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Abstract—The Robot Operating System (ROS) are being de-
ployed for multiple life critical activities such as self-driving
cars, drones, and industries. However, the security has been
persistently neglected, especially the image flows incoming from
camera robots. In this paper, we perform a structured security
assessment of robot cameras using ROS. We points out a relevant
number of security flaws that can be used to take over the flows
incoming from the robot cameras. Furthermore, we propose an
intrusion detection system to detect abnormal flows. Our defense
approach is based on images comparisons and unsupervised
anomaly detection method. We experiment our approach on robot
cameras embedded on a self-driving car.

I. INTRODUCTION

The Robotic Operating System (ROS) is a framework for
robotic system development which is popular in both academic
and industrial contexts. In particular, ROS is the industry
leading operating system for robotic systems, being used in
a multitude of industries. An example of a product where
ROS is used is to build a self-driving and autonomous ve-
hicles [11]. Unfortunately, ROS does not provide any security
features [14]. The communication paradigm behind ROS is
that of a Publish-Subscribe model, where a master keeps track
of the state of the system while applications called nodes
can directly interact with each other, all communication being
conducted through a middleware layer relying ultimately on
an unsecured network. The only secure approach is to isolate
the ROS nodes or the use of virtual private networks (VPN)
for the communication of robots in a private network. Recent
work [10] highlighted a number of security threats against
ROS.

In this paper, we focus on the ROS camera node which
is a vulnerable node. In fact, the attacker can be in the
middle between the camera node and the processing node
such as pedestrians recognition node. Thus, the attacker can
modify flows i.e. images or inject fake images in order to
misrecognize objects by processing nodes. The attacks are
not necessary sophisticated. Unfortunately, no existing tool
allowing to detect such attacks and protect camera flows in
ROS. Thus, we focus on attack detection on ROS camera and
take an intrusion prevention approach. Our solution addresses
attacks from compromised camera nodes, and detects certain
classes of attacks. Our specific contributions are:

• We propose several adversarial models capturing capa-
bilities of attacks we consider when designing attack
detection mechanism for ROS camera node. The different
attacks are perturbations on images performed by an
attacker in order to mis-recognize objects. For example
the misrecognition of pedestrians or traffic lights.

• We propose an anomaly detection method for detecting
abnormal images incoming from camera flows targeted
and modified by an attacker.

• We provide experimental results on realistic environments
including a self-driving vehicle running on ROS. Our
experimental results demonstrate the effectiveness of the
detection of attacks on different proposed scenarios.

The rest of the paper is organized as follows. Section II
briefly presents the background on ROS, and related work
on security of ROS. Section III describes several adversarial
models capturing capabilities of attackers we consider when
designing anomaly detection mechanisms for flows of cameras
in ROS. Section IV describes our proposed approach for
anomaly detection. We provide experiments in Section V.
Finally, Section VII draws conclusions and discusses future
work.

II. BACKGROUND

In this section, we describe the background and existing
works related in ROS and the security of ROS.

A. ROS

The Robot Operating System (ROS) [1] is a meta-operating
system framework for developing robotic systems. In essence,
it provides an application framework to applications consisting
of independent computing processes called nodes, with the
help of a master node acting as a global namespace, a
parameter server acting as a repository of globally shared data,
and a middleware layer providing a consistent set of interfaces
for software development and hardware. They facilitate the
communication between nodes based on two abstractions:
topics and services. All processes run on top of a UNIX oper-
ating system. ROS provides tools and libraries for obtaining,
building, writing, and running code across multiple computers.
A ROS system is comprised of a number of independent nodes,



each of which communicates with the other nodes using a
publish/subscribe messaging model.

ROS Master: The ROS Master provides name registration.
The master node is the main communication hub that tracks
all the offered topics and services and maintains the internal
state representation of the communication system. Without the
Master, nodes would not be able to find each other, exchange
messages, or invoke services.

ROS Nodes: ROS uses nodes as a high-level abstraction for
defining individual processes running within its framework.
ROS is designed to be modular at a fine-grained scale; a robot
control system usually comprises many nodes. For example,
one node controls the wheel motors, one node performs
localization, and so on.

