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Abstract. Mining local patterns of process behavior is a vital tool for the analysis
of event data that originates from flexible processes, which in general cannot be
described by a single process model without overgeneralizing the allowed behavior.
Several techniques for mining local patterns have been developed over the years,
including Local Process Model (LPM) mining, episode mining, and the mining
of frequent subtraces. These pattern mining techniques can be considered to be
orthogonal, i.e., they provide different types of insights on the behavior observed in
an event log. In this work, we demonstrate that the joint application of LPM mining
and other patter mining techniques provides benefits over applying only one of them.
First, we show how the output of a subtrace mining approach can be used to mine
LPMs more efficiently. Secondly, we show how instances of LPMs can be correlated
together to obtain larger LPMs, thus providing a more comprehensive overview of the
overall process. We demonstrate both effects on a collection of real-life event logs.

1 Introduction

Process Mining [1] has emerged as a new field that aims at business process improvement
through the analysis of event logs recorded by information systems. Such event logs capture
the different steps (events) that are recorded for each instance of the process, and record
for each event what was done, by whom, for whom, where, when, etc. One of the main
challenges within process mining is process discovery, where the aim is to discover an
interpretable and accurate model of the process based on an event log. The resulting process
model provides insight into what is happening in the process and can be used as a starting
point for more in-depth process analysis, e.g., bottleneck analysis [26], and checking
compliance with rules and regulations [27].

In recent years, the scope of process discovery has broadened to novel application
domains, such as software analysis and human behavior analysis. In some of those new
application domains the logs have a high degree of variability, thereby making it difficult
to represent the behavior observed in the log in a process model. High log variability
significantly impacts the generation of insightful models; the process models obtained
using process discovery techniques often do not provide useful insights into the process
behavior, either because they overgeneralize, thus tending to allow for any sequence of
events (e.g., [20,35]), or because, on the contrary, they represent exactly all (or most of) the
behaviors recorded in the log, thus providing a spaghetti-like representation that is typically
too complex to be exploited by a human analyst (e.g., [7]).



Several techniques aim to address this challenge of analyzing highly variable event
logs. Declarative process discovery (e.g., [23,29]) focuses on the mining of binary relations
between activities of the process. Local Process Model (LPM) mining (e.g., [32,33]) aims
at the mining of a collection of process models instead of a single model, where each model
captures a subset of the process behavior. Subtrace mining (e.g., [3,9,19]) mines subtraces
that represent relevant sequential portions of process executions (i.e., subprocesses). In this
work we will focus on subtrace and LPM mining. These techniques share similar goals, i.e.,
the mining of relevant process execution patterns. However, they provide different insights
on the process and have their advantages and disadvantages.

Subtrace mining techniques derive frequent patterns of sequential executions of process
activities from event logs. Diamantini et al. [9] extend subtrace mining to discover partial
order relations between process activities by either relying on a priori knowledge on
concurrency relations or on concurrency detection mechanisms provided by process
discovery techniques. However, subtrace mining techniques are not able to capture control-
flow constructs other than sequential and concurrency relations between process activities.
Rather, some approaches focus on relations between patterns instead of between activities
from the process. For instance, the work in [9] constructs hierarchies of patterns where
subtraces are ordered with respect to the inclusion relation. Genga et al. [13] apply frequent
itemset mining techniques to mine partial order relations between subtraces.

Local Process Model (LPM) mining aims at mining process patterns that can describe
any arbitrary combination of sequential ordering, concurrency, loops and choice construct.
However, mining LPM patterns is computationally expensive, or even infeasible, for
event logs with many activities. In practice, computational problems can already arise
at seventeen activities [32]. Therefore, a set of heuristics have been proposed in [32]
to speed up the mining process. These heuristics discover subsets of process activities
(called projections) that are strongly related and apply the LPM miner to each projection
individually, aggregating the results by taking the union of the resulting LPMs. The
downside of these heuristics is the loss of formal guarantees that all frequent local process
models are found.

In this work, we explore the synergies between subtrace mining and LPM mining in two
ways. First, we investigate the application of the patterns obtained using subtrace mining for
LPM mining. This subtrace-based LPM mining approach generates projections based on
the subtraces mined using the technique presented in [9] and furthermore extracts ordering
constraints from the subtraces to reduce the search space of LPM mining. We conjecture
that using activities from these subtraces as projections and ordering constraints can speed
up the LPM mining procedure. Secondly, we explore the application of approaches to
mine higher level relations between subtraces to generate larger LPMs. In particular, these
approaches allow us to merge LPMs describing possibly unconnected portions of the
process behavior, providing a more comprehensive overview of the overall process, which
would otherwise be difficult to achieve using original LPM algorithms due to the large
number of activities involved.

This paper is organized as follows. Sec. 2 introduces notation and basic concepts that are
used throughout the paper. Sec. 3 presents a projection method and a constraint generation
technique for LPM mining, while Sec. 4 presents a method to infer ordering relations



between mined LPMs. In Sec. 5 we evaluate both techniques on a collection of real-life
event logs. Finally, Sec. 6 discusses related work and Sec. 7 concludes the paper.

2 Background

In this section we introduce notation and basic concepts used throughout the paper. We start
by introducing event data and process models in Sec. 2.1 and then we introduce methods for
mining subprocess models from event logs in Sec. 2.2.

2.1 Event Data & Process Models

Process models describe how processes should be carried out. Two process model notations
that are commonly used in process mining are process trees [5] and Petri nets [28]. A
process tree is a tree structure where leaf nodes represent process activities, while non-leaf
nodes represent operators that specify the allowed behavior over the activity nodes. Allowed
operator nodes are the sequence operator (→), which indicates that the first child is executed
before the second, the exclusive choice operator (×), which indicates that exactly one of the
children can be executed, the concurrency operator (∧), which indicates that every child
will be executed but allows for any ordering, and the loop operator (�), which has one child
node and allows for repeated execution of this node.

We formally define process trees recursively. Let Σ be the set of all process activities,
OP = {→,×,∧,�} a set of operators and symbol τ /∈ Σ denotes silent activities. We
define a process tree pt as follows:

– a ∈ Σ ∪ {τ} is a process tree M ;
– let {M1,M2, . . . ,Mn} be a set of process trees. Then ⊕(M1,M2, . . . ,Mn) with
⊕ ∈ OP is a process tree.

Hereafter, L(M ) denotes the language of a process model M , i.e., the set of activity
execution paths allowed by the model. Fig. 1d shows an example process tree M4, with
L(M4 )={〈a, b, c〉, 〈a, c, b〉, 〈d, b, c〉, 〈d, c, b〉}. Informally, it indicates that either activity
a or d is executed first, followed by the execution of activities b and c in any order.

