N

HAL

open science

Superposition with Structural Induction

Simon Cruanes

» To cite this version:

Simon Cruanes. Superposition with Structural Induction. Clare Dixon; Marcelo Finger. Frontiers
of Combining Systems, Springer, pp.172-188, 2017, 11th International Symposium on Frontiers of
Combining Systems - FroCoS 2017, Brasilia, Brazil, September 27-29, 2017, Proceedings, 978-3-319-
66166-7. 10.1007/978-3-319-66167-4_ 10 . hal-02062459

HAL Id: hal-02062459
https://inria.hal.science/hal-02062459
Submitted on 8 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-02062459
https://hal.archives-ouvertes.fr

Superposition with Structural Induction

Simon Cruanes

University of Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

Abstract. Superposition-based provers have been successfully used to
discharge proof obligations stemming from proof assistants. However,
many such obligations require induction to be proved. We present a new
extension of typed superposition that can perform structural induction.
Several inductive goals can be attempted within a single saturation loop,
by leveraging AVATAR [1]. Lemmas obtained by generalization or theory
exploration can be introduced during search, used, and proved, all in the
same search space. We describe an implementation and present some
promising results.

1 Introduction

Superposition-based theorem provers and SMT (Satisfiability Modulo Theory)
solvers have considerably improved automation in some proof assistants thanks
to hammers [2,3]. However, because these proof assistants provide inductive
datatypes, many theorems are out of reach of the automated provers, which are
not able to perform inductive reasoning. Such theorems include basic properties
of Peano arithmetic, reasoning about data structures such as lists and trees,
manipulating syntax trees (which are often represented as a recursive datatype),
etc.

Most state of the art theorem provers for first-order logic with equality
are based on superposition [4-7]. However, they often lack support for types
or (inductive) datatypes. Vampire [5] has recently gained some support for
datatypes [8] but does not perform induction yet.

Automatic inductive provers do exist [9-11] but they are usually not complete
(nor very efficient) on the classical first-order logic problems hammers rely on.
INKA [10] was based on resolution, but not superposition. A recent extension to
CVCA4 [12] equips it with inductive reasoning, but so far no major superposition-
based theorem prover has inductive capabilities. Kersani and Peltier modified
Prover9 to handle induction [13], but only for natural numbers; it is unclear
how their technique could be extended to arbitrary datatypes. Otter-A [14] can
use its (incomplete) higher-order unification algorithm to apply explicitly the
induction principle, but it does not try to introduce any lemma nor does it
handle defined functions or datatypes efficiently. Another superposition prover
able to prove some inductive properties is Pirate [15, unpublished], but in its
architecture each inductive property is solved in a separate saturation loop; it
resembles more an inductive prover that would use a superposition prover for
discharging subgoals.

In this work we propose a new architecture that permits a seamless integra-
tion of multiple induction attempts into the deduction process of a superposition
prover. All the proof attempts are performed in the same saturation loop [4]. This
has several advantages. First, if the problem does not actually need induction,
a regular first-order proof can be obtained as usual. Second, once a particular
inductive goal has been proved, it is considered as a normal first-order formula.
This means it can participate in all the usual inference and simplification rules
and contribute to the rest of the proof. Third, efforts are allocated to the various
inductive proof attempts using the same clause selection heuristics that drive the
first-order prover. This means the same elaborate heuristics can be reused for
inductive proofs.

Our approach relies on a variant of superposition with polymorphic types,
recursive functions, and inductive datatypes, as well as support for AVATAR [1]
for reasoning by case (Sect. 3). Regular splitting without backtracking [16] could
be used instead of AVATAR, but is less convenient and efficient. This richer vari-
ant of superposition treats defined functions efficiently. The prover can handle
problems expressed in TIP [17] (“Thousands of Inductive Problems”). It en-
codes the non-first-order constructs of TIP, such as pattern matching, during a
preprocessing step.

On top of this extension of superposition, we introduce a new rule to instanti-
ate the structural induction schema and prove a property by induction (Sect. 4).
Pursuing several inductive goals simultaneously is made possibly by introducing
a cut rule on top of AVATAR (Sect. 5). The properties to prove by induction
come from several sources: the input goal, explicit lemmas requested by the user,
or subgoals needed in already ongoing proofs (Sect. 6). The numerous heuristics
for guessing relevant lemmas that have been developed for decades [9,18-21] can
be adapted to our framework. We also present a simple way to filter out invalid
potential lemmas (Sect. 7).

To show the practical feasibility of the approach, we implemented the ex-
tensions of superposition and the inductive reasoning rules in Zipperposition,
a modular prover (Sect. 8). Comparisons with CVC4 on the TIP benchmarks
show that the implementation is reasonably competitive, and suggest that an
implementation in E or Vampire could lead to excellent results.

2 Basic Definitions

We define some notions and notations that will be useful for the rest of the
paper. An atomic type is a type constructor applied to 0 or more atomic types.
A (polymorphic) type has the form ITayy (71,...,7x) = 7 where the a;’s
are type variables and each 7; is an atomic type. By s,t,u,v we denote terms,
generated from variables z,y, z and function symbols f,g,h. By t we denote a
finite (possibly empty) sequence of terms. A term is ground if it contains no
variable. Given a term t and a position p, we write t|p for the subterm of t at p.
We write ¢t < u if ¢ is a (strict) subterm of w, i.e. if there is a non-empty position
p such that t = u| " A substitution is a mapping o from variables to terms such

that the set of variables dom(o) &f {z | © # xo} is finite. We always implicitly
restrict ourselves to well-typed terms, substitutions, etc.