ROS Topics: Topics are the primary form of communication
for the ROS system. Messages are routed via a transport
system with publish/subscribe semantics. A node sends out
a message by publishing it to a given topic. The topic is a
name that is used to identify the content of the message.

A node that is interested in a specific kind of data will
subscribe to the appropriate topic. Thus, a single topic may
have multiple concurrent publishers and subscribers, and a
single node may publish and/or subscribe to multiple topics.

ROS Messages. Nodes communicate with each other by
passing messages. Messages are simply a data structure that
contains the typed field, which can hold a set of data and that
can be sent to another node. There are standard primitive types
such as integer, floating point, Boolean. The developer can also
build its own message types using these standard types.

ROS Services. The request/reply interactions is done via
services, which are defined by a pair of message structures:
one for the request and one for the reply.

For example, as shown in Figure 1, the ”Camera” node
sends messages to the ”Images” topic. The messages in the
topic are received by the ”Storage” node and the ”Processing”
node. The ”Storage” node depends on the underlying Linux
file system to provide access to the storage location. The
publisher-subscription model is designed to be modular at a
fine-grained scale and is suitable for distributed systems.

Fig. 1: Example of ROS

B. Security of ROS
The ROS master node plays an important and critical role in

ROS. Without the master, nodes would not be able to find each

other, exchange messages, or invoke services. In the event that
the master node is compromised, it is functionally identical to
the whole system being compromised.

For instance, a ROS node may publish data for an arbitrary
topic without any prior authorization. A node may be misused
to inject data into an application in order to disturb its
process or operation. For example, an attack may inject a fake
movement command causing unpredictable damages [4].

In addition, any node in ROS may subscribe to any topic
within the application. After that, it will receive any data that is
published for that topic. In fact, there is no protection between
node communications, allowing an attacker to create numerous
problems from learning confidential information, to injecting,
modifying, replaying packets. A recent effort into addressing
some of the security concerns for ROS is SROS, an experi-
mental security suite designed to harden ROS systems against
several common classes of attacks [2]. However, SROS still
has several limitations. It also does not protect against com-
promised nodes and the system cannot react to compromised
nodes and that at any level of system complexity. Additionally,
the SROS system would not be able to adequately react to
the malicious node. Attacks shown include: Remote control
without authentication [7], Unauthorized publish/subscription,
message modification, and publish message rejection [14],
Denial of service [14]. In [7], the authors highlighted real-
world attacks against commercial humanoid robots running
on ROS. They highlighted a relevant number of security flaws
that can be used to take over and command the robot. Several
recommendations have been provided by the authors on how
these issues could be fixed. In [14], it was shown how an
attacker could stop the components that controls the robot such
as legs, sensors, camera, in order to immobilize the robot. In
this paper, we focus on the vulnerability and attacks that could
be performed on a camera embedded in a robot using ROS.
We describe several adversarial models capturing capabilities
of attackers we consider when designing defense mechanisms
for a camera flow in ROS.

Our work differs from the existing works. In fact, we
propose an overlay for a processing node to detect and block
adversarial examples. Our solution is more generic for any
type of processing. The processing node can use any kind of
processing, deep learning, reinforcement learning algorithm.
We propose a cybersecurity solution like a firewall for adver-
sarial models capturing attacks for ROS node image processing
nodes. In our case, we assume that the processing nodes in
ROS is robust against attacks. The processing nodes can use
deep learning algorithms, machine learning,...etc. Our goal is
to protect the processing node against attacks by detecting
them.

III. ADVERSARIAL MODEL

In this section, we describe several adversarial models
capturing capabilities of attacks we consider when designing
defense mechanisms for ROS camera nodes.



A. Assumptions
For different attacks performed on ROS camera nodes, we

enumerate the following assumptions:
• The master node is assumed to be like a certificate

authority (CA) and is the root of trust for the system.
It is assumed that the master node is not compromised.

• The parameter server is assumed to have protection
mechanisms from malicious alteration for the parameters
stored on the parameter server.