A Petri net N = 〈P, T, F, `〉 is a tuple where P is a finite set of places, T is a finite
set of transitions such that P ∩ T = ∅, F ⊆ (P × T ) ∪ (T × P ) is a set of directed
arcs, called the flow relation, and ` : T 9 Σ is a labeling function that assigns process
activities to transitions. Unlabeled transitions, i.e., t∈T with t 6∈dom(l), are referred to as
τ -transitions, or invisible transitions.

The state of a Petri net is defined by its marking. The marking assigns a finite number
of tokens to each place. Transitions of the Petri net represent activities. The input places of
a transition t ∈ T are all places for which there is a directed edge to the transition, i.e. {p ∈
P |(p, t)∈F}. The output places of a transition are defined similarly as {p ∈ P |(t, p)∈F}.
Executing a transition consumes one token from each of its input places and produces one
token on each of its output places. A transition can only be executed when there is at least
one token in each of its input places. Often we consider a Petri net in combination with an
initial marking and a final marking, allowing us to define language L(N), consisting of
all possible sequences of visible transition labels (i.e., ignoring τ -transitions) that start in
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Fig. 1: An initial LPM (M1) and three LPMs built from successive expansions.

the initial marking and end in the final marking. It is worth noting that process trees can
trivially be transformed into Petri nets.

Process discovery aims to mine a process model from past process executions. An event e
is the actual recording of the occurrence of an activity inΣ. A trace σ is a sequence of events,
i.e., σ = 〈e1, e2, . . . , en〉∈Σ∗. An event log L∈NΣ∗

is a finite multiset of traces. For
example, event log L = [〈a, b, c〉2, 〈b, a, c〉3] consists of two occurrences of trace 〈a, b, c〉
and three occurrences of trace 〈b, a, c〉. L�X represents the projection of log L on a subset of
the activities X⊆Σ, e.g., L�{b,c} = [〈b, c〉5]. #(σ, L) denotes the frequency of sequence
σ ∈ Σ∗ as a subtrace within log L, e.g., #(〈a, b〉, [〈a, b, c〉2, 〈a, b, d〉3])=5. σ1 · σ2
denotes the concatenation of sequences σ1 and σ2, e.g., 〈a, b〉 · 〈c, d, e〉=〈a, b, c, d, e〉.

2.2 Subprocess Mining

Two methods to mine subprocesses from event logs are Local Process Models (LPMs) [33]
and subtrace mining [3,9,19]. LPMs are process models that describe frequent but partial
behaviors seen in the event log, i.e., they model subsets of the process.

LPM Mining [33] is a technique to generate a ranked collection of LPMs through
iterative expansion of candidate process trees. This technique encompasses four steps: 1) the
generation of an initial set of process trees, consisting of one process tree for each activity;
2) the evaluation phase, where process tree quality is assessed by a set of tailored metrics;
3) the selection phase, where process trees that do not meet certain criteria are removed;
4) the expansion phase, where candidates selected at the previous step are expanded by
replacing an activity node a by an operator node (→, ×, ∧ or �), whose children are the
replaced activity a and another activity b ∈ Σ of the process. Steps 2 to 4 are repeated until
no new candidate meets the criteria.

An LPM M can be expanded in many ways, as any one of its activity nodes can be
replaced, using any of the operator nodes in combination with any other activity from the
set of activities in the log. Exp(M) denotes the set of expansions of M (described in more
detail in [33]), and exp max the maximum number of expansions allowed from an initial
LPM, i.e., the LPMs generated in step 1.

Fig. 1 provides an example of the expansion procedure, starting from the initial LPM
M1 of Fig. 1a. The LPM of Fig. 1a is first expanded into a larger LPM by replacing a by
operator node→, with activity a as its left child node and b as its right child node, resulting
in the LPM of Fig. 1b. Note that M1 can also be expanded using any other operator or any
other activity from Σ, and LPM discovery recursively explores all possible process trees



event id activity time
1 a 15-4-2016 12:23
2 d 16-4-2016 14:38
3 b 16-4-2016 14:46
4 c 16-4-2016 15:46
5 d 16-4-2016 16:53
6 c 16-4-2016 16:58
7 a 16-4-2016 17:11
8 c 16-4-2016 17:45
9 b 16-4-2016 18:03
10 d 17-4-2016 12:09
11 a 17-4-2016 18:24
12 b 17-4-2016 18:36
13 a 17-4-2016 18:37

(a) A trace σ of an event log L

σ {a,b,c} = 〈a,b,c,c,a,c,b,a,b,a〉
γ1 λ2 γ2 λ3 

Гσ,LPM = 〈a,b,c,a,c,b〉
λ1 

σ = 〈a,d,b,c,d,c,a,c,b,d,a,b,a〉

(b) Segmentation of σ on M3

Fig. 2: Example of segmentation in LPM mining.

that meet a support threshold by iterative expansion. In a second expansion step, activity
node b of the LPM of Fig. 1b is replaced by operator node ∧, with activity b as its left
child and c as its right child, resulting in the LPM of Fig. 1c. Finally, activity node a of
the LPM of Fig. 1c is replaced by operator node × with activity a as its left child and
activity d as its right child, forming the LPM of Fig. 1d. In traditional LPM discovery the
expansion procedure of an LPM stops when the behavior described by the LPM is not
observed frequently enough in an event log L (i.e., with regard to some support threshold).
LPMs are mined in process trees representation, but often their Petri net representation is
used to visualize them.

To evaluate a given LPM on a given event log L, its traces σ∈L are first projected on the
set of activities X in the LPM, i.e. σ′ = σ�X . The projected trace σ′ is then segmented into
γ-segments, i.e., segments that fit the behavior of the LPM, and λ-segments, i.e. segments
that do not fit the behavior of the LPM. Specifically, σ′=λ1 · γ1 · λ2 · γ2 . . . λn · γn · λn+1

such that γi∈L(LPM ) and λi 6∈L(LPM ). We define Γσ,LPM to be a function that
projects trace σ on the LPM activities and obtains its subsequences that fit the LPM,
i.e. Γσ,LPM = γ1 · γ2 . . . γn.

