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Abstract—Previous analyses of IKEv2 concluded that the
protocol was suffering from two authentication vulnerabilities:
the penultimate authentication flaw and a vulnerability that
leads to a reflection attack. In this paper we analyze the IKEv2
protocol specification using the Spin model checker. To do so we
extend and improve an existing modeling method that allows
analyzing security protocols using Spin. For completeness we
indicate each abstraction we make when writing the model.
As a result we show that the reflection attack is actually not
applicable. We further discuss two modifications of the protocol
and prove that both of them do overcome the vulnerability the
penultimate authentication flaw.

I. Introduction

Internet Key Exchange version 2 (IKEv2) is the au-
thenticated key-exchange protocol used in the Internet
Protocol security architecture (IPsec). A security protocol
such as IKEv2 can suffer from two types of vulnerabilities:
specification vulnerabilities and implementation vulnera-
bilities.

An appropriate approach to avoid implementation vul-
nerabilities is to use modern automated testing tech-
niques like fuzzing. As a matter of fact, the developers
of the strongSwan IKEv2 implementation have recently
announced [1] that part of their code base is now fuzzed
using Google’s OSS-Fuzz [16] infrastructure. Fuzzing is
an active research field in which a lot of progress has
been made, e.g. by embracing additional techniques such
as symbolic execution.

A specification vulnerability is inherent to the protocol
itself and cannot be fixed by any change in the implemen-
tation. An efficient way to find specification vulnerabilities
is to use automated techniques, such as model checking.
Model checking allows to detect specification flaws in
early stages of the development process, which in turn
reduces total cost of solving the flaws. Furthermore, model
checking is an exhaustive technique: it can formally prove
that a protocol specification model meets its goals. Finally,
security protocols are often too complex to rely only upon
human understanding: IKEv2 is made of sixteen different
payloads and even more substructures and fields. IKEv2
contains a mechanism of rekeying, which negotiates the
secret keys periodically. It is designed so as to work even
in the presence of Network Address Translation (NAT)
between the peers. IKEv2 specifies not less than twenty-
nine types of notification and error messages. Facing such
a complexity, it seems sound to use an automated process
to verify IKEv2.

Model checking has been used, to our knowledge, twice
to analyze IKEv1 (23| [11] and three times to analyze
IKEv2 (26, 19, |11]. Tools that were used are NRL [24],
OFMC [7], Scyther [13] and DH-ProVerif [19]. It revealed
two authentication vulnerabilities that were found in both
IKEv1 and IKEv2: the penultimate authentication flaw
and the reflection attack.

In this paper, we start by formally describing IKEv2’s
payloads in Section [LI} We further give some background
on model checking security protocols, previous analyses of
IKEv2, and the Spin model checker in Section[[TI} We then
analyze IKEv2 using Spin. To our knowledge it is the first
time that Spin is used to analyze such a complex protocol.
To do so, we extend and improve the method of Ben Henda
[8] for modeling protocols in Promela (Spin’s modeling
language). We present our IKEv2 model in section
and provide its source code so that it can be reused. We
explain that Spin is not the most appropriate tool for
analyzing security protocols. Other tools such as ProVerif
[9] and Tamarin [25] offer more realistic models.

Our results, detailed in Section [V] confirm the penulti-
mate authentication flaw, but show that the reflection at-
tack has no practical existence against IKEv2. The model
of [11], which reported the vulnerability, was missing some
payloads that actually prevent the attack. Finally, we
discuss in Section [VI] two possible modifications of the
protocol, and formally prove using model checking that
each of them eliminates the penultimate authentication
flaw.