A literal is an equation s ~ t or disequation s 7 t. Note that ~ is a logical
symbol, whereas = denotes syntactic equality. A proposition p is implicitly rep-
resented by p ~ T. A clause is a disjunction of literals, denoted by C or D. The
empty clause is the empty disjunction, equivalent to L (false). We sometimes
view clauses as multisets of literals. Ground literals and clauses are defined in
the obvious way.

We reuse some concepts from AVATAR [1]. A boolean mapping [-] is an
injective mapping from clauses (and more generally, in our case, of formulas)
into the propositional literals of a SAT solver. A clause with assertion, or A-
clause, is a pair of a clause C' and conjunction of boolean literals I, called the
trail, and noted C < I'. It holds in an interpretation if either C' holds, or I" does
not hold. We write M for boolean conjunction and @ for exclusive disjunction.

An inductive (data)type is defined by a set of constructors, at least one of
which is non-recursive — we ignore mutually recursive datatypes, which can be
encoded into a single datatype. A term t is purely inductive if every subterm
of t whose type is inductive, has the form ¢(t1,...,t,) where ¢ is a constructor
symbol. A constructor context C[o] is a term built from constructors, function
symbols of non-inductive type, and a unique occurrence of ¢; applying the context
to a term ¢, written C'[t], means replacing the occurrence of ¢ by t. C[t] is only
defined if it is well typed. A Herbrand model is standard if (i) it satisfies the
axioms of datatypes: exhaustiveness and disjointness of constructors; (ii) every
(ground) term is equal to some purely inductive term; (iii) equivalence classes
of inductive types are acyclic, i.e. for every non-trivial constructor context C[o],
t % C[t] is true in the model.

We seek to establish the satisfiability of formulas in standard models. To
achieve this, we will instantiate the induction schema over the inductive types.
The induction schema for an inductive type 7 is a second order formula para-
meterized by a variable P : 7 — bool, but we instantiate it into a first-order
formula that will be (dis)proved by superposition.

Ezample 1 (Natural Numbers). The type of natural numbers, nat, is a classic
inductive type whose constructors are {0,s}. Its inductive values are all the
natural numbers {0,s(0),...,s*(0),...}. The induction schema is VP : nat —
bool. P(0) A (Vn : nat. P(n) = P(s(n))) = Vn. P(n).

Ezample 2 (Lists). The type of polymorphic lists is list(«). Its constructors are
[] and (::) : a x list(a) = list(«). The purely inductive values of type list(r) are
finite lists of purely inductive values of type 7. The induction schema on lists is

Va. VP : list(er) = bool. P([]) A (Va : v 1 : list(ct). P(I) = P(x 1)) = VI. P(1)

3 Superposition with Recursive Functions and Datatypes

Before considering induction, we need the theorem prover to be able to handle
problems that contain defined functions and datatypes. In addition, input prob-

lems can contain constructs that are outside of the realm of first-order terms,
such as pattern matching and boolean conditionals (“if-then—else”). The solution
we propose is multifold: (i) add some additional inference rules and simplifica-
tion rules for datatypes; (ii) a notion of rewriting that does not rely on the term
ordering; this is used to properly encode recursive functions; (iii) a preprocessing
algorithm that removes non-first-order constructs by introducing newly defined
functions and use them to encode the terms.

We adopt the notations and inference system of superposition from E [4] and
AVATAR [1], and recall the following notions: an inference rule (noted with a
single bar) infers the bottom clause(s) from the top clause(s); a simplification
rule (with a double bar) replaces the top clause(s) with the bottom ones.

3.1 Recursive Functions and Rewriting

Superposition relies on a term ordering for orienting equations. This usually
works well for first-order logic. However, recursive functions (on datatypes) are
difficult to orient properly with such term orderings. Often, a rule Vz. f() ~ u
defining f will be oriented right-to-left because u will contain several occurrences
of variables, be heavier (in KBO), etc. whereas we would like it to be oriented
in the more natural left-to-right direction.

To unfold recursive functions efficiently, we translate them into rewrite rules.
By construction, the left-hand side of the rewrite rules that define f is of the
form f(t1,...,t,) where the t; are generated from variables and constructors.
Rules are also non-overlapping, ensuring that the resulting rewrite system is
confluent: at most one rule will apply to any tuple of arguments. Rewriting is
done left-to-right, regardless of the term ordering. This strategy is not complete
in general,’ but it guarantees that unfolding a function definition acts as an
efficient simplification step. Recursive predicates are defined analogously, using
rules of the form [~» C; (rewriting a positive literal into a set of clauses) and
=l ~ A, C; (rewriting a negative literal into a set of clauses). This sort of
rewriting is known as deduction modulo [22] and, in our context, can be expressed
as polarized resolution [23].

Having a well-delimited set of rules that define a function also enables the
notion of argument position, defined below. This notion is useful because it pro-
vides some insight on which arguments influence the control flow of the function,
and which ones are just carried around passively or serve as accumulators. In
particular, it is pointless to try to perform induction on a passive argument,
because the constructors at such positions cannot be eliminated.

Definition 1 (Argument Positions). Given a function f with k arguments,
defined by rules

f(tl,la e 7t1,k) ~ ULy .- .,f(tn,l, . atn,k) ~ Uy,

1 It might even induce rewriting loops in some cases where the term ordering used
by superposition and the rewrite system are not compatible. In our experience this
does not seem to happen often.

we say that each i, for 1 < i < k, is an argument position of f. An argument
position 7 is passive if every occurrence of f in (u;)7_; has t; ; as i th argument;
in other words, if f always calls itself with the same 7 th argument. A non-passive
argument position 7 is an accumulator if every (ti’j);‘:l is a variable; it is primary
otherwise. Intuitively, a primary position is one that the function might examine
for determining whether to recurse or not.