Let our LPM M3 under evaluation be the process tree of Fig. 1c and σ the example
trace shown in Fig. 2a. Function Act(LPM ) gives the set of process activities in the
LPM, e.g. Act(M3) = {a, b, c}. The projection on the activities of the LPM gives
σ�Act(M3) = 〈a, b, c, c, a, c, b, a, b, a〉. Fig. 2b shows the segmentation of the projected
trace on the LPM, leading to Γσ,LPM = 〈a, b, c, a, c, b〉. The segmentation starts with an
empty non-fitting segment λ1, followed by a fitting segment γ1=〈a, b, c〉, which completes
one run through the process tree. The second event c in σ cannot be replayed on LPM,
since it only allows for one c and γ1 already contains a c. This results in a non-fitting
segment λ2=〈c〉. Segment γ2=〈a, c, b〉 again represents a run through the process tree; the
segmentation ends with non-fitting segment λ3=〈a, b, a〉. We lift segmentation function Γ
to event logs, ΓL,LPM={Γσ,LPM |σ∈L}. An alignment-based [2] implementation of Γ ,
as well as a method to rank and select LPMs based on their support, i.e., the number of
events in ΓL,LPM , is described in [33].

LPMs only contain a subset of the activities of a log L, and therefore, each LPM M
can in principle be discovered on any projection on L containing the activities used in M .
The computational complexity of LPM mining depends combinatorially on the number of
activities in the log, and therefore, mining LPMs on projections of the log instead of on the
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Fig. 3: Example of SUBDUE hierarchy

full significantly speeds up LPM mining. However, this results in a partial exploration of
the LPM search space and does not guarantee that all LPMs meeting the support threshold
are found. In principle, when the activities frequently following each other are in the
same projection, the search space can be constrained almost without loss in quality of the
mined LPMs. Such projection sets could potentially be overlapping. This is desired, since
interesting patterns can potentially exist in some activity set {a, b, c}, as well as in {a, b, d},
and discovering on both L �{a,b,c} and L �{a,b,d} and then merging the results is faster than
discovering on {a, b, c} ∪ {a, b, d} = {a, b, c, d}. The typical approach to generate the
projection set for LPM mining is to apply Markov graph clustering [32] to a graph where
vertices represent activities and edges represent the connectedness of two activities a and b

based on following relations, i.e., connectedness(a, b, L) =

√
#(〈a,b〉,L)
#(〈a〉,L)

2
+ #(〈a,b〉,L)

#(〈b〉,L)
2
.

Subtrace Mining aims at finding frequent subsequences from logs. Diamantini et al. [9]
apply frequent subgraph mining (FSM) to do so. In a first step, each trace σ ∈ L is
transformed into a directed graph g = (V,E, φ), with V the set of nodes that correspond to
events in σ, E the set of the edges that show ordering relations between the events, and φ a
labeling function associating nodes with the activities of the corresponding events. A node is
created for each event in the trace and nodes representing subsequent events are connected
with an edge. Once the set of graphs is obtained, an FSM algorithm is applied to derive
frequent subgraphs from it, yielding the frequent subtraces in the event log. Diamantini et
al. [9] use the SUBDUE algorithm [18] that adopts Description Length (DL) to iteratively
select the most relevant subgraphs. Given a graph set G and a subgraph s, SUBDUE uses
an index based on DL, hereafter denoted by ν(s,G), which is computed as ν(s,G) =

DL(G)
DL(s)+DL(G|s) where DL(G) is the DL of G, DL(s) is the DL of s and DL(G|s) is the
DL of G where each occurrence of s in G is replaced with a single node (i.e., compression).
By doing so, SUBDUE relates the relevance of a subgraph with its compression capability.

At each iteration, it extracts the subgraph with the highest compression capability,
i.e., the subgraph corresponding to the maximum value of the ν index. This subgraph is
then used to compress the graph set. The compressed graphs are presented to SUBDUE
again. These steps are repeated until no more compression is possible or until a user-
defined number of iterations is reached. The outcome of SUBDUE consists of a set
of subtraces ordered according to their relevance. As an example, Figure 3 shows a
portion of the SUBDUE output inferred from the set of graphs derived by the event log
L={〈a, d, b, c, d, c, a, c, b, d, a, b, a〉2,〈a, e, c, c, d, c, a, c, b, d, a, b, a〉,〈a, e, c, b, d〉}.

At the top level, we have subgraphs involving only elements of the original graphs set;
while in the lower levels, we have subgraphs that involve upper level subgraphs in their
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Fig. 4: An example of subtrace and the corresponding ordering constraints.

definition. Since top-level subgraphs correspond to the most relevant subgraphs for the
graphs set, we can reasonably expect to be able to capture most of the process behaviors by
only considering the latter. Note that in this work we consider totally ordered traces, from
which we construct sequential graphs; hence, the mined subgraphs are limited to sequential
traces. However, SUBDUE can mine subgraphs that are more complex that just sequential
traces, e.g., when partially ordered logs are analyzed.

3 Mining LPMs Using Subtrace Constraints & Projections

In this section, we present an approach to mine Local Process Models (LPMs) by exploiting
subtrace mining results. This extends traditional LPM mining [33] by converting the set
of subtraces (mined using the approach described in Sec. 2.2) into a set of projections
(i.e., sets of activities) and a set of ordering constraints that are both used to restrict the
set of possible expansions in the expansion phase of LPM mining. Projections restrict the
possible extensions to the set of activities in the projection, while ordering constraints
prohibit expansions into LPMs that violate ordering relations.

Each subtrace represents a frequent and connected portion of the process. Activities that
do not co-occur together in a subtrace are unlikely to co-occur in a frequent LPM. Therefore,
we extract one projection for each subtrace, consisting of the activities in the subtrace.
Furthermore, LPMs that directly contradict the behavior of a subtrace can be extracted
as ordering constraints, as they unlikely represent execution orders between activities.
Two types of constraints can be derived from subtraces: constraints on exclusive choices
and constraints on sequential executions. Given a subgraph s = (V,E, φ), an ordering
constraint on s is defined as a process tree M = ⊕(a, b) with a, b ∈ V and ⊕ ∈ {→,×}.

Algorithm 1 describes the procedure to convert a subgraph into a set of ordering
constraints. The algorithm generates a constraint for the exclusive choice tree between each
pair of activities in the subtrace and adds it to the set of ordering constraints (line 4). Then,
the algorithm checks for each pair of vertices in the subtrace whether there exists a path
(possibly transitively) from vertex vi to vj (line 5). If so, a sequential constraint is added,
thus prohibiting the reversed ordering (line 6). Fig. 4 shows the set of ordering constraints
extracted for an example subtrace. Fig. 4a shows that most occurrences of activity a occurred
before b, which, in turn, mostly occurred before c. Transitively, this means that a occurred
before c. The three leftmost trees in Fig. 4b show the extracted ordering constraints that
directly contradict those frequent orderings in the subtrace. Furthermore, the existence of
the subtrace indicates that the activities tend to co-occur and do not tend to be mutually
exclusive. Therefore, we can safely remove from the LPM search space the process trees
that contain exclusive choices constructs between those activities.