• We assume that the ROS middleware is secure from
exploits.

• All ROS systems run on top of the Linux operating
system. We assume that the underlying Linux system is
secure and that best practices are taken in the design of
the system such that a compromised ROS camera node
cannot compromise the Linux system.

• We assume that the attacker shares a network. Thus, they
can conduct any of the attacks.

B. ROS camera node - Attacker Model
Remember that in ROS all communications are unprotected

and as no communication is encrypted. Thus, the attacker may
perform the following models:
• Remote supervision: The attacker observes remotely the

camera flow for spying the people. In fact, the attacker
may create a fake node in order to intercept the published
flow from the camera.

• Fake flow modification: After the creation of the fake
node, the attacker may alter the images by modifying the
original ones. Thus, the attacker creates fake images in
order to disrupt the processing nodes. For example, given
a machine learning algorithm within a processing node,
then a machine learning algorithm misclassifies a fake
image.

• Fake flow injection: Without a fake node creation, the
attacker may create a subscription to a processing node
by injecting a fake images.

Figure 2 illustrates an example of an attack model on ROS
camera node. The attack model allows an attacker to observe,
inject, intercept, or modify communications between ROS
nodes specially between ROS camera node and a fake node
created by an attacker. We see that the attacker can replace
the existing path from the camera to the processing node by
a fake node and producing an alteration and modification of
images.

In this paper, we focus on the different type of injections,
alterations of flow images incoming from ROS camera node.

Figure 3 shows an example of a sample of images extracted
from the camera embedded in a self-driving car and perturbed
with the attack scenarios proposed in Table I. In Figure 3, each
line of continuous images over time is a scenario of an attack
and the perturbed image is the 6th image, except the scenario
5 and 6 where the perturbed images are from the 4th image
to the 8th image.

Table I shows the type of attacks or perturbations on images.
The attacks are:

Scenario ID Type of attacks (Perturbation) Image
1 New image insertion (black image) 6
2 New image insertion (white image) 6
3 Blurry image 6
4 Image from the past 6
5 Successive same images [4,8]
6 Flooding black images [4,8]
7 Blurry image 6
8 Modified image (Adding a black rectangle) 6
9 Modified image (Adding a black rectangle

on the traffic lights)
6

10 Modified image (replacing a red color by a
green color in the traffic lights)

6

TABLE I: Scenario of attacks on images from a camera
embedded on a self-driving car.

• New image insertion: the attacker injects a fake image
(black, white or an image not related to current flow) in
the streaming images like scenario 1 and 2. In addition,
the attacker can take an image fro the past and inject it
the top of the streaming like a scenario 4.

• Blurred image: the attacker alters an image by blurring
it. We can find a high blurring in scenario 3 and small
blurring in scenario 7.

• Flooding attack: the attacker can inject successive same
images by flooding a processing node. Scenario 5 and 6
present flooding same images, and flooding black images,
respectively.

• Image perturbation: the attacker can modify images
by performing a small and sophisticated perturbations
causing classification errors. The perturbation consist in
adding black stickers on objects such as a car, or traffic
lights in a image. The objective of this attack is to hide
objects in a image.

We show that the attacker can physically modify objects
using low-cost techniques to reliably cause classification errors
in ROS processing node. For example, in Figure 4c, the attack
causes a classifier to interpret a subtly-modified physical red
color in the traffic lights as a green color. Specifically, our
final form of perturbation is a set of black stickers attached
to a physical objects such as a car (Figure 4a) or traffic lights
(Figure 4b).

Fig. 2: Attack model on ROS camera node
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Fig. 3: Example of targeted attacks on a camera embedded on a self-driving car.

IV. PROPOSED APPROACH

Figure 5 represents an architecture for detecting adversarial
attacks on streaming images from a camera with a use case for
Robot Operating System (ROS). The architecture is composed
of two part components: ROS component providing streaming
of images from a camera in ROS and defense tool for detecting
abnormal images on steaming images comparisons.