II. The IKEv2 protocol

The IKEv2 specification [18] is managed by the Internet
Engineering Task Force (IETF). The goal of IKEv2 is to
allow two peers to dynamically negotiate cryptographic
algorithms and material in order to set up an IPsec [27]
security association (SA). A security association is a set
of security parameters and keys which enables two peers
to exchange protected traffic. IKEv2 consists of three
main exchanges: IKE_SA INIT, IKE_AUTH and CRE-
ATE CHILD_SA. During the IKE SA INIT exchange
the two peers negotiate cryptographic algorithms and run
a Diffie-Hellman protocol to generate a shared secret.
Keying material derived from this secret will be used with
the algorithms agreed upon to encrypt subsequent IKEv2
messages. The result of an IKE__SA_INIT is called an IKE
SA. Once the IKE SA is initiated, the two peers perform
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Fig. 1. The IKEv2-Sig protocol. This is the first phase of IKEv2,
using signature authentication method.
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Fig. 2. The IKEv2-Child protocol. This is the second phase of IKEv2.

mutual authentication using the IKE__AUTH exchange to
deter Man-in-the-Middle attacks. This authentication can
be based on either pre-shared keys or digital certificates.
This IKE AUTH exchange is also used to establish

an initial IPsec SA. Subsequent IPsec SAs and IKE

SAs will be created through the CREATE_CHILD_SA

exchange (possibly replacing existing SAs for the purpose

of rekeying).

IKEv2 aims to guarantee mostly two security prop-
erties. First, that the keying material generated by the
IKE_SA_INIT and CREATE__CHILD_SA exchanges is
secret, i.e. is only known to the two parties involved. Sec-
ond, that the parties involved are mutually authenticated:
each party must prove that it really has the identity it
pretends to have. In this paper, we use model checking to
verify that IKEv2 actually satisfies these two properties.

To simplify the model checking process, we target
specific parts of IKEv2. These parts constitute protocols
on their own, so we call them subprotocols. We define the
following ones:

IKEv2-Sig consists of one IKE_SA INIT exchange and
one IKE_AUTH exchange. It uses digital signature
authentication.

IKEv2-PSK consists of one IKE__SA_INIT exchange and
one IKE_AUTH exchange. It uses pre-shared key
authentication.

IKEv2-Child consists of one CREATE CHILD SA ex-
change, where key-exchange payloads are included
(hence where a Diffie-Hellman protocol is run).

For an agent a, we write prk(a) its private key and
pbk(a) its public key. For two agents a and b, we write
psk(a,b) their pre-shared key. We write g the Diffie-
Hellman generator. For an agent a performing an IKEv2
subprotocol, we use the following notation for payloads
that it sends: (hdra)ien., denotes its IKEv2 headers, ke,
denotes its key-exchange payload, n, denotes its nonce
payload and auth, denotes its authentication payload. We
also write z, its Diffie-Hellman secret number, which is
not sent.

For an agent a performing an IKEv2 subprotocol, we
write rfq, ¢fq and mid,, where [ is an integer, to
respectively denote the Response flag, Initiator flag and
message ID fields of the IKEv2 headers that it sends. We
simply note them rf,, i f, and mid, when the subprotocol
contains only one exchange. The Response flag is set to 1
when the message it is in is a response, and the Initiator
flag is set to 1 when the message it is in is sent by the
IKE SA original initiator. The message ID is an integer
that starts with value 0 and is incremented at every new
exchange. Its role is to prevent replay attacks.

For a given message msg, we write {msg}{ the sym-
metric encryption of msg using key k, {msg}; the digital
signature of msg using key k (or keyed hash if k is a
pre-shared key), and {msg}} the message msg in plain
text but integrity protected by a checksum using key k.
For ¢,r € Ny, we write ¢" the modular exponentiation
(exponentiation in a finite field) of ¢ by r.

Figure [1| shows the message sequence charts (MSC) of
the TKEv2-Sig protocol. The IKEv2-PSK MSC can be
obtained from it by replacing prk(i) and prk(r) with
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psk(i,r). Figure 2| shows the IKEv2-Child MSC. These
MSCs contain several simplifications compared to IKEv2’s
RFC. For example, we do not show all IKEv2 payloads and
fields. We show only those that we think have an effect on
whether IKEv2 satisfies our properties or not. We explain
these simplifications in Section [[V}

On these figures, Initiator(i,r) means that agent ¢ is
taking the role of initiator and wants to perform the
protocol with agent r. Responder(r) means that agent r is
taking the role of responder and can perform the protocol
with whatever agent correctly authenticates itself and is
trusted by r. Finally, Responder(i,r) means that agent r
is taking the role of responder and can only perform the
protocol with agent .