Algorithm 1: Method FindOrderingConstraints

Input :subtrace s = (V,E, φ)
Output :set of ordering constraints OC

1 OC = {};
2 foreach vi ∈ V do
3 foreach vj ∈ V \ {vi} do
4 OC = OC ∪ {×(φ(vi), φ(vj))};
5 if existsPath(vi, vj , E) then
6 OC = OC ∪ {→ (φ(vj), φ(vi))};
7 return OC ;

Algorithm 2: Mining LPM using Subtraces
Input :event log L, set of subtraces S
Output :set of local process models LPM

1 CP = 〈〉;
2 foreach si = (Vi, Ei, φi) ∈ S do
3 CP = CP · 〈({φi(vi)|vi ∈ Vi},findOrderingConstraints(si))〉;
4 CP ′ = ∅;
5 foreach i ∈ {1, 2, . . . , |CP}| do
6 (Vi,OC i) = CP(i);
7 if ∃j ∈ {1, 2, . . . , |CP |} : Vi ⊂ Vj ∨ (Vi = Vj ∧ j > i) then
8 continue;
9 foreach j ∈ {1, 2, . . . , i− 1} do

10 if (Vi ⊆ Vj ∨ Vj ⊆ Vi) then
11 OC i = OC i ∪OC j

12 CP ′ = CP ′ ∪ {(Vi ,OC i)}
13 return MiningLPMwithProjectionsAndConstraints(L,CP ′);

Algorithm 2 describes how to mine LPMs from a log L given a set of subtraces S. For
each subtrace in S, its set of activities and the ordering constraints are extracted (line 3),
yielding set of projections and constraints CP . Algorithm MiningLPMwithProjectionsAnd-
Constraints is invoked on the event log and the mined set of projections and constraints
(line 13). This procedure mines LPMs in the traditional way, with an additional step in
which every generated expansion Mi ∈ Exp(M ) of LPM M is first checked against the set
of ordering constraints OC. If there exists a constraint oc ∈ OC such that oc is a subtree
of Mi, then Mi is discarded and not further expanded.

4 Deriving Partial Order Relations Over LPMs

In this section, we present an approach to discover partially ordered sets of Local Process
Models (LPMs), which we will refer to as PO-LPMs. We adopt the approach in [13] for
the mining of partial order relations between subtraces and adapt it to mine such relations
between LPMs. We extract the following ordering relations between pairs of LPMs:



σ1 : 〈 a b c f l m g o n r 〉

LPM 1
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(b)

LPM 1
1 LPM 2

1 LPM 1
2 LPM 1

3

σ1 1 0 1 1
σ2 1 1 1 0

(c)

Fig. 5: Building of the occurrence matrix for LPM 1, LPM 2 and LPM 3 and traces σ1, σ2.

(i) the sequential relation, denoted as LPM 1 _seq LPM 2, indicates that LPM 2 occurs
immediately after LPM 1;

(ii) the concurrent relation, denoted as LPM 1 _conc LPM 2, indicates that the execu-
tions of the activities in the LPMs are interleaved;

(iii) the eventually relation, denoted as LPM 1 _ev LPM 2, indicates that LPM 2 occurs
after LPM 1, but at least one other activity occurs between the two LPMs.

Given a set of LPMs LPMS and log L, the approach first reduces LPMS by removing
redundant ones and then builds an occurrence matrix indicating in which traces each LPM
occurs. Finally, it derives sets of the LPMs that frequently co-occur by applying frequent
itemset mining to the occurrence matrix and then extracts the PO-LPM for each itemset by
inferring the ordering relation on the log for each pair of LPMs in the itemset. We now
explain each step in more detail.

Redundancy Reduction: First we apply existing techniques to remove redundant LPMs from
the mined set of LPMs, i.e. LPMs that only describe behavior that is already represented
by other LPMs in the set. This simplifies and speeds up the partial orders inferring step.
We use the redundancy reduction technique of [30], which uses a greedy search approach
to find a subset of LPMs that maximizes the number of events in the log covered while
minimizing the number of LPMs used.

Occurrence Matrix: We build an occurrence matrix OM for event log L and the LPMs
LPMS ′ obtained using redundancy reduction, where each cell cij represents whether the
j-th LPM occurs in the i-th trace. We build OM using segmentation function Γ . As shown
in Sec. 2.2, function Γ can identify multiple instances of the same LPM in a single trace,
therefore, in theory, multiple ordering relations can hold for a given pair of LPMs on a given
trace. To deal with this property of Γ , we consider multiple instances of an LPM in a trace
as different LPMs. Whenever we have more than one instance in a trace, we create a copy
of the LPM for each of its occurrences and we set corresponding cells in the matrix to 1.

For example, consider the set of LPMs consisting of LPM 1 = {→ (→ (a, b), c)},
LPM 2 = {∧(f, g)} and LPM 3 = {∧((→ (l,m), (→ (o, n))}. Fig. 5 shows the occur-
rence matrix for these LPMs on traces σ1 (Fig. 5a) and σ2 (Fig. 5b), marking the events
in the trace that belong to each LPM with ×. All three LPMs occur exactly once in σ1,
resulting in “1” values for all three LPMs in the occurrence matrix of Fig. 5c. In contrast,
σ2 contains two instances of LPM 1 (i.e., LPM 1

1 and LPM 2
1) and one of LPM 2.



LPM 1 LPM 2 LPM 3

LPM 1 2 174 0
LPM 2 0 0 0
LPM 3 0 0 0
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Fig. 6: Deriving PO-LPMs for itemset {LPM 1,LPM 2,LPM 3}.

Deriving PO-LPMs: We infer sets of LPMs that frequently co-occur in the same trace
by applying any frequent itemset mining algorithm (see [12] for an overview) using a
support threshold ρ. Then, we determine the ordering relations between the LPMs per set of
frequently co-occurring LPMs. For each set of frequently co-occurring LPMs we extract
the traces from the log in which these LPMs co-occur. Using Γ we obtain the instances
of the LPMs in these traces, from which we can extract the starting and ending position
of each instance and determine whether LPM i _seq LPM j , LPM i _conc LPM j , or
LPM i _ev LPM j holds with LPMi, LPMj two co-occurring LPMs. For each pair
of LPMs occurring in the same itemset we store the number of traces for which these
relations between the LPMs hold respectively in matrices Mseq , Mconc and Mev . Based on
these matrices we extract as ordering relations between LPMs those relations that exceed a
user-defined support threshold η, resulting in the PO-LPMs. Note that with ρ and η there are
two distinct support thresholds. This is motivated by the fact that a pair of LPMs can occur
in different order in different traces, and therefore the support of an ordering relation can be
smaller than the support of the itemset. Note that η can be considered as the confidence of
the ordering relations.