A. Streaming images comparison

Suppose that the camera C is affected by a perturbation p on
frame image I by a software. In this case, the output image O
of the camera O = Cp(I) may differ from the original image
I .

Definition 1 (Frame sequence): Let F = {f1, f2, . . . , fn}
be the set of all frames incoming from a camera. A frame
sequence is a stream ordered sequence of frames ordered
according to their timestamp {(f1, t1), (f2, t2), . . . , (fn, tm)}
from camera C, where frame fi ∈ F, i ∈ {1 . . . n} is a frame
at time tj , j ∈ {1 . . .m} and ti < ti+1.

For example, Figure 6 represents a sequence of 5 frames
according to the time.

The task of successive frames comparison is then to identify
a shift in the frame sequence over the time. This can be a
challenging task since the key difficulty is to detect intrinsic
unknown perturbations of frames. In order to express the
property of changes between successive frames over time, we
define a function to compare two successive frames over time
called time series of similarities .

Definition 2 (Time series of similarities): Time series of
similarities is a totally order collection of similarities values
between two successive frames. Time series of similarities
TS sim of frame sequence FS is a triple (F,≤, Sim) where
F is a set of frames, ≤ is a total order relation on F i.e
x ≤ y or y ≤ x for all x, y ∈ F . Sim is a function
that computes the difference between each successive frames
(fi, ti)→ (fi+1, ti+1), it returns the similarity Sim(fi, fi+1)
between the frame fi and fi+1.

Let the similarity between frames calculated by the simi-
larity measure Sim(fi−1, fi). Suppose that imaging systems



(a) The image shows a black
rectangle hiding a car.

(b) The image shows no col-
ors in the traffic lights.

(c) The image shows the
change of a color in the traf-
fic lights by replacing the
red color by the green one.

Fig. 4: Sophisticated perturbations on images

Fig. 5: Architecture for adversarial examples attacks detection
on streaming images from a camera: Robot Operating System
(ROS) use case

is affected by a perturbation. In this case, the current frame
fi may differ from the previous one fi−1. The objective of
similarity computation is to decide whether fi is close enough
to fi−1. Several metrics to calculate the distance between two
images exist. Since each metrics has advantages and disadvan-
tages, we use and experiment six distance similarity metrics.
The comparison of streaming frames allows to distinguish
between the normal and abnormal frame. In Section IV-B,
we provide more details how to detect abnormal images from
steaming images.

1) Structural Similarity Image Metric (SSIM): The Struc-
tural Similarity (SSIM) measures loss of structure in the image

2 5 8 11 15 Time

Fig. 6: A stream ordered frame sequence

as opposed to just any deviation with respect to reference.
Loss of image structure measured locally through luminance
similarity, contrast similarity, structural similarity. It performs
average of local measure across the image. The SSIM index
is based on the computation of three terms, namely the
luminance comparison l(x, y), the contrast comparison c(x, y)
and the structural comparison s(x, y). The overall index is a
multiplicative combination of the three comparisons of two
images [19].

SSIM(fi−1, fi) = (l(fi−1, fi))
α·(c(fi−1, fi))β ·(s(fi−1, fi))γ

(1)
where α, β, and γ are weight factors. The values l(fi−1, fi),
c(fi−1, fi) and s(fi−1, fi) are defined based on the luminance
(represented by mean intensity).

l(fi−1, fi) =
2µxµy + C1

µ2
x + µ2

y + C1
(2)

c(fi−1, fi) =
2σxσy + C2

σ2
x + σ2

y + C2
(3)

s(fi−1, fi) =
σxy + C3

σx · σy + C3
(4)

where C1, C2 and C3 are constants. In practice, SSIM
may be calculated for each color component separately, or
an image may be divided into different blocs and SSIM
can be calculated on these blocs and averaged. SSIM is a
symmetric similarity i.e. SSIM(fi−1, fi) = SSIM(fi, fi−1)
and bounded between 0 and 1. SSIM(fi−1, fi) = 1 if and
only if images are identical.