Furthermore, in the IKEv2-Child MSC, the term k
denotes a key that is shared by the initiator and the
responder before running the subprotocol. It represents
the set of keys SK__ai, SK_ar, SK_ei, SK__er defined
in the IKEv2 RFC, which are used to protect the IKE SA
in which the subprotocol is performed. Finally, the term
keymat represents the term KEY M AT defined in the
IKEv2 RFC, which is a cryptographic value from which
are derived all keys protecting the traffic SA negotiated
through the subprotocol. It is the keying material of which
IKEv2 aims to guarantee the secrecy.

II1. Background
A. Model checking security protocols

Formal verification is the act of proving or disproving
that a system satisfies some property using a mathe-
matically based technique. Model checking is a formal
verification technique in which we represent the system
by a model, whose semantics is a transition system, and
explore systematically and exhaustively all its states and
transitions in order to prove that it satisfies the property.
We focus on Linear Temporal Logic (LTL) [20] properties.

LTL is built upon boolean logic with the addition of time
indicators like always (denoted O) and eventually (denoted
Q). The linear-time property is verified on each and every
execution trace of the model. The model is written in a
specific modeling language, such as Applied Pi Calculus
[3] or Promela [15]. The model checker takes as input
the system model, as well as a property over the model
state variables, and either returns Yes, returns No, or does
not give any response (e.g. by not terminating). When
they return no and when they can, some model checkers
also give a counter-example, i.e. an execution trace of the
model that contradicts the property. Figure [3| sums up
the steps of the model checking process. The principles of
model checking are explained in great details in [4, [10].

We want a security protocol to be secure even in the
presence of an adversary, that can intercept, drop, replay,
learn from and build messages. To formalize this, Dolev
and Yao first defined [14] what is now called the symbolic
model, or Dolev-Yao model. In this model, messages are
abstracted away as entities, cryptography is supposed to
be flawless and the intruder has full control over the
network. The adversary’s knowledge and the advancement
of some agents in their execution of the protocol can be
seen together as constituting a symbolic state. The actions
“an agent sends a message”, “an agent receives a message”,
“the adversary builds a message and sends it”, etc., can
be seen as actions modifying the state. Such a model thus
lends itself well to model checking techniques.

Therefore, in our case, the system mentioned earlier is
a protocol specification, played in some adversary model
(capabilities given to the intruder), and the properties
are security properties, like secrecy and authentication.
Different techniques can be used to represent and explore
the model, which model checkers abstract away: Models
can be explored in a forward or backward manner.
One can allow a finite or infinite number of runs (i.e.
protocol executions). States can be represented explicitly
or symbolically. Finally, abstractions can be used to trade
completeness for efficiency. A thorough state-of-the-art of
model checking security protocols is depicted in [6].

B. Related work

In 1999, Meadows finds two authentication weaknesses
in IKEv1 [23], using the NRL protocol analyzer. The first
one is a reflection attack, and the second one is called the
penultimate authentication flaw. We explain these later.

In 2003, IKEv2 is formally verified in the context of
the AVISPA project |26]. The authors find that IKEv2
also suffers from the penultimate authentication flaw.
However, they say that it cannot be exploited for further
purposes. They propose a counter-measure anyway: the
key confirmation.

In 2009, Kusters and Truderung use their tool DH-
ProVerif to verify IKEv2 [19]. Their analysis seems to
confirm the penultimate authentication flaw.



In 2010, Cremers performs an extensive analysis of
IKEv2 |11] using the Scyther tool. He confirms that IKEv2
suffers from the penultimate authentication flaw and, like
in the AVISPA project, concludes that this vulnerability is
harmless. In addition, [11] finds that the reflection attack
that was noted for IKEv1 is also possible on IKEv2.