Ezxample 3. (a) + with the definition 0 + = ~» z,s(x) + y ~» s(x + y): the first
argument is primary and the second one, passive. (b) < defined by (0 <) ~
T,(s(x) <0) ~ L, (s(x) < s(y)) ~ (& < y): both positions are primary. (c) qrev
with the rules grev([],x) ~ x,qrev(z :: y, z) ~ qrev(y,x :: z): the first position
is primary, the second is an accumulator.

3.2 Preprocessing the Input

Our prover can parse problems expressed in TIP [17], an extension of SMT-
LIB [24] with recursive functions, polymorphism, and datatypes. However, many
constructs in this language have no straightforward equivalent in a superposition
prover, in which there are only clauses and first-order terms. These constructs
are pattern matching, conditionals (“if-then—else”), lambda abstractions, and
let-bindings; let-bindings are expanded, conditionals and pattern matches are
either named, or become toplevel case distinction as a set of rewrite rules. Again,
the rewrite rules generated by our encoding are terminating and confluent; they
are also orthogonal to the other rewrite rules because their head symbol is a
fresh constant. We show a few examples of encodings in Figure 1.

3.3 Inference Rules for Constructors

We consider the algebra of freely generated datatypes, such as Peano numbers,
lists, or binary trees. This fragment is general enough to express many classic
types and data structures, yet it is reasonably simple. Other theories such as
rational arithmetic can also be used (e.g. using Hierarchic superposition [25])
but no induction will be performed on variables of these types.

Even without considering induction, datatypes need dedicated inference rules
to account for acyclicity; other properties such as injectivity can be accounted
for by adding either rules or axioms. Some SMT solvers have decision procedures
for datatypes [26-28]. Similar work exists for superposition [8,15,29]. We use a
small set of rules, as presented in Figure 2. In the rules, ¢ and ¢’ are distinct
inductive constructors (e.g., the empty list [], the successor symbol, etc.). The
positive version of Acyclicity rule can also be used as a simplification when the
unifier ¢ is trivial. These rules are sound with respect to standard models, but
do not, by themselves, ensure completeness without induction.

4 Proving Formulas by Induction

Let us first look at a single proof by induction before we consider how to integrate
such proofs in the superposition machinery (Sect. 5). An inductive goal is a closed

original encoded

(declare—datatype Nat ((z) (s Nat)))
(define—fun—rec leq ((x Nat)(y Nat)) Bool

Vz. leq(z,z) ~ T
(n(watch z((c;)se z true) Vz. leq(s(z), z) ~ L
case (s x
(match y (case z false) v u- feals(a) sly)) lea(ev)
(case (s y2) (leq x2 y2))))))
(define—fun pred ((x Nat)) Nat pred(z) ~ z
(TE;ZZ X) Va. pred(s(z)) ~ x
e) :fc.. i?;t%@; - Z(a: leq(z,5(2)))
(define—fun—rec fact ((x Nat)) Nat Va. f(z, L) ~ mult(
(Ie_t ((one (s 2))) f(pI’Ed()s
(if (leq x one) leq(pred(z),s(z)))
one

where f is fresh
(mult x (fact (pred x)))))

(declare—fun g (Nat Nat) Nat)
(deflne—fun h ((X Nat) (y Nat)) Bool YV v. h(l‘,y) Ty = fQ(ij) ~ fz(y,y)

(let vy 2. fa(y, 2) ~ g(y,5(2))
((g2 where fs is fresh
(lambda ((x Nat)) (g y (s x)))))

(=> (= xy) (= (g2) (g2¥)))))

Fig. 1: Encoding a few expressions and definitions

formulaVay ... Tp Y1 - Ym- /\j C; where the variables x; have inductive types
and each C} is a clause. To try and prove such a goal, we instantiate the structural
induction schema over a non-empty subset of T into a first-order formula F|,
and try to refute —=F by the usual process of Skolemizing variables, reducing
—F to conjunctive normal form (CNF), and performing inferences until L is
deduced. We can instantiate the induction schema for a goal Vz1,...,zx. G on
the variables x1, za, ...,z (k > 1) by instantiating it on x; first (taking P(x) =
Vas ... zk. G), obtaining F, and then by applying the induction principle on
To,...,T) to every occurrence of P in F.

4.1 Instantiating the Induction Schema

Before we explain how to instantiate the induction schema over a given set
of variables, we must first define the notions of inductive Skolem constant and
coverset.

Definition 2 (Coverset [30]). A coverset for an inductive type 7 is a set of
terms built from inductive constructors and variables z1,...,z, such that each

ct)y~dt)YvD ct)y2JW)YvD
Disjointness+ = Disjointness-

c(tiy . oytn) =c(ty, ..., th) VD

Injectivity
A, (ti ~ t; V D)
t~Clu] VvV D to = u t£Clt]vD
Ll 7 i Acyclicity+ % Acyclicity-
Do T

where C[¢] is a non-trivial constructor context

Fig. 2: Inference rules to deal with inductive constructors

variable z; occurs in exactly one position, and V¢ : 7. @, cgFr1 ... Tp. t = u
is valid in standard models. The terms of a coverset are distinct in any model.

Definition 3 (Inductive Skolem constant). An inductive Skolem constant i
is a Skolem constant of inductive type.

Definition 4 (Ground Coverset). A ground coverset (i) for an inductive
Skolem constant i is a set of ground terms obtained by replacing all variables
in a coverset with fresh Skolem constants, such that @ten(i) i~ ¢ holds in any
model. The elements of k(i) represent all the possible “shapes” of i in any model.
If t,i: 7 and there is some ¢’ € k(i) such that ¢ < ¢/, we write sub(t,i). We define
k(1) = {t € (i) | I’ <t. sub(¥,i)} — the set of recursive cases.