As an example, consider again LPMs LPM 1,LPM 2,LPM 3 and trace σ1, in which all
three LPMs occur. Analyzing the positions of the events belonging to each LPM in Fig. 5a
we observe that LPM 2 occurs immediately after LPM 1 (i.e., LPM 1 _seq LPM 2), that
LPM 2 is interleaved with LPM 3 (i.e., LPM 2 _conc LPM 3) and LPM 3 eventually
occurs after LPM 1 (i.e., LPM 1 _ev LPM 3). Suppose that for some set of LPMs and
log L that among others contains σ1 , itemset {LPM 1,LPM 2,LPM 3} is extracted as a
set of frequently co-occurring LPMs, and Mseq , Mconc and Mev are as shown in Fig. 6a,
then Fig. 6b shows the PO-LPM for this itemset for η = 50% of the traces. Note that the
use of the thresholds ρ and η ensures us to infer PO-LPMs that meet minimum support
requirements, as in the case of single LPMs.

5 Evaluation

In this section, we describe two sets of experiments. First, we evaluate the speedup in
Local Process Model (LPM) mining that is obtained by applying the technique of Sec. 3.



Secondly, we explore the resulting PO-LPMs obtained by applying the technique of Sec. 4.
We evaluate both on the same collection of real-life event logs, which is described below.

Datasets: We evaluated our technique using four real-life event logs. The first event log
contains execution traces from a financial loan application process at a large Dutch financial
institution, commonly referred to as the BPI’12 log [10]. This log consists of 13087 traces
(loan applications) for which a total of 164506 events have been executed, divided over 23
activities. The second event log contains traces from the receipt phase of an environmental
permit application process at a Dutch municipality, to which we will refer as the receipt phase
WABO log [4]. The receipt phase WABO log contains 1434 traces, 8577 events, and 27 activ-
ities. The third event log contains medical care pathways of sepsis patients from a medium
size hospital, to which we will refer as the SEPSIS log [24]. The SEPSIS log contains 1050
traces, 15214 events, and 16 activities. Finally, as fourth event log we use a dataset from
the lighting system of a smart office environment, which was gathered in [36]. This dataset
contains continuous values for the color temperature and the light intensity of the lighting
in four different areas in the office space. Events correspond to interactions with the lighting
interface that result in changes in the color temperature and intensity of the lighting in one or
more areas and each case is a working day. The event names are converted from continuous
values to symbolic activities using the well-known technique SAX [21], resulting in eight
categories for each event representing the color temperature and intensity in each of the four
areas. We refer to this log as Laplace and it contains 92 traces, 1557 events and 218 activities.

5.1 Mining LPMs Using Subtraces

We now explore the effect of using subtraces to the efficiency of LPM mining, for which we
perform two sets of experiments. First, we investigate the effects of only using SUBDUE
projections, i.e., using the projection-based LPM mining procedure of [32] while using
the activities in SUBDUE subtraces as projections. Then, we exploit both projections and
ordering constraints as described in Sec. 3.

Tools & Configurations: We use the iterative Markov LPM mining algorithm implemented
in the LocalProcessModelDiscovery package1 of the ProM framework [34]. We have
implemented the novel LPM mining approach based on SUBDUE projections and con-
straints in the ProM package LocalProcessModelDiscoveryWithSubdueConstraints2. For
both Markov-based LPM and subtrace-based LPM mining we use the standard ProM
configurations. For SUBDUE we use the standard implementation3, in which we varied
the number of iterations. Note that a high number of SUBDUE iterations is expected to
be beneficial for the quality of the LPM results: more iterations lead to a more process
behavior being captured in subtraces. However, this negatively impacts the speedup of
LPM mining. Moreover, by construction, SUBDUE extracts the largest frequent subtraces
in the first iterations. Hence, we expect the obtained subtraces to be able to represent most
of the process behaviors even using only a few iterations. Therefore, we explore using 1,

1 https://svn.win.tue.nl/repos/prom/Packages/LocalProcessModelDiscovery/
2 https://svn.win.tue.nl/repos/prom/Packages/LocalProcessModelDiscoveryWithSubdueConstraints
3 http://ailab.wsu.edu/subdue/



5 and 10 iterations, and to verify our assumption we additionally use 10000 iterations. All
experiments are performed on an 2.4 GHz Intel i7 machine, equipped with 16 Giga of RAM.

Methodology: We evaluate our approach using two dimensions. First, we consider the
reduction in the search space size, which represents how much speedup is obtained in the
mining procedure. Secondly, we consider the quality of the mined LPMs by comparing the
LPMs mined using SUBDUE projections and constraints to those mined when using the full
search space. This second dimension is relevant since using projections with LPM mining
might lead to not all LPMs being found [32]. By comparing the LPM rankings obtained by
mining with and without projections we can assess to what extent the use of projections
affects the results. We compare the ranking using Normalized Discounted Cumulative Gain
(NDCG) [6,17], which is a widely used metrics to evaluate ranked results in information
retrieval. Generally, NDCG@k is used, which only considers the top k elements of the
ranking. NDCG consists of two components, Discounted Cumulative Gain (DCG) and Ideal
Discounted Cumulative Gain (IDCG). DCG aggregates the relevance scores (i.e., the score
obtained with respect to the quality metrics) of individual LPMs in the ranking in such a
way that the graded relevance is discounted with logarithmic proportion to their position
in the ranking. This results in more weight being put on the top of the ranking compared
to lower parts of the ranking. Formally, DCG is defined as: DCG@k =

∑k
i=1

2reli−1
log2(i+1) ,

where reli is the relevance of the LPM at position i. Normalized Discounted Cumulative
Gain (NDCG) is obtained by dividing the DCG value by the DCG on the ground truth
ranking (called Ideal Discounted Cumulative Gain). Normalized Discounted Cumulative
Gain (NDCG) is defined as: NDCG@k = DCG@k

IDCG@k .
As a baseline we apply the Markov-based projection technique from [32] iteratively

until all projections contain at most seven activities, and compare the search space reduction
and the NDCG obtained when using this approach with the search space reduction and
NDCG obtained when using projections and constraints from SUBDUE subtraces.

Results: Table 1 shows the results for the four logs. The results obtained without using
projections or constraints are considered to be the ground truth LPM ranking and therefore
have NDCG@k values of 1.0 by definition. The results obtained by the best heuristic config-
uration(s) are reported in bold and between parenthesis is the number of SUBDUE iterations.