C. The Spin model checker

Spin [17] is a general-purpose explicit-state model
checker. It takes Promela [15] as input language and
was designed to check LTL properties on asynchronous
process systems. Spin translates processes into finite-state
automata (hence the adjective explicit-sate), performs an
interleaving product on them and searches the resulting
state space for a property violation. Since a protocol is an
asynchronous process system, and since all the properties
we want to verify are safety properties (which are LTL
properties), Spin can be used for protocol verification.
However, it lacks native support for cryptographic primi-
tives and for an adversary model. To solve this, one can use
the method introduced by Ben Henda in [§]. We describe
this method later in Section [Vl

We observe that, even with the Ben Henda method
and our improvements to this method, Spin remains not
the most appropriate tool for model checking security
protocols: Our model only allows up to two sessions in an
execution trace, and a maximum number of tree agents
running these sessions. Furthermore, intruder knowledge
is bounded to one message and the complexity of messages
that the intruder can send over the network is limited.
Other tools that are specialized in security protocol model
checking do not suffer from these limitations. Such tools
include ProVerif 9], DH-ProVerif [19], Scyther [13] and
Tamarin [25].

IV. Modeling IKEv2 in Promela

As said in Section [lII} verifying IKEv2 using Spin
involves modeling three different concepts in Promela: the
protocol itself, the adversary model and the properties.
The Promela code we wrote is available at [2].

A. Modeling the protocol in Promela

Ideally, we would like to write a Promela code that
represents the exact behaviour of IKEv2 as defined in
its RFC. However, as pointed out in Section [[I, IKEv2
is far too complex to be fully modeled. For this reason,
we choose to model only a subset of IKEv2 that we think
satisfies the same security properties as the full-blown
protocol. We say that we model a reduced form of IKEv2.
For example, we do not include the traffic selector (TS)
payload in our model, because we think that it has no
effect on whether IKEv2 satisfies our properties or not.
Indeed, the TS payloads are not used in any cryptographic
operation. They neither play a role in key generation nor
in authentication. This abstraction is error prone and is
the reason why [11] finds an attack that does not exist
(the reflection attack). We discuss this in Section

The MSCs of Section [[I] represent the reduced protocols
that we want to model in Promela. We make the following
simplifications compared to the RFC of IKEv2. As said
above, we do not include all payloads and fields, because
only some of them are relevant to the properties we want
to verify. In addition, in the IKEv2 RFC, we have k =
prf(n;|n., g*i*r), where prf a is pseudo-random function
and | denotes concatenation. In our model, we simply have
k = ¢®*r. Finally, we abstract away key derivation: In
the RFC, the SK_d, ..., SK_pr keys are derived from
SKEYSEED, and the KEY M AT value is derived from
SK_d. In our model, those values are all represented by
a single term k.

An other problem we face in IKEv2 modeling is that
Promela was not designed to model security protocols,
but rather more general asynchronous process systems.
For example, it does not provide a simple way to model
encryption. We thus use the method of Ben Henda,
explained in [8]. In this method, roles are implemented
by processes, and the network by a synchronous channel.
We define Promela mtype constants (a Promela type of
variable) describing agents, keys and a small set of values
that agents can use as nonces during the protocol. As
an example, in the code below, taken from the initiator
process in our model, the initiator sends an IKE AUTH
request. Just before, we execute the Inirunning(i,r)
macro, which sets variable inirunningab to 1 if i = A
and r = B, variable arunning to 1 if ¢ = a and variable
brunning to 1 if i = b. These variables are used in
our properties expression, which we present later in this
Section.

Inirunning (i, r, k);
Comm!M3, k, FRO, FI1, MID1, k, i,

k, i, kei, ni, nr;

authkeyi ,

Listing 1. The initiator sending an IKE__AUTH request

Comm is the name of the channel over which the
message is sent. The M3 term indicates the type of
message (here IKE AUTH request). The FR0O and FI1
terms denote Responder and Initiator flags respectively set
to 0 and 1, and the MID1 term represents a message
ID set to 1. The other terms can easily be understood
since they resemble the terms we define in Section
On reception of the message, everything after k key
is interpreted as encrypted by k, and everything after
authkeyi key is interpreted as a signature computed
with our Promela equivalent of prk(i), or a keyed hash
computed with Promela equivalent of psk(i,r).

We improve the Ben Henda method in order to fit
the needs of IKEv2. Ben Henda does not provide a way
to model a Diffie-Hellman exchange, so we create it. It
requires adding a deduction step when adding a message
to the intruder’s knowledge. Indeed, when the intruder
learns a payload, we now need to check whether it can
deduce a key by modular exponentiation.