Ezample 4. The coversets of the type nat from Example 1 are of the form
{0,5(0),...,s%(0),s**!(2)} for some k > 0.

Ezample 5. The coversets of the type list(7) from Example 2 are of the form

{[lszr),y et Ty 1y} where m > 0, T1,..., %y 7, and y : list(7).
To prove an inductive goal F' Lef Yoy ... Zn Y1 ... Ym- /\; Ci by induction
over variables wy,...,,, we start by skolemizing each x; with i; and each y;

with ¢;. Then, we map each inductive Skolem constant i; to a ground cover set
k(i;). Our objective is to refute the following set of clauses:

Utlem(il),...,tnEn(in) (Cnf(ﬁ (/\, Cit—t7— E)]) A H?:l[[ij = tj]])
U Uulelu(il),...,uﬂEnJ’(in) (Uz {vﬂ C; [f = ﬂ] — I_lyzl,sub(t,,,ui)[[ij = t]]]})
UU—y { @Breniplis = 11}

The first set of clauses comes from the negation of our goal, after skolemiza-
tion and case split (using a coverset to examine the possible shapes of these
Skolem constants (i;);). The second set comes from inductive hypothesis: to
prove L from —(A; C;)[z — ng], in the case ng ~ s(n1), we need the hypothe-
sis (/\; Cs)[z — n1]. The third set of boolean formulas, sent to the SAT solver,
forces each Skolem constant to be equal to exactly one member of its ground
coverset. We recall that [-] turns a literal or clause into a propositional atom.

Ezample 6 (Associativity of +). Let F vy yz:inat. x4+ (y+2) = (z+y)+ 2.
To prove F', we perform induction on {z}, with Skolem symbols {xq, v, o } and
ground coverset k(xg) = {0,s(x1)}. The resulting clauses are:

) # (04 yo) + 20 + [x0 = 0]
s(x1) + (Yo +20) % (s(x1) + yo) + 20 < [x0 = s(x1)]
Yy z.x1+ (y+2) = (x1+y)+ 2+ [[xo~s(x1)]
[[XO >~ 0]] D HXO ~ S(Xl)]]

0+ (yo + 2o

Now, superposition (and AVATAR) can prove L from these clauses:

1 induction(F').base 0+ (yo +20) % (0+yy) + 20 < [x0 ~0]

2 def(+) O+z~zx

3 rewrite(1,2) Yo + 20 % yo + 2o < [x0 ~ 0]

4 eq-res(3) L+ [xo~0]

5 avatar(4) =[xo =~ 0]

6 induction(F').hyp Yyz.x1+(y+2) =~ +y)+ 2+ [xo ~s(x1)]

7 induction(F").rec s(x1) + (vo + 20) % (s(x1) + y¢) + 2o < [x0 ~ s(x1)]

8 def(+) s(z)+y~s(z+y)

9 rewrite(7,8) s(x1 + (yo +20)) # s((x1 +yo) + 20) < [x0 ~s(x1)]
10 sup(6,9) s(x1 + (Vo +20)) # s(x1 + (o +20)) = [xo = s(x1)]
11 eq-res(10) L+ [xo = s(x1)]

12 avatar(11) =[x = s(x1)]
13 induction(F').case-split [xo ~ 0] U [xo =~ s(x1)]
14 res(5,12,13) 1

The last inference is done by the SAT solver after the addition of the boolean
constraints —[xg ~ 0] and —[xo ~ s(x1)], establishing unsatisfiability.

Ezample 7 (Transitivity of <). Let F ©f v yz:nat. x <yAy<z=z<
z, where < is defined by the rules {Vz. 0 < z,Vz. =(s(z) < 0),Vz y. z <
y <= s(z) < s(y)}. To prove F, we perform induction on {z,y, z}, with Skolem
symbols {xg, ¥, %0} and ground coversets k(xg) = {0,s(x1)}, k(vo) = {0,5(v1)},
k(z0) = {0,s(z1)}. We obtain the following set of clauses, which is first-order

refutable:

0<0+ [xo~0]M[y,=~0]
0<0 <+ [yg~0]m[zo ~0]
s(x1) <0 < [xo =~ s(x1)] My, ~ 0]
s(x1) <s(yy) < [xo = s(x1)] M yo = s(y1)]
s(y1) <0< [yo ~s(y;)] M [zo0 = 0]
s(y1) <s(z1) < [yo =~ s(y1)] M [z0 ~ s(z1)]
(0<0)<— [[XONO]]HIIZONO]]
ﬁ((Xl) < O) — [[Xo ~ S(Xl)]] M [[Zo ~ 0]]
—(s(x1) <s z1); < [xo = s(x1)] M [zo =~ s(z1)]
)

— — — —

—

1) <
=(0 <'s(z1)) + [xo = 0] M [zo ~ s(z1)]
“(x1 <yy) Volyr €21) V(xS z1) 4 [xo > s(xa)] M yo = s(yq)] M [zo ~ s(z1)]
[xo ~ 0] U [xo0 =~ s(x1)]
[vo 2= 0] U [yo ~ s(vy)]
[[ZO ~ 0]]] [[Zo ~ S(Zl)]]

Remark 1. Using AVATAR for keeping track of case splits allows an inductive
lemma, once proved, to become a normal axiom and participate in other proofs
using the following simplifications:
& AvatarSimp+ Q AvatarSimp-
C+rI T
if the SAT-solver has proved a (propagated at level 0)

4.2 Selecting the Induction Variables

We have seen how to prove an inductive goal by induction over a set of variables.
But how do we know which variables to choose? Going back to the case of
Example 6 (associativity of addition), there are three variables, but only the
leftmost one will lead to a successful induction.