2) DSSIM: In [13], the authors proposed a dissimilarity
measure for computing the difference between images. The
difference has been measured using structural dissimilarity
(DSSIM) [23] using structural dissimilarity. DSSIM is a dis-
tance measure derived from structural similarity (SSIM). It
keeps the advantages of SSIM, but is more similar to distance
measures (nonnegative, reflexive, symmetric) [13]:

DSSIM(fi−1, fi) =
1

SSIM(fi−1, fi)
− 1 (5)

DSSIM, like SSIM is defined for grayscale images only. The
greater values of SSIM and DSSIM refer to greater similarity
between images.

3) Mean Squared Error (MSE): MSE is the simplest, and
most widely used full-reference image quality measurement.
This metric measures quantify the difference between images
through computing the average of errors. Is describes the
degree of similarity. It stands for the mean squared difference
between the images and can be defined as follows [18]:

MSE(fi−1, fi) =
1

N

N∑
i=1

(xi − yi)2 (6)

Where xi and yi are the values of the ith pixels in fi−1,
and fi, respectively of the compared images (fi−1, fi).



The ability of MSE is to capture perceptually relevant
differences, such as high texture detail. MSE is simple and
inexpensive to compute [18]. It satisfies the interpretation of
similarity, i.e., non-negative, identity, symmetry,,and triangular
inequality [8], [18]. Lower value of MSE means a good value,
i.e., higher similarity of the reference image and distorted
image. MSE words satisfactorily when distortion is mainly
caused by contamination of additive noise [18].

4) Histogram-based image comparisons: Histogram com-
parison called sim hist is the most commonly used technique
in measuring color similarity of images. An image’s color
histogram is constructed by counting the number of pixels for
each color in the image. More formally, the color histogram
is defined by: the tuple h(A,B,C) represent the dimensions
of the 3 dimensional color spaces, either R,G,B or H,S, V .
An image can be represented by a color histogram. In order to
express the similarity of two histograms, a measure distance is
employed to compute the similarity between histograms. The
Euclidean distance between two color histograms h and g is
given by:

d(h, g) =

√∑
A

∑
B

∑
C

(h(a, b, c)− g(a, b, c))2 (7)

Where h, and g are the color histogram of the image frames
fi−1 and fi. a, b, c are color components in RGB color space
for the histograms a = r, b = g, c = b.

In this formula there is only comparison between the
identical bins in the respective histograms.

Histograms are good solutions for the problem of a large
number of images storage which takes a large amount of
space [6]. Using histograms the amount of memory required
to store an image can be reduced.

5) Vectors-based image comparisons: We propose vectors-
based similarity for image comparisons called sim vect.
Images pixels are treated as vectors, Given fi−1 and fi
two images and their two vectors of pixels V (fi−1) =
[fi−11 , ..., fi−1n ] and V (fi) = [fi1 , ..., fin ], respectively. The
vectors V (fi−1) and V (fi) are normalized between 0 and 1
into V ′(fi−1) = [f ′i−11 , ..., f

′
i−1n ] and V ′(fi) = [f ′i1 , ..., f

′
in
].

We use the dot product for measuring the similarity between
images:

sim vect = V ′(fi−1) · V ′(fi) =
n∑
i=1

f ′i−1j · f
′
ij (8)

Thus, the result is a float between 0 and 1 that indicated
the percent similarity of the two images.

6) Grayscale and hashing-based image comparisons: We
use the similarity developed by the authors in [20] which
combine grayscale and hashing methods. In this paper, we
call the similarity sim gray. In the first step, the similarity
method convert the image to grayscale. It means removing the
color information and retain the brightness information. In the
second step, it calculates the mean brightness of each block
for scaling the image into the grid of blocks. Thus, the result is

one pixel per block. In the third step, it determines the median
value of the previously calculated mean values. In the fourth
step, it sets the hash bit for each block according to whether
its mean value is above the median or not. In the final step,
the Hamming distance is employed, which counts the number
of non-matching bits.