Even with the Ben Henda method, the nature of
Promela inherently adds a layer of abstraction to the
modeling process. In particular, because Spin is bounded
and because of the constraints in time and memory, we
allow a maximum of two sessions in an execution trace and
use three agents (A, B and C). Nevertheless, such a model
can capture a large class of attacks. In the code below,
taken from our model’s init process, we instantiate two
sessions: agent A taking the role of initiator and non-
deterministically intending to speak with B or C, and
agent B taking the role of responder.

if
run Initiator (A, B)
run Initiator (A, C)
fi;

run Responder(B);

Listing 2. Instantiation of two runs

B. Modeling the adversary model in Promela

The property we verify strongly depends on the capa-
bilities given to the intruder, during verification. Conse-
quently, Basin and Cremers decided in [5] to split each
security property into an adversary model and an atomic
property. We follow the same principle in our model.

Basin and Cremers translate several adversary models
from the literature into their own formalism. We im-
plement two of them in our model: the external Dolev-
Yao model (AdvEXT) and the internal Dolev-Yao model
(AdvINT). AdvEXT is a minimalistic symbolic model. As
explained in Section [[TI} cryptography is supposed to be
perfect, i.e. the intruder can only decrypt a message if it
possesses the decryption key. In addition, the intruder has
full control over the network: it learns from all messages
that are sent and can inject its own forged messages into
the network.

In AdvINT, the intruder has the same capabilities as in
AdvEXT, plus the LKRothers capability. The latter allows
it to compromise, at the beginning of the model execution,
the long-term keys of any agent that is not mentioned
in the property we are verifying. For example, in the
Aliveness property defined later in this Section, agents
A and B are mentioned. In AdvINT, the intruder thus
learns the private key of agent C. AdvINT corresponds
to the model used by Lowe to find his famous attack
on the Needham-Schroeder protocol [22]. A more precise
definition of LKRothers is given in [5].

In the Ben Henda method, the intruder is modeled by a
process (just like the initiator and responder roles), that
can non-deterministically receive from the channel, forge
a new message and send it, or replay a saved message.
The intruder’s knowledge is modeled by a boolean vector
(called Knows) indexed by all the protocol constants. A
memory of exactly one message is given to the intruder.

This is an abstraction of the adversary model. Unfortu-
nately, increasing this memory quickly leads to a path
explosion.

We improve the Ben Henda method concerning the ad-
versary model. To allow the intruder forging messages, Ben
Henda uses a general-purpose RandM essage macro that
chooses one value among all mtype constants, followed
by an IsValidMessage macro that checks the forged
message’s validity in regard to the intruder knowledge.
He proposes more efficient definitions of RandM essage,
but none of them are efficient enough for our analy-
sis. Our Randmlm2message macro (our equivalent of
RandMessage but only for IKE_SA_INIT) directly
chooses for each payload a value among mtype constants
whose type fits the payload. This greatly limits path
explosion, without losing any realistic behaviour. We
provide the code of Randmlm2message below.

inline Randmlm2message(pl, p2, p3, p4, p5,
p6, p7, p8, p9, pl0, pll, pl2, pl3)

/* The message is Ml or M2. We set the
Response and Initiator flags. */

if
pl = Ml; p2 = FRO; p3 = FI1
:: pl = M2; p2 = FR1; p3 = FIO
fi;
/* The message ID is 0. */
p4 = MIDO;
/* We set the Key Exchange payload. */
if
Knows [KEA] -> p5 = KEA
Knows [KEB] -> p5 = KEB
Knows [KEC] -> p5 = KEC
fi;
/* We set the Nonce payload. */
if
Knows [NA] -> p6 = NA
Knows [NB] -> p6 = NB
Knows [NC] -> p6 = NC
fi;

/* All other payloads are empty: they are
only used for the M3 and M4 messages. */

p7 = NULL;
p8 = NULL;
p9 = NULL;
pl0 = NULL;
pll = NULL;
pl2 = NULL;
pl3 = NULL;

}

Listing 3. The Randm1lm2message inline function makes the intruder
forge an IKE__SA_INIT message

Note that the range of messages that the intruder
can send over the network is limited. In Tamarin and
ProVerif adversary models, any payload in any message



sent by the intruder may contain any constants known
by the attacker, encrypted any number of times, using
several encryption algorithms and any key known by the
attacker. In our model, we restricted for each payload the
range of constants that may be sent by the intruder to
a pre-selected set of constants. For example, m1 and m2
messages’ fifth payload may only contain constants KEA,
KEB or KEC.