The relevant notion here is that of primary positions under functions (Defi-
nition 1). Here we draw inspiration from Aubin’s work [21]. The heuristic is that
if a variable appears in at least one primary occurrence, it is a candidate for
induction. Let G & vz Y. N\, Ci be an inductive goal, with variables T having
an inductive type. A primary occurrence in G is a position p in some clause C;
such that (i) C;|, does not occur directly under a constructor, and (ii) every
non-empty prefix of p occurs either below a constructor, an uninterpreted sym-
bol, or under a primary argument position of a defined function or predicate.
Intuitively, a subterm (such as a variable on which we might do induction) is a
primary occurrence in G if replacing this subterm by a constructor-headed term
has a chance of making G reducible by some rewrite rule. In Example 6, the goal
isVax y z:nat. x + (y + 2) = (z + y) + 2. Of all three variables, only = appears
in primary occurrences.

Now consider Example 7, where the goal is Vz y z :nat. z <y Ay < z =
x < z. All variables occur in primary positions, because both positions of <
are primary. However, simply replacing x with a constructor-headed term will
not always suffice to reduce the (ground) goal negation; indeed s(x;) < y, and

—(s(x1) < zp) cannot be reduced. Therefore, we extend Aubin’s heuristic [21].
If two variables in primary positions in the goal G occur immediately under
the same defined symbol, both at primary argument positions, then we perform
induction on both of them simultaneously. For Example 7 that means that we
perform induction over {z,y, z}, which succeeds.

5 Performing Several Inductive Proofs with AVATAR

In practice, we need to carry out several proofs by induction. It is necessary when
such a proof depends on other properties that are themselves proved by induc-
tion. One such case is nested induction: to prove Vx y. x +y ~ y+x, the lemmas
Va. x+0~ 2z and Vo y. z+5s(y) ~ s(z+y) are required. We wish to carry out all
these proofs within a single saturation loop of the superposition prover, to reuse
the existing algorithms and main loop. Fortunately, AVATAR makes it easy to
introduce several lemmas and interleaving their proof with the main saturation
process. Given a (candidate) lemma F (a closed first-order formula), the clauses
{C < [lemma F] | C € cnf(F)} U{D « —[lemma F] | D € cnf(—F)} are added
to the saturation set. This corresponds to a boolean split over F' V —F', where
the choice between F' and —F is represented by the boolean valuation of the
propositional literal [lemma F1.

Definition 5 (Lemma Introduction). The introduction rule of a lemma F,
where I is a first-order formula, is the following inference rule:
T

/\CEcnf(F) C « [lemma F]
A /\Decnf(ﬂF) D « —[lemma F]

Lemma

Theorem 1. The inference rule Lemma is sound.

Proof. Lemma is similar to an AVATAR boolean split on F vV —F using the
boolean [F] (F, being closed, is either valid or unsatisfiable). Since [-F7 et -[F],
we obtain the trivial constraint [F] U —[F] and the “A-formulas” F < [F] and
—F « —[F] that can then be reduced to CNF. In essence, Lemma is using an
adaptation of AVATAR splitting to formulas of the form F' VvV —F where F is
closed.

In a part of the search space, inference with A-clauses of the form C «+ [F]
will correspond to using the lemma F', assuming it has been proved; in another
part, inferences with A-clauses of the form D <+ —[F] will possibly lead to
(conditional) proofs of F' by reaching clauses of the form L < —[F] NI (proof
of F under assumptions —I").

Remark 2 (Fairness and Lemmas). Using Lemma on a non-theorem formula F'
does not prevent an unsatisfiable combined state from being reached. The proof
of each lemma is interleaved with the rest of the saturation process. Thanks to
this, it is possible to introduce several (candidate) lemmas even if they are not
all true or provable. However, it might take a longer time to find a solution,
because of the larger search space.

10

6 Finding Subgoals and Lemmas by Generalization

In this section, we examine several ways of guessing new inductive goals that
are likely to help existing proof attempts progress. There is a large amount of
literature dedicated to lemma guessing, either by generalizing a subgoal [9, 15,
20,21] or by exploring an equational theory systematically to find formulas that
seem to hold based on testing [12,31]. In this paper we present simple, relatively
straightforward techniques that already yield good results; more sophisticated
heuristics can be added on top.

Even though lemmas can either be proved on the fly by introducing a cut, or
provided as axioms in the input file, they will be used in the same way in both
cases. A subgoal is never generalized and replaced by a lemma; rather, we intro-
duce a lemma which, if proved, will solve the subgoal by regular superposition.

6.1 Proving Subgoals by Induction

A superposition prover starts by reducing the input problem in CNF, in our case
with some additional transformations (Sect. 3.2). A clause C containing at least
one inductive Skolem constant can be negated, the constants replaced by fresh
variables, resulting in an inductive goal that can be tested and then proved.

Similarly, during the course of saturation with some induction attempts,
clauses of the form C < —[lemma G] M I" (where G is an inductive goal) are
clauses that need to be reduced to L if G is to be proved. Again, if C' contains
at least one inductive Skolem constant, we can negate it, replace constants by
variables, and assess the resulting goal.

More precisely, to prove a goal A\, C; by generalizing inductive Skolem con-
stants i1,...,i, (n > 1) occurring in the clauses C;: (i) we replace each i; by
a fresh variable z;; (ii) we negate every literal in the C; and swap conjunc-
tions and disjunctions; (iii) we redistribute conjunction over disjunction to get
back to a CNF. Clauses in the result are quantified over {x;}; and a subset of
[, freevars(C;). This generalization technique also applies to the original goal
after it has been negated and reduced to CNF during preprocessing. It makes it
possible to prove inductively goals that are not in CNF.