B. Anomaly detection

Each similarity metric computes its own similarity of suc-
cessive images, in this section, we want to discover the
abnormal values from each similarity metric. We say a frame i
is normal if the similarity with the previous frame i−1 is close
and no drift from the rest of similarity values. Otherwise, there
is a suspect and a potential perturbation on the current frame.
In order to detect such frames from the similarity values, we
use the tool developed in [16]. In [16], the authors proposed
an online outlier detection algorithm based on extreme value
theory for univariate numerical streaming time series data.
They proposed a library called libspot 1 to detect anomalies
in stationary data streams as well as drifting data streams
considering concept drift and to find distribution-independent
bounds on the rate of extreme (large) values. The goal of the
extreme value theory is to find the law of extreme events. For
example the law of the daily maximum of temperature, or the
law of the monthly maximal tide height. The idea of libspot
library is to provide dynamic threshold with a probabilistic
meaning based on standard model solution. libspot has two
inputs: The main parameter is q which is the probability of
abnormal events (between 0 and 1) and the second parameter
is the number of initial observations to perform calibration on
the threshold. It has an alert as an output.

The advantage of libspot is that that does not require to
hand-set thresholds and makes no assumption on the distribu-
tion. The drawback is a parameter the probability of potential
outliers it means controlling the number of false positives.
In addition, the size of the initial batch to be used for the
distribution must be large in order to avoid failing because of
a lack of peaks to perform.

V. EXPERIMENTAL RESULTS

A. Experimental setup

We present the computational experiments and the per-
formance conducted by running of each image comparisons
combined with anomaly detection algorithm. We evaluate the
accuracy over different types of scenarios of attacks. The
experiments are performed on a 2.20 GHz Intel(R) Core(TM)
i7-2720QM CPU 64bits laptop with 4 GB of RAM running
Linux. All programs were implemented in Python. For image
comparisons, we use PIL and numpy libraries. The Python
Imaging Library (PIL): it supports many file formats, and
provides powerful image processing and graphics capabilities.
numpy: it supports large and multi-dimensional arrays and
matrices.

1https://github.com/asiffer/libspot



For anomaly detection, we use libspot 2 library proposed
in [16] to detect anomalies in stationary data streams. We
measure the impact of the two input parameters of libspot on
the detection of anomalies; the probability of abnormal events
q, and the number of initial observations.

The goal of the experiments is to find a compromise
between the image comparisons algorithms and the anomaly
detection algorithm. We want to compare the performance of
image comparisons algorithms in order to find the best one
and discover which algorithm is well adapted to a specific
scenarios of attacks.

B. Dataset

Different videos recorded by cameras embedded on a self
driving car are used for evaluating the anomaly detection
algorithms, and the videos are taken on different daytime
scenes, including highway, urban common road, urban narrow
road, multiple vehicles,...etc.

We use a driving data which is publicly dataset of real world
publicly available and provided by Udacity 3. The duration
of the video is 10 minutes and 9 seconds which contains
more than 15000 frames. We construct different images per-
turbations. The images records include both normal images,
and attacked images with different perturbations. The dataset
contains 10 separate scenarios whose general characteristics
are described in Table I. The entire dataset is already classified
normal or abnormal based on the scenarios in Table I. Figure 3
shows an example of a sample of images extracted from the
camera in the self-driving car and perturbed with the scenarios.
We provide both a ground-truth and an evaluation software
in order to evaluate other images similarity and anomaly
detection methods against the current data.

C. Results

The performance of each anomaly detection method is
calculated based on the outliers detection accuracy, sensitiv-
ity, specificity, precision, and processing time. The outliers
detection accuracy, true positive rate (TPR) and false positive
rate (FPR) are calculated by using the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
, FPR =

TP

TP + FN
,

FPR =
FP

FP + TN
. Where:

• True Positive (TP): Observations where the actual and
detected images were attack.

• True Negative (TN): Observations where the actual and
detected images weren’t attack.

• False Positive (FP): Observations where the actual images
weren’t attack but detected to be attack.

• False Negative (FN): Observations where the actual im-
ages were attack but weren’t detected to be attack.

