 0.30±0.16 0.23±0.06 0.23±0.06 .28±0.11 0.29±0.16

ErrCV d) 3.12±4.83 0.23±0.02 0.23±0.03 0.22±0.02 0.34±0.06

Errtest e) 0.38 0.35 0.35 0.35 0.36
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converters per converter type. This fact can lead to an increased reliability for
future systems. However, explanations for this dependence are plentiful and a
more detailed analysis will have to be carried out.
The method is capable of learning more detailed statistical models for the whole
lifecycle of systems. This requires to collect more reliability indicators than were
available in this work. However, the purpose of this work was to illustrate that
even with very coarse high-level data a good predictive model can be trained.
The selected Bayesian algorithms which learn sparse parametric models were
especially fit for this purpose. It has to be pointed out that the approach is em-
pirical and that causal relationships have to be identified or confirmed by further
studies or expert judgment.

5 Conclusion and Outlook

An approach was presented to predict the field-reliability of complex electronic
systems at an early development stage based on a statistical lifecycle model
learned from data collected for similar operational systems. It was demonstrated
that the field-reliability can be predicted accurately based on very few reliability
indicators. Compared to existing methods this implies a reduced data collec-
tion effort and an integrated quantification of predictive uncertainty based on
the granularity of the available information and the implicit randomness of the
investigated processes. The results of such a study uncover reliability relevant
factors which lead to improved system designs at very early stages of design.
Sparse Bayesian Regression methods are the key to efficiently learn accurate
models. The confidence in field-reliability predictions is automatically quantified
with respect to the available data and the randomness inherent in the problem.
Future research can focus on more detailed and potentially incomplete data-sets.
Based on that, further relevant processes for the field-reliability of systems may
be uncovered.
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