C. Modeling the properties in Promela

Ideally, we would like to verify the exact properties the
protocol claims to guarantee. However, security properties
can be quite vague. In particular, the “mutual authenti-
cation” mentioned in [18] is an unclear notion. For this
reason, researchers have split it into several definitions |21}
12]. We verify the following atomic properties:

Secrecy of keymat This property states that whenever an
agent has completed the protocol, the term keymat
that it computes will never be known to the intruder.

Aliveness This property states that whenever an agent A
has completed the protocol, apparently with an agent
B, then B has previously been running the protocol.

Weak agreement This property states that whenever an
agent A has completed the protocol, apparently with
an agent B, then B has previously been running the
protocol, apparently with A.

Agreement This property states that whenever an agent A
has completed the protocol, apparently with an agent
B, then B has previously been running the protocol,
endorsing the correct role, apparently with A, and A
and B agree on some terms

Aliveness, weak agreement and agreement are authen-
tication properties and were first defined by Lowe in [21].
For the initiator, “apparently with B” means that the
payload it received in the IKE__AUTH response equals B.
For the responder, “apparently with A” means that the
r payload it received in the IKE__AUTH request equals
A. We consider our authentication properties satisfied if
they are satisfied whatever role A is endorsing, i.e. if they
are satisfied for both the initiator and the responder. “B
has previously been running the protocol” means that B
has at least sent its last message. Obviously, A cannot have
any stronger guarantee: if B’s last event is a “receive”,
then the protocol cannot prove to A that this event was
triggered.

Note that agreement implies weak agreement, which in
turn implies aliveness. There are stronger authentication
properties that we could verify. The injective agreement
property, for example, adds to agreement the condition
that there is only one matching session. Our model
allowing only one session per role in a trace, it would
not be relevant to check injective properties.

For IKEv2-Sig and IKEv2-PSK, we make parties agree
upon the term keymat. For IKEv2-Child, however, we
cannot guarantee to the responder that the initiator has
computed keymat since the initiator has already sent

its last message when it computes keymat. Therefore,
for agreement in IKEv2-Child, we only guarantee to the
responder that the initiator has computed kei. To the
initiator we guarantee that the responder has computed
keymat

We make some improvements to the Ben Henda method
in the definition of our properties as well. Ben Henda
verifies only one variant of authentication that can be
seen as weak agreement where the peer has the correct
correct role. We implement aliveness, weak agreement and
agreement. In addition, our model of secrecy is more
faithful to the intuitive definition of secrecy: it is not
enough to check that the mtype constant we create for
keymat is not known to the intruder (as [8] does), one
needs to check that any constant that an agent having
completed the protocol considers as its keymat value, is
not known to the intruder.

The code below, taken from our model, defines the
properties’ invariants. If one of them becomes false during
execution, then the corresponding property is violated.
The values of the variables appearing in the invariants
are set during protocol execution. Their goal is to keep
track, for each agent, where it is at in its protocol
execution, as well as to whom it believes it is talking
and what value it has computed for keymat. We de-
fine the terms {ini,res}{running, commit}ab as in the
work of Ben Henda [§]: inicommitab (resp. rescommitab)
means that A (resp. B) has completed the protocol as
an initiator (resp. responder), apparently with B (resp.
A). In the same way, inirunningab (resp. resrunningab)
means that A (resp. B) has been running the protocol (in
the sense defined earlier in this Section) as an initiator
(resp. responder), apparently with B (resp. A). The term
arunning (resp. brunning) means that A (resp. B) has
been running the protocol. The value of the term ka (resp.
kb) is the mtype constant that A (resp. B) considers as its
keymat key. Finally, as explained earlier in this Section,
if Knowslka] is true, then the intruder knows the term
ka.