Iterative Markov [32] projections result in a reduction of the search space by a factor
between 43.50x (BPI’12) and 4365.48x (Laplace), while the high NDCG values indicate
that the majority of the top 20 LPMs of the ground truth are still found. Using the constraints
extracted from SUBDUE subtraces obtained with 10k SUBDUE iterations together with
iterative Markov projections further increases the speedup of LPM mining on all four logs
while resulting in identical LPM rankings.

The search space size of LPM mining with SUBDUE projections depends on the
number of iterations performed by SUBDUE: more iterations result in a larger number of
unique sets of activities, leading to more projections and a larger LPM search space, but at
the same time increasing the quality of the mined LPMs in terms of NDCG. Note that the
quality of the LPM mining results differs between the logs when one SUBDUE iteration is
used. This is because for logs with few activities a single subtrace can already capture most
relevant process behavior, while for logs with many activities it can only capture a small
part. The use of SUBDUE projections leads to a higher speedup than iterative Markov



Table 1: The search space size and NDCG results for mining LPMs with and without
SUBDUE projections and constraints.
Event Log Projections

(iterations)
Constraints
(iterations)

Search Space
Size

Speedup NDCG@5 NDCG@10 NDCG@20

BPI’12

None None 1567250 - 1.0000 1.0000 1.0000
Iterative Markov None 36032 43.50x 0.9993 0.9987 0.9865
Iterative Markov SUBDUE (10k) 21084 74.33x 0.9993 0.9987 0.9865
SUBDUE (1) None 10608 147.74x 0.9993 0.9987 0.9830
SUBDUE (5) None 10740 145.93x 1.0000 0.9994 0.9870
SUBDUE (10) None 10904 143.73x 1.0000 0.9994 0.9903
SUBDUE (10k) None 12666 123.74x 1.0000 0.9994 0.9903
SUBDUE (1) SUBDUE (1) 2718 576.62x 0.9993 0.9987 0.9830
SUBDUE (5) SUBDUE (5) 2620 598.19x 1.0000 0.9994 0.9870
SUBDUE (10) SUBDUE (10) 2874 545.32x 1.0000 0.9994 0.9903
SUBDUE (10k) SUBDUE (10k) 4012 390.64x 1.0000 0.9994 0.9903

Receipt phase

None None 1451450 - 1.0000 1.0000 1.0000
Iterative Markov None 12074 120.21x 0.9418 0.8986 0.8238
Iterative Markov SUBDUE (10k) 10610 136.80x 0.9418 0.8986 0.8238
SUBDUE (1) None 8176 177.53x 1.0000 0.9994 0.9903
SUBDUE (5) None 8256 175.81x 1.0000 0.9994 0.9903
SUBDUE (10) None 8264 175.64x 1.0000 0.9994 0.9958
SUBDUE (10k) None 8504 170.68x 1.0000 0.9994 0.9958
SUBDUE (1) SUBDUE (1) 4012 390.64x 1.0000 0.9994 0.9903
SUBDUE (5) SUBDUE (5) 1862 779.51x 1.0000 0.9994 0.9903
SUBDUE (10) SUBDUE (10) 2170 668.71x 1.0000 0.9994 0.9958
SUBDUE (10k) SUBDUE (10k) 2178 666.41x 1.0000 0.9994 0.9958

SEPSIS

None None 315451 - 1.0000 1.0000 1.0000
Iterative Markov None 6304 50.04x 0.9332 0.9148 0.8613
Iterative Markov SUBDUE (10k) 3768 83.72x 0.9332 0.9148 0.8613
SUBDUE (1) None 12 26287.58x 0.5763 0.3771 0.2489
SUBDUE (5) None 334 994.46x 0.9916 0.9671 0.9472
SUBDUE (10) None 394 800.64x 0.9923 0.9692 0.9534
SUBDUE (10k) None 1034 305.08x 0.9923 0.9692 0.9534
SUBDUE (1) SUBDUE (1) 10 31545.10x 0.5763 0.3771 0.2489
SUBDUE (5) SUBDUE (5) 174 1812.94x 0.9916 0.9671 0.9472
SUBDUE (10) SUBDUE (10) 144 2190.63x 0.9923 0.9692 0.9534
SUBDUE (10k) SUBDUE (10k) 470 671.17x 0.9923 0.9692 0.9534

Laplace

None None 4784569 - 1.0000 1.0000 1.0000
Iterative Markov None 1096 4365.48x 0.8261 0.7942 0.7635
Iterative Markov SUBDUE (10k) 746 6413.63x 0.8261 0.7942 0.7635
SUBDUE (1) None 12 398714.08x 0.4354 0.2836 0.1841
SUBDUE (5) None 42 113918.31x 0.5061 0.3296 0.2139
SUBDUE (10) None 72 66542.35x 0.7909 0.5683 0.3689
SUBDUE (10k) None 730 6554.20x 0.9096 0.8690 0.7928
SUBDUE (1) SUBDUE (1) 10 478456.90x 0.4354 0.2836 0.1841
SUBDUE (5) SUBDUE (5) 34 140722.62x 0.5061 0.3296 0.2139
SUBDUE (10) SUBDUE (10) 56 85438.73x 0.7909 0.5683 0.3689
SUBDUE (10k) SUBDUE (10k) 582 8220.91x 0.9096 0.8690 0.7928

projections on all logs, even SUBDUE constraints are not used. At the same time, when
enough SUBDUE iterations are used, SUBDUE projections result in higher NDCG. This
shows that SUBDUE subtraces are more effective in finding related sets of activities for use
as projections in LPM mining compared to Markov clustering.



The constraints extracted from SUBDUE subtraces in combination with SUBDUE-
based projections results in considerably higher speedup on all logs without resulting in
lower NDCG. On three logs, using 10 SUBDUE iterations is sufficient to achieve the
highest quality LPMs, while only on the Laplace log more iterations are needed. Using
SUBDUE projections and constraints we have found speedups between 598.19x (BPI’12)
and 478456.90x (Laplace). To put these results into perspective: this brought down the
mining time on the BPI’12 log from 24 minutes to less than two minutes. This shows that
subtrace mining results can be used to speed up LPM mining. Additionally, in [31] we
showed that the mined LPMs provide additional process insights in comparison to subtraces,
meaning that it is actually useful to perform LPM mining after subtrace mining.