A subtlety here is that if an induction variable j is a sub-case of some other
constant (j € ky(i)), there exist induction hypotheses (in other clauses) that
might be needed for nested induction. In this case we also try the inductive
goal where j is not replaced by a fresh variable, and run both proof attempts
simultaneously.?

6.2 (Generalizing subgoals

An inductive goal G might not be provable by induction directly. For example,
doing induction on z to prove Va. x + (x +) ~ (x +) + = will not succeed: in

2 Our framework allows attempting to prove several distinct inductive goals to solve
a single subgoal.

11

the recursive case xg = s(x1), the clauses are

X1+ (x1+x1) = (x1+x1)+x3
s(x1) + (s(x1) +s(x1)) % (s(x1) +s(x1)) + s(x1)

but even after reduction, the hypothesis cannot rewrite the negative clause in any
way because of successor symbols that appeared at passive positions. Following,
once more, Aubin [21], we generalize the primary occurrences of a variable in a
goal if it occurs at least twice in primary positions, and at least once in passive
positions. In this way, doing inference on the primary occurrences will have better
chances of succeeding. This generalization is only performed if the generalized
goal still passes tests successfully (see Sect. 7).

Similarly, if a non-variable, non constructor-headed term occurs at least twice
in primary positions, and is neither a variable nor constructor-headed, we can
generalize it the same way.

Heuristics for guessing relevant lemmas from a goal have been developed
for decades [9,18-21] and can be adapted to our framework. For those that
require to examine both the current subgoal and the induction hypothesis, more
bookkeeping would be needed, because these objects live in the unstructured set
of clauses, rather than in a sequent.

Remark 3. Speculating lemmas can be detrimental to the search space, by in-
troducing many new clauses and performing arbitrary cuts. Therefore, the ap-
plication of this rule must be heuristically restricted. In our implementation, we
forbid deeply nested applications of generalization (beyond a small, user defin-
able limit). Developing more advanced heuristics is however necessary.

7 Testing Conjectures before trying to prove them

Heuristics, as useful as they are, can mislead a solver into trying to prove in-
ductive goals that are not valid. Attempting to prove an invalid goal with likely
lead to a non-terminating superposition saturation on its own, draining memory
and CPU resources away from the main proof effort. It pays to perform some
limited amount of com?utation to try and rule out invalid goals.

To test a goal G 4 vz. N\; Ci, we do a limited number of saturation step,
starting from {C;};. Clauses from the main saturation loop can be used in
inferences, emulating a set-of-support strategy. If 1 can be derived, the goal
is invalid and can be discarded. Many inductive goals, in practice, use com-
putable (recursive) functions. Testing tools such as (Lazy) SmallCheck [32] and
QuickCheck [33] are popular options for these properties; in our case, we use
narrowing [34] because it is readily adapted to rewriting-based functions: the
resulting rules are listed in Figure 3. In addition, not all goals contain only com-
putable functions — some functions or predicates might only occur in axioms,
not definitions — so we also need to perform the usual superposition inferences.

This mechanism for ruling out invalid goals works quite well in practice, even
with a relatively small number of saturation steps. The limit on saturation steps

12

is a trade-off between the usefulness of detecting invalid conjectures, and the
time spent on each candidate lemma.

CVsot L7 Narrowing cvt . /\j Ds Lit Narrowin
(CVs[r],)o N;(C V Dj)o g
if lo = s|,0, 0 € {=, %}, if lo = to, t : bool,
[~ r is a rewrite rule [~ /\j Dj is a rewrite rule

Fig. 3: Inference Rules Used for Testing

8 Implementation and Experiments

To evaluate our approach, we implemented it in a superposition prover, Zip-
perposition [35, chapter 3]. The prover is implemented in OCaml, available
at https://github.com/c-cube/zipperposition under a permissive BSD li-
cense. Thanks to its modular architecture, many extensions of superposition have
been added to it, including (as of version 1.2) integer linear arithmetic [35, chap-
ter 4], first-class boolean terms [36], rewrite rules (used for evaluating recursive
functions), a simpler version of AVATAR [1], basic support for AC symbols [4],
and the inductive reasoning described in this paper. This allows the prover to
solve such problems as V(p : &« — bool) (I : list(«x)). length(l) > length(filter(p, 1))
by using a combination of arithmetic, booleans, and induction. The prover can
parse its own native format, TPTP [37], and TIP [17].

In Figure 4, we compare Zipperposition with two variations of CVC43 on TIP
benchmarks.* The first one, CVC4, corresponds to cve4 ——lang smt ——quant—ind
to perform goal-directed induction [12]; the second one, CVC4-gen, has the ad-
ditional flag ——conjecture—gen to generate lemmas by theory exploration, like
Hipspec [31]. We use https://github.com/tip-org/tools/ to convert TIP
problems into SMT-LIB by removing pattern matching (which is not supported
by CVC4). The classical set of IsaPlanner benchmarks [38] are included as a
subset of TIP benchmarks. Solvers are given 30 s for each problem, which is a
reasonable amount of time a user might wait for automatic provers in a proof
assistant. The results are encouraging, since Zipperposition relies on quite simple
generalization techniques.

However, our initial aim was to extend superposition provers to do induc-
tion, while retaining their efficiency in first-order reasoning. Figure 5 shows a
comparison of Zipperposition with some other provers, on TPTP 6.1, which con-

3 CVC4 1.5-prerelease r6317, see http://cvcé.cs.stanford.edu/web/

4 commit 187b71af8d920d0634b2b8b34c4acd834b2f6a94 at https://github.com/
tip-org/benchmarks.