# define Invsecrecy ( \

(!inicommitab || !rescommitba || \
sta != NULL && !Knows[sta]) && \
(!rescommitab || !inicommitba || \

stb != NULL && !Knows[stb]) )

# define Invaliveness ( \

(!inicommitab || brunning) &&
(!rescommitab || arunning) && \
(!inicommitba || arunning) && \
(!rescommitba || brunning) )
# define Invweakagree ( \
(!inicommitab || resrunningab || \
inirunningba) && \
(!rescommitab || inirunningab || \
resrunningba) && \
(!inicommitba || resrunningba || \



inirunningab) && \
(!rescommitba || inirunningba
resrunningab) )

A

# define Invagree ( \

(!inicommitab || resrunningab && \
atca != NULL && atca = atrb) && \

(!rescommitab || inirunningab && \
atcb != NULL && atcb = atra) && \

(!inicommitba || resrunningba && \
atcb != NULL && atcb = atra) && \

(!rescommitba || inirunningba && \
atca != NULL && atca = atrb) )

Listing 4. Definition of our properties’s invariants in Promela

V. Analysis results

Our Promela code and the exact Spin commands we
used are available at [2]. We present our analysis results
in table 4] Allowing only two sessions in a trace, very few
amount of time and memory was necessary to perform
the verifications. For example, only 3s and 128 MB of
memory were necessary to prove aliveness on IKEv2-
Sig in AdVINT. Note that we used the bitstate hashing
optimisation. Our analysis yields one notable result: it
refutes the reflection attack that was found by previous
analyses.

In [11], Cremers claims that IKEv2-Child is vulnerable
to a reflection attack against the initiator. In this attack,
the intruder replays the initiator’s CREATE__CHILD__SA
request to itself. The initiator then responds to this
request, and the intruder replays this response to the
initiator. This would result in a violation of aliveness,
since the initiator would have thought having set up a
connection with an other agent, when in fact it would
have set it up with itself, the other agent not even being
alive.

However, |11] does not include the two Initiator and
Response flags of the IKEv2 header in his model. Their
role is explained in Section [[I] By adding these flags, our
analysis shows that IKEv2-Child satisfies aliveness, weak
agreement and agreement. Indeed, because of these flags,
during a reflection attack, the initiator will notice that the
request it receives comes from the original initiator (which
is itself). He will thus refuse to answer it. Furthermore,
the flags are integrity-protected: the RFC of IKEv2 says
(and we found through experiment that it was the case
in the strongSwan implementation) that the “Integrity
Checksum Data” field of the encrypted payload is “the
cryptographic checksum of the entire message starting
with the Fixed IKE header through the Pad Length”. The
intruder thus cannot successfully change these payloads
without knowing key k. Since secrecy of k is satisfied, the
reflection attack is not possible.

Cremers already pointed out the obvious defense against
the reflection attack: “breaking the symmetry of the mes-
sages, e. g., by including distinct constants and checking
their presence” [11]. We have shown that this defense is

already in place in the protocol. Furthermore, the defense
involves more than simply including distinct constants:
these constants need to be integrity protected.

Our analysis also confirms that IKEv2-Sig does not
satisfy weak agreement. This vulnerability is called the
penultimate authentication flaw and was already found in
previous analyses. This vulnerability is not a full violation
of the intuitive definition of authentication, because there
is no actual impersonation and secrecy is still satisfied.
Nevertheless, an important protocol such as IKEv2 should
satisfy strong forms of authentication.

VI. Counter-measures

A way to fix the protocol is to make the IDr payload
mandatory in IKE_AUTH request. The message sequence
chart on figure shows the modified protocol. The
drawback of this modification is that now the initiator
sends IDr to the responder before the responder has
authenticated itself. Therefore if the responder is an
attacker (we then speak of active attacker), the initiator
identity is revealed.