5.2 Mining Ordering Relations Over LPMs

In this section, we evaluate our approach to discover PO-LPMs from a set of LPMs. We
propose a set of measures to assess the quality of PO-LPMs and we discuss the results that
we obtained for the four logs. Note that the notion of quality exploited in these experiments
differs from the one used before. In the previous experiments, the quality of the different
LPMs set was intended as their similarity with the set of LPMs discovered by the exhaustive
search, to evaluate the impact of the pruning of the search state. Here, we focus on exploring
the benefits of considering larger and possible unconnected portions of process behaviors.
Therefore, we evaluate the balance between the loss in support and the gaining in size of
PO-LPMs with respect to single LPMs sets. Additionally, we show how PO-LPMs can be
used to merge LPMs resulting in higher-level LPMs that describe a larger fragment of the
process.

Tools & Configurations: For each log we use the set of LPMs that we obtained in
the experiments of Sec. 5.1 for projections using 10k SUBDUE iterations and use the
implementation of the technique to reduce redundancy in LPM results [30] as available in
ProM package LocalProcessModelConformance4. We implemented the PO-LPM mining
approach of Sec. 4 in PHP5 and use the implementation of the FP-Growth itemset mining
algorithm in the SPMF pattern mining library [11] to obtain the frequent itemsets (FI
hereafter), i.e. sets of frequently co-occurring LPMs.

Methodology: We test our technique with three types of sets of FI : 1) the entire set of FI ;
2) the set of closed FI, i.e. the subset of FI where for each itemset i there exists no other
itemset j such that i⊂j with identical support to i; 3) the set of maximal FI, i.e. FI where
for each itemset i there exists no other itemset j with i⊂j where the support of j exceeds
ρ. We vary ρ from 1% to 100% increasing it in steps of 1%. We set η=50% since, as a rule
of thumb, it is reasonable to consider only ordering relations occurring at least in more than
half of the cases in which the LPMs occur together. Lower values for η would likely result in
PO-LPMs involving multiple and infrequent relations between pairs of LPMs, thus affecting
the understandability and the representative capability of the output. We evaluate the quality
of the discovered PO-LPMs along two dimensions: 1) the amount of information provided

4 https://svn.win.tue.nl/repos/prom/Packages/LocalProcessModelConformance
5 https://surfdrive.surf.nl/files/index.php/s/PeD64m5xr5hxcqi



Table 2: LPMs set statistics inferred from the three event logs.
Log FI #LPMs Avg. #Act Avg. Supp (%) Avg. IR

BPI’12
- 5 2 41.6 0.036
All 210 7.05 3,16 0.006
Closed 9 7.6 20.5 0.035
Maximal 9 7.6 20.5 0.035

SEPSIS
- 5 2.4 53.8 0.090
All 136 7.61 3.7 0.015
Closed 46 7.85 7.6 0.037
Maximal 26 8.69 8,8 0.038

Laplace
- 18 2 9 0.0009
All 65758 15.97 1 0.0007
Closed 21 8.19 1 0.0004
Maximal 21 8.19 1 0.0004

on the process (i.e., pattern size) and 2) the portion of process behaviors they represent
(i.e., their support). It is easy to see that there is a trade-off between these dimensions:
larger patterns typically have lower support. What is the optimal trade-off between the
two dimensions depends on the process analysis task at hand and needs to be decided by
the process analyst. Here, we investigate the trade-off between the dimensions as a result
of ρ. To capture both dimensions in a single measure we also define Information Ratio (IR)
measure as follows: IR = #activitiesLPM

#activitiesProcess ×
#occurrences

#traces . Function IR yields values
in interval [0, 1] with 0 corresponding to an empty set of LPMs and 1 corresponding to
a set of LPMs that involves all process activities and occurs in all traces.

Results: Tab. 2 reports statistics on the set of PO-LPMs that are inferred from three of
the four logs for the three different itemset mining approaches, as well as for the original
set of LPMs (“-” in column FI). Columns #LPMs, Avg. #Act, Avg. Supp (%), and Avg. IR
respectively indicate the number of the LPMs in the set, the average number of activities per
LPM, the average support of the LPMs, and the average information ratio. The receipt phase
log is missing in the table, as only two LPMs remained after the redundancy reduction step,
between which no ordering relation could be found.

It should be noted that by combining the LPMs inferred from each log, for the BPI’12
log we derived 10 activities out of 23 activities in the process. Respectively for the SEPSIS
and Laplace logs we derived 10 out of 16 and 30 activities out of 218 activities. This suggests
that the processes under analysis involve many infrequent activities that do not need to be
modeled to capture most of the structure in the process, and therefore, they are not in the LPM
set. In turn, this implies that most of the LPMs involve only a small fraction of the process
activities. This explains why the IR values overall are very small, regardless of log and
settings. However, this does not affect our analysis, since we investigate how IR values vary
on the same log between different PO-LPMs sets instead of considering their absolute value.

BPI’12 All FI configurations led to PO-LPMs involving over three times the amount of
activities of the initial LPMs. Using all PO-LPMs results in a large support drop, while it does
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Fig. 7: The support and the number of activities of each LPM in the result set using for
original LPMs (red diamonds) compared with PO-LPMs (blue circles) obtained using all,
closed and maximal frequent itemsets.

not lead to larger LPMs compared to the closed and maximal PO-LPMs. Fig. 7a shows more
detailed results by plotting support against the number of activities for single LPMs, and
after merging them using all, closed, and maximal frequent itemsets. We discretized support
values in bins of 5%. Each dot in the plot represents the set of LPMs that involve n activities
and has a support within [s − 0.05, s], where s denotes the support represented by the
bin. The larger the size of the dot is, the larger the size of the corresponding set of LPMs is.

All configurations led to LPMs with a dimension at least double than and up to six
times the dimension of single LPMs. The set of all PO-LPMs involves a high number of
LPMs with a support smaller or equal to 5%, which motivates the low support values and,
in turn, the worsening of the IR values with respect to the single set. Note that most of these
low-support PO-LPMs were discarded in the closed and maximal sets, which involve only
10 LPMs each, against the 210 of all PO-LPMs. However, most of the LPMs in these sets



Fig. 8: One of the PO-LPMs from the closed set for BPI’12.

have a support lower than or equal to 20%, thus leading to an average support value equal
to around the half of single LPMs.

Fig. 8 presents an example of a merged LPM that is built from the PO-LPM obtained
from the closed (maximal) set. The PO-LPM is represented as a Petri net (introduced
in Sec. 2.1), where circles represent places, rectangles represent transitions, and black
rectangles depict τ -transitions. Places that belong to the initial marking contain a token

and places belonging to a final marking are marked as . The dotted lines surround the
original LPMs and edges between original LPMs are labeled with their ordering relation.
This merged LPM consists of eventually relations between LPM 1 and LPM 3 and between
LPM 3 and LPM 2. This PO-LPM shows that after submitting a loan application it was
accepted and finalized, followed by one or more calls to the customer for additional
information and finally a validation of the application documents. This merged LPM occurs
in 25% of the traces, which is significant given its size. Note that LPMs of this size cannot
be mined with existing techniques. Given its size and support this PO-LPM provides the
analyst with a higher-level and more meaningful representation of the process compared to
the three LPMs separately.