13

https://github.com/c-cube/zipperposition
https://github.com/tip-org/tools/
http://cvc4.cs.stanford.edu/web/
https://github.com/tip-org/benchmarks
https://github.com/tip-org/benchmarks

unsat (/86) time (s) unsat (/484) time (s)

Zipperposition 64 4.2 Zipperposition 139 53.2
CVvC4 67 1.6 CVC4 138 8.2
CV(C4-gen 73 124 CVC(C4-gen 160 27.7

(a) Results on the IsaPlanner problems (b) Results for TIP benchmarks

Fig. 4: Experiments on TIP benchmarks

tains 15,853 first-order problems.® CVC4, again, performs quite well; Prover9 is
included as a base reference, and E (version 1.9) is one of the best first-order
provers. This benchmark shows that Zipperposition keeps good performance on
first-order problems.

It is interesting to note that CVC4 is very versatile, and can play on many
boards, including first-order logic and inductive theorem proving, in addition to
more traditional SMT abilities such as ground reasoning with theories such as
arithmetic. We hope that superposition provers will also extend their domain
of competency to tackle more expressive logics. Having diverse techniques for
automated theorem proving means that portfolio approaches will work well, and
will benefit from complementary strengths of the solvers.

9 Conclusion

In this work, we show a practical integration of inductive reasoning into a su-
perposition prover. Such a combination is desirable because many problems fall
outside of either fragment: they might not be purely equational (or Horn), as
usually assumed by inductive provers, and yet they might require some inductive
reasoning. We introduce a simple inference rule for adding multiple cuts during
proof search. Inductive proofs are interleaved with the normal first-order proof
search, thanks to AVATAR and this new inference rule.

We also present some techniques for generating inductive subgoals during
the proof search, based on Aubin’s work [21]; other generalization heuristics,
including the ones that rely on theory exploration [31], are compatible with our
approach. User-provided lemmas can also be tried and used during proof search,
without compromising soundness if they are actually invalid.

Our approach should be relatively straightforward to port to existing state of
the art superposition provers. The unsophisticated implementation we describe
performs reasonably well on the IsaPlanner and TIP benchmarks. With the addi-
tion of more powerful generalization techniques, this suggests that superposition-
based first-order provers can become competitive with existing induction provers.
In particular, Vampire already supports inductive datatypes and AVATAR split-

5 experiments on TPTP were run on a 2.20 GHz Intel Xeon® CPU with 30s timeout
and a memory limit of 2 GB.

14

E eprover
§ 15000 — _Eipperposition
8 ; :
f = N :
= + N
. r ’
+ '
i + t
[+
3 T L
2 10000 — t f
o vch H
2]
3]
E]
3 7
5000 — provery g‘ :
+
+
F
l 4/ |
0 5000 10000

Number of Solved Problems

solved unsat sat time (s)

E 9802 8840 962 15,160
Zipperposition 5477 4865 612 14,445
CvC4 5282 5253 29 9283
prover9 3341 3341 O 4590

Fig.5: Results on the first-order fragment of TPTP

ting, and performed very well in SMT-COMP 2016, suggesting superposition is
ready to be applied outside of pure first-order logic.

Acknowledgments The author would like to thank Jasmin Blanchette, Gilles Dowek,
Guillaume Burel, Pascal Fontaine, and reviewers of previous versions of this paper (one
of them, in particular, for pointing out a lot of related works and limitations in several

occasions).

References

1. A. Voronkov, “AVATAR: the architecture for first-order theorem provers,” in CAV
2014, pp. 696-710, 2014.

2. L. C. Paulson and J. C. Blanchette, “Three years of experience with Sledgehammer,
a practical link between automatic and interactive theorem provers,” in IWIL 2010
(G. Sutcliffe, S. Schulz, and E. Ternovska, eds.), EasyChair, 2012.

15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

Kaliszyk, Cezary and Urban, Josef, “Learning-assisted automated reasoning with
Flyspeck,” Journal of Automated Reasoning, vol. 53, no. 2, 2014.

S. Schulz, “E - a brainiac theorem prover,” AI Commun., vol. 15, 2002.

A. Riazanov and A. Voronkov, “Vampire 1.1 (system description),” in Proceedings
of the First International Joint Conference on Automated Reasoning, IJCAR ’01,
(London, UK, UK), pp. 376-380, Springer-Verlag, 2001.

C. Weidenbach, R. Schmidt, T. Hillenbrand, R. Rusev, and D. Topic, “System De-
scription: SPASS Version 3.0,” in Automated Deduction — CADE-21 (F. Pfenning,
ed.), vol. 4603 of Lecture Notes in Computer Science, pp. 514-520, Springer, 2007.
L. Bachmair and H. Ganzinger, “On Restrictions of Ordered Paramodulation with
Simplification,” in 10th International Conference on Automated Deduction (M. E.
Stickel, ed.), vol. 449 of Lecture Notes in Computer Science, pp. 427-441, Springer,
1990.

L. Kovécs, S. Robillard, and A. Voronkov, “Coming to terms with quantified rea-
soning,” in POPL 2017 (G. Castagna and A. D. Gordon, eds.), pp. 260-270, ACM,
2017.

M. Kaufmann and J. S. Moore, “ACL2: An industrial strength version of Nqthm,”
in Computer Assurance, 1996. COMPASS’96, pp. 23-34, IEEE, 1996.

S. Biundo, B. Hummel, D. Hutter, and C. Walther, “The Karlsruhe induction
theorem proving system,” in International Conference on Automated Deduction,
pp. 672—674, Springer, 1986.

S. Stratulat, “A unified view of induction reasoning for first-order logic,” in Turing-
100, The Alan Turing Centenary Conference, 2012.

A. Reynolds and V. Kuncak, “Induction for SMT solvers,” in Verification, Model
Checking, and Abstract Interpretation (VMCAI), 2015.