To fix IKEv2-Sig without disclosing the responder ID
to an active attacker, we add a third exchange, called
key confirmation. The key confirmation exchange is made
of an empty INFORMATIONAL request and an empty
INFORMATIONAL response. INFORMATIONAL mes-
sages are a type of message in IKEv2 that are e.g. used
as keep-alive messages. The message sequence chart on
figure[6] shows the modified protocol. Key confirmation has
already been proposed by Basin et al. in |26]. However this
modification has the drawback of adding a whole exchange
to the protocol and therefore increasing its cost in time,
memory, and computation power.

To verify that these modifications remove the penulti-
mate authentication flaw, we apply them to our Promela
models. We define four new subprotocols:

IKEv2-PSK-IDr consists of one IKE__SA_INIT exchange
and one IKE__AUTH exchange. It uses PSK authen-
tication and the IDr counter-measure.

IKEv2-Sig-IDr consists of one IKE_SA_INIT exchange
and one IKE_AUTH exchange. It uses Signature
authentication and the IDr counter-measure.

IKEv2-PSK-conf consists of one IKE SA_INIT exchan-
ge, one IKE__AUTH exchange and one KEY__CONF
exchange. It uses PSK authentication and key confir-
mation.

IKEv2-Sig-Conf consists of one IKE__SA__INIT exchange,
one IKE_AUTH exchange and one KEY_CONF
exchange. It uses Signature authentication and key
confirmation.

We apply the counter-measures to IKEv2-PSK as well,
to verify that they do not make it lose any guarantee. With
these modifications, we find that these four subprotocols
satisfy all our properties in all our adversary models:
IKEv2’s current security properties are preserved and the
protocol gains stronger authentication guarantees. The



Property Adversary model | IKEv2-Sig | IKEv2-PSK | IKEv2-Child

AdvEXT v v v
Secrecy
AdvINT v v
. AdvEXT v v v

Aliveness
AdvINT v v v
AdvEXT X v v

Weak agreement
AdvINT X v v
AdvEXT X v v
Agreement

AdvINT X v v

Fig. 4.

Analysis of IKEv2 using Spin. We write v'when a subprotocol satisfies a property in a specific adversary model, and Xwhen it does

not. A subprotocol satisfies a property if and only if the property is satisfied for both the initiator and the responder. Our analysis refutes

the reflection attack that was found by previous analyses.

msc IKEv2-Sig-1Dr

msc [KEv2-Sig-Conf

Initiator(i, r) Responder(r) |

|Initiat0r(i, r) | Responder(r)

hd’/‘il y k’ei, n;

th7-1 ) k€7-, Ny

{hdrio, {i, 7, auth; }; }$

{hdryo, {r, auth,}; }?

Fig. 5. The IKEv2-Sig-IDr protocol. We make IDr (7 in the figure
above) payload mandatory in the IKE AUTH request and modify
its processing by Responder.

modified Promela models can be found with our other
models at [2].

VII. Conclusion and future work

In this paper, we have performed a formal analysis of the
IKEv2 specification using the Spin model checker. To do
so we extended the method of Ben Henda [8] with a model
of Diffie-Hellman exponentiation, an implementation of
aliveness, a better implementation of secrecy and a more
efficient model of intruder message creation. We also
pointed out the different abstractions we made when
writing the model, showing that Spin is not state-of-the-
art for analyzing security protocols. Our analysis showed
that the reflection attack is not possible, due to IKEv2’s
Initiator and Response flags. Future IKEv2 models should
include these flags. Futhermore our analysis confirmed the
penultimate authentication flaw. As a counter-measure we

thﬂ y kei, n;

hdr’l'l I ke’!‘a Ny

{hdrig, {27 authz}z}z

{hdryo, {r, auth,}; }7

]l,df‘ig, {}Z

hdrys, {}3

Fig. 6. The IKEv2-Sig-conf protocol. We add the key confirmation
exchange. Connections are installed only after this exchange.

discussed two possible modifications of the protocol and
proved that both of them do overcome the vulnerability.

Although we have analyzed the ability of the speci-
fication to meet its security goals, this does not elimi-
nate implementation-level flaws, like buffer overflows and
memory leaks. As a consequence, a future work must be
performed to detect these flaws on the current and future
IKEv2 implementations, e.g. using modern techniques of
static analysis and fuzzing.
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