SEPSIS We obtained a small number of single LPMs, mostly comprising two activities,
with one LPM involving 4 activities. PO-LPMs are on average three times larger than the
single LPMs. However, for this log the increase in size was not enough to properly balance
the loss in terms of support; indeed, all configurations achieved IR values worse than the
set of original LPMs. The set of all PO-LPMs is again the one with the lowest IR value,
while the closed and maximal sets have similar performance. Fig. 7b provides the scatter
plot of size/support for LPMs obtained from the SEPSIS log for all tested configurations.
The PO-LPMs have a size up to six times the one of most single LPMs; however, many
of them have a support between 1% and 5%. Some of these low-support LPMs were not
filtered neither in the closed nor in the maximal set.

Fig. 9 reports one of the PO-LPMs with the highest support. It starts with the registration
of the patient in the emergency room (ER), followed by filling the general triage document
(ER Triage), which is done concurrently to either filling in a triage form for sepsis cases (ER
SEPSIS Triage) or the infusion of some liquids (IV Liquid). Later in the process, LPM 4 and
LPM 5 are executed in parallel. LPM 4 shows that the patient was admitted into the normal
care ward and CRP was performed (i.e., a test to detect inflammation); LPM 5 shows that
the patient’s leukocytes were tested and she was then sent back to the emergency room.
Also here, we obtained a meaningful description of interconnected phases of the process
and obtained a reasonable support value (i.e, 12%).



Fig. 9: One of the PO-LPMs from the maximal set for SEPSIS.

Fig. 10: One of the PO-LPMs from the closed set for Laplace.

Laplace Both single LPMs and PO-LPMs lead to very low IR values for the Laplace log.
The reason is that this log is much less structured than the other logs we analyzed, resulting
in LPMs with a low support (1%-2%). Moreover, because this process contains many
activities, these LPMs involve a small fraction of those activities. On this log, differently
from the other logs, the all itemsets configuration obtains high IR values than the others.
All configurations led to an average support of 1%; however, PO-LPMs obtained from all
frequent itemsets have twice the average size compared to closed and maximal itemsets.
The main reason is that the maximal and closed sets filter out many large (but non-maximal
or non-closed) PO-LPMs. Fig. 7c provides the scatter plots for size/support for LPMs
in the Laplace log for all tested configurations. As expected, we got many large LPMs
in the lowest support interval for all configurations. This is particularly evident for the
first configuration. It is worth noting that PO-LPMs were able to achieve growth of up to
15 times the average size compared to single LPMs, although this growth comes with a
decrease of support from around 40% to a maximum of 1%.

Figure 10 shows one of the closed PO-LPMs with the highest support mined for the
Laplace log. The figure shows that when we have a couple of signals, occurring in every
order, representing a switch either from low to high values or from high to low values for
both the color tone and the light intensity for the first office area, this pair is eventually
followed by another pair of signals, representing a switch of the light intensity values in the
same area. The support of this PO-LPM is 2%.

6 Related Work

We discuss two areas of related work: subprocess mining and partial order discovery.

Subprocess Mining. Several approaches have been proposed to extract the most relevant sub-
processes (intended as subgraphs) from a set of process execution traces. Some approaches
propose to extract subprocesses from sequential traces [3,16]. For instance, Bose et al. [3]
mine subprocesses by identifying sequences of events that fit a priori defined templates.



Compared to these approaches, our approach does not require any predefined template
and extracts subprocesses that are the most relevant according to their description length.

Several other techniques, like LPM mining, focus on the mining of more complex
patterns that allow for control-flow constructs. Chapela-Campa et al. [8] developed a tech-
nique called WoMine-i to mine subprocess patterns with multiple control-flow constructs
that are infrequent. Lu et al. [22] recently proposed an interactive subprocess exploration
tool, which allows the discovery of subprocess patterns that a process analyst can modify
based on domain knowledge. Greco et al. [14] propose a Frequent Subgraph Mining (FSM)
algorithm that exploits knowledge about relationships among activities (e.g., AND/OR
splits) to drive subgraphs mining. Graphs are generated by replaying traces over the process
model; however, this algorithm requires a model properly representing the event log, which
may not be available for many real-world processes.

Partial Order Discovery. The discovering of partial ordering relations among log events
has been traditionally addressed by Episode Discovery [25]. An episode is defined as a
collection of partially ordered events. The goal of Episode Discovery consists in determining
all the episodes in an event log whose support is above a user-defined threshold. Episodes
are usually detected by grouping together events falling in the same window (e.g., a time or
a proximity window), generating all possible candidates (i.e., all possible partial orders
configuration) and then checking the frequency of the candidates. Since the seminal work
of Mannila et al. [25], several approaches have been proposed to enhance the efficiency
of episode discovery, addressing different application domains (e.g., [15,37]). Recently,
Leemans et al. [19] introduced an approach tailored to discover episodes from event logs
generated by business processes, where it is possible to exploit the notion of process
instance to determine the episodes. The output of their approach consists of directed graphs
where nodes correspond to activities and edges to eventually follow precedence relations.
Our work presents some similarities with [19], in the sense that also the discovery of
our PO-LPMs is based on the notion of process instances. However, our work defines
ordering relations among patterns of events, rather than between single events. Moreover,
our approach provides a more fine grained analysis by distinguishing among sequential,
eventually and concurrency relations.

7 Conclusions and Future Work

In this work, we have explored the synergy effects between subtrace and LPM mining,
showing how their combination enables the gathering of relevant process insights that
would remain hidden when both are applied separately. Specifically, we extended the LPM
algorithm in [32] to account for ordering constraints mined using SUBDUE subtraces.
Moreover, we proposed an approach (adapting the approach of [13]) to derive ordering
relations between LPMs to infer partial orders between them. We evaluated our approach on
four real-world event logs. The results show that mining LPMs with SUBDUE projections
and constraints outperforms the current state-of-the-art techniques for LPM mining both in
quality as well as in computation time. Our experiments also show that the approach is
able to infer partially ordered models, thereby providing a more complete and meaningful
overview on the process compared to single LPMs, although this comes at the price of a
loss in support.



In future work, we plan to explore the use of other subtrace mining techniques to derive
LPMs. Moreover, we plan to investigate semi-automatic techniques to move from PO-LPMs
to process models expressed in a standard notation by converting the partial relations in
actual process constructs. This will allow the reuse of the discovered process patterns for
further analysis.
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