. Sros, , pp.2018-2027

V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection: A survey, ACM Comput. Surv, vol.41, issue.3, 2009.

B. Dieber, B. Breiling, S. Taurer, S. Kacianka, S. Rass et al., Security for the robot operating system, Robot. Auton. Syst, vol.98, pp.192-203, 2017.

I. Evtimov, K. Eykholt, E. Fernandes, T. Kohno, B. Li et al., Robust physical-world attacks on machine learning models, 2017.

S. N. Ferdaus, A. Vardy, G. Mann, and R. Gosine, Comparing global measures of image similarity for use in topological localization of mobile robots, Canadian Conference on Electrical and Computer Engineering, 2008.

A. Giaretta, M. D. Donno, and N. Dragoni, Adding salt to pepper: A structured security assessment over a humanoid robot, 2018.

K. Gu, G. Zhai, X. Yang, and W. Zhang, An improved full-reference image quality metric based on structure compensation, Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, pp.1-6, 2012.

V. J. Hodge and J. Austin, A survey of outlier detection methodologies, Artificial Intelligence Review, vol.22, issue.2, pp.85-126, 2004.

S. Jeong, I. Choi, Y. Kim, Y. Shin, J. Han et al., A study on ros vulnerabilities and countermeasure, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, HRI '17, pp.147-148, 2017.

S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi et al., Autoware on board: Enabling autonomous vehicles with embedded systems, 2018.

, ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS), pp.287-296, 2018.

A. Kurakin, I. J. Goodfellow, and S. Bengio, Adversarial examples in the physical world, 2016.

A. Loza, L. Mihaylova, N. Canagarajah, and D. Bull, Structural similarity-based object tracking in video sequences, 9th International Conference on Information Fusion, pp.1-6, 2006.

F. Martn, E. Soriano, and J. M. Caas, Quantitative analysis of security in distributed robotic frameworks, Robotics and Autonomous Systems, vol.100, pp.95-107, 2018.

S. Maurus and C. Plant, Let's see your digits: Anomalous-state detection using benford's law, Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.977-986, 2017.

A. Siffer, P. Fouque, A. Termier, and C. Largouet, Anomaly detection in streams with extreme value theory, Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '17, pp.1067-1075, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01640325

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan et al., Intriguing properties of neural networks, 2013.

Z. Wang and A. C. Bovik, Mean squared error: Love it or leave it? a new look at signal fidelity measures, IEEE Signal Processing Magazine, vol.26, issue.1, pp.98-117, 2009.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing, vol.