A. Kersani and N. Peltier, “Combining superposition and induction: A practi-
cal realization,” in Frontiers of Combining Systems (P. Fontaine, C. Ringeissen,
and R. Schmidt, eds.), vol. 8152 of Lecture Notes in Computer Science, pp. 7T-22,
Springer Berlin Heidelberg, 2013.

M. Beeson, “Otter-lambda, a Theorem-prover with Untyped Lambda-unification,”
in Proceedings of the Workshop on Empirically Successful First Order Reasoning,
2nd International Joint Conference on Automated Reasoning, 2004.

D. Wand and C. Weidenbach, “Automatic Induction inside Superposition.” (un-
published) http://people.mpi-inf.mpg.de/~dwand/datasup/d.pdf, April 2017.

A. Riazanov and A. Voronkov, “Splitting Without Backtracking,” 2001.

K. Claessen, M. Johansson, D. Rosén, and N. Smallbone, “TTP: Tons of Inductive
Problems,” in Conferences on Intelligent Computer Mathematics, pp. 333-337,
Springer, 2015.

A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill, “Rippling: A
heuristic for guiding inductive proofs,” Artificial Intelligence, vol. 62, no. 2, pp. 185
— 253, 1993.

R. S. Boyer and J. S. Moore, A Computational Logic Handbook: Formerly Notes
and Reports in Computer Science and Applied Mathematics. Elsevier, 2014.

D. Kapur and M. Subramaniam, Lemma discovery in automating induction,
pp- 538-552. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996.

R. Aubin, “Strategies for mechanizing structural induction.,” in IJCAI, 1977.

G. Dowek, T. Hardin, and C. Kirchner, “Theorem Proving Modulo,” Journal of
Automated Reasoning, 2003.

G. Burel, Embedding Deduction Modulo into a Prover, pp. 155—-169. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2010.

16

http://people.mpi-inf.mpg.de/~dwand/datasup/d.pdf

24

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo Theories Library
(SMT-LIB).” http://www.SMT-LIB. org, 2016.

P. Baumgartner and U. Waldmann, “Hierarchic superposition with weak abstrac-
tion,” in Automated Deduction—CADE-2/, Springer, 2013.

A. Reynolds and J. C. Blanchette, “A decision procedure for (co)datatypes in
SMT solvers,” in CADE-25 (A. Felty and A. Middeldorp, eds.), vol. 9195 of LNCS,
pp- 197-213, Springer, 2015.

C. Barrett, I. Shikanian, and C. Tinelli, “An abstract decision procedure for satis-
fiability in the theory of inductive data types,” J. Satisf. Boolean Model. Comput.,
vol. 3, pp. 21-46, 2007.

L. de Moura and N. Bjgrner, “Z3: An efficient SMT solver,” in Tools and Algorithms
for the Construction and Analysis of Systems (C. Ramakrishnan and J. Rehof,
eds.), vol. 4963 of Lecture Notes in Computer Science, ch. 24, pp. 337-340, Berlin,
Heidelberg: Springer, 2008.

M. Horbach and C. Weidenbach, “Superposition for fixed domains,” ACM Trans-
actions on Computational Logic (TOCL), vol. 11, no. 4, p. 27, 2010.

H. Zhang, D. Kapur, and M. S. Krishnamoorthy, “A mechanizable induction prin-
ciple for equational specifications,” in 9th International Conference on Automated
Deduction (E. Lusk and R. Overbeek, eds.), vol. 310 of Lecture Notes in Computer
Science, pp. 162-181, Springer Berlin Heidelberg, 1988.

K. Claessen, M. Johansson, D. Rosén, and N. Smallbone, “Hipspec: Automating
inductive proofs of program properties.,” in ATz/WInG@ IJCAR, 2012.

C. Runciman, M. Naylor, and F. Lindblad, “Smallcheck and lazy smallcheck: auto-
matic exhaustive testing for small values,” in Acm sigplan notices, vol. 44, pp. 37—
48, ACM, 2008.

K. Claessen and J. Hughes, “QuickCheck: a lightweight tool for random testing of
Haskell programs,” Acm sigplan notices, vol. 46, no. 4, pp. 5364, 2011.

F. Lindblad, “Property directed generation of first-order test data.,” in Trends in
Functional Programming, pp. 105-123, Citeseer, 2007.

S. Cruanes, Extending Superposition with Integer Arithmetic, Structural Induction,
and Beyond. PhD thesis, Ecole polytechnique, Sept. 2015.

E. Kotelnikov, L. Kovdcs, G. Reger, and A. Voronkov, “The Vampire and the
FOOL,” in Proceedings of the 5th ACM SIGPLAN Conference on Certified Pro-
grams and Proofs, pp. 37-48, ACM, 2016.

G. Sutcliffe, “The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0,” Journal of Automated Reasoning, vol. 43, no. 4, pp. 337—
362, 20009.

M. Johansson, L. Dixon, and A. Bundy., “Conjecture Synthesis for Inductive The-
ories,” in Journal of Automated Reasoning, 2010.

17

http://www.SMT-LIB.org

	Superposition with Structural Induction
	1 Introduction
	2 Basic Definitions
	3 Superposition with Recursive Functions and Datatypes
	3.1 Recursive Functions and Rewriting
	3.2 Preprocessing the Input
	3.3 Inference Rules for Constructors

	4 Proving Formulas by Induction
	4.1 Instantiating the Induction Schema
	4.2 Selecting the Induction Variables

	5 Performing Several Inductive Proofs with AVATAR
	6 Finding Subgoals and Lemmas by Generalization
	6.1 Proving Subgoals by Induction
	6.2 Generalizing subgoals

	7 Testing Conjectures before trying to prove them
	8 Implementation and Experiments
	9 Conclusion