Figure 7a show the accuracy according to the variation of
the main parameter q as a false-positive regulator. The number
of initial observations is set to 5000 observation similarity

2https://github.com/asiffer/libspot
3https://github.com/udacity/self-driving-car
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values incoming from each similarity metric. We see that the
accuracy of abnormal value of similarity metrics is very high
using DSSIM, SSIM, sim vect, sim hist, and sim gray
expect MSE when the probability to have an abnormal value is
high i.e q = 10−2. The accuracy of different similarity metrics
is between 0.85 and 0.96. Thus, the main parameter q has no
influence on the accuracy of detection. In contract, Figure 7b
shows the accuracy of detection according to the number of
initial observation used for training. In this figure, we set
q = 10−3. We see that the number of initial observations
useful for the detection of abnormal similarity values varies
in each number of initial observations. Globally, when the
number of initial observations grows then the accuracy grows
too.

We study the impact of the main parameter q on different
similarity metrics. On Figure 7c, the curve shows the effect of
q on the False Positive rate (FPR). Values of q between 10−2

and 10−6 allow to have a high True Positive rate (TPR) while
keeping a low FPR. Almost of similarity metrics provide high
TPR and low FPR expect MSE when the probability q = 10−2.

From these experiments, we conclude that the best similarity
metric combined with the anomaly detection values (libspot)
is sim hist. Figure 8 shows the runtime of the similarity
metrics. Thus, sim hist is in top-2 of the best algorithms
which provides us better compromise between the runtime and
the accuracy. Figure 9 shows the accuracy of detection per
scenario described in Table I. We see that all the scenarios
from S1 to S6 are detected by libspot on almost similarity
metrics but the scenarios from S7 to S10 are not detected due



to the small changes on a figure i.e. changing the traffic lights
or hiding a car. Thus, the detection of scenarios from S7 to
S10 is considered as a future work of this paper.

VI. RELATED WORK

Adversarial Examples
For the image classification problem, in [17], the authors

generated small perturbations on the images and fooled deep
neural networks. These misclassified samples were named as
Adversarial Examples. For instance, an adversary can con-
struct physical adversarial examples and confuse autonomous
vehicles by manipulating the stop sign in a traffic sign
recognition system [12], [5] or removing the segmentation of
pedestrians in an object recognition system [21].

Adversarial Examples have been proposed on deep learning
algorithms due to their vulnerability to the inputs. Some-
times, adversarial examples are imperceptible to human and
can easily fool deep neural networks in the testing or/and
deploying stage. The vulnerabilities to adversarial examples
become one of the major risks for applying and deploying
deep neural networks in safety-critical environments such as a
self-driving vehicle. In [22], the authors highlight two types of
countermeasures of defense strategies for adversarial examples
on deep learning: 1) reactive: detect adversarial examples after
deep neural networks are built; 2) proactive: make deep neural
networks more robust before adversaries generate adversarial
examples. All the existing works develop more robust deep
learning algorithms in order to detect adversarial examples
using different techniques. In our work, we propose to protect
the input flows of machine learning and deep neural networks
algorithms. It allows the machine learnings tools to focus on
their primary tasks i.e. classification, clustering,...etc.

Anomaly Detection. Anomaly Detection field has been ex-
tensively studied and many overviews can be found in [3] [9].
Recent work on anomaly detection has focused on statistical
properties of ”normal” data to identify these anomalies, such
as works in [15], which uses Benford’s Law to identify
anomalies in social networks, and [16], which uses Extreme
Value Theory to detect anomalies. But the problem of anomaly
detection from steaming data without any supervision or input
parameter settings remains a challenge.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an anomaly detection
method for detecting abnormal camera flows targeted and
disturbed by an attacker in ROS. We also propose several
adversarial models capturing capabilities of attacks on ROS
camera node. The different attacks are perturbations on camera
flow performed by an attacker in order to mis-recognize
objects when using machine learning algorithms. Our experi-
mental results, over real data highlight ability of our method to
detect abnormal image frames incoming from camera flows. In
the future, we plan to extend the intrusion detection system on
different ROS sensors stream anomaly detection and support
for machine learning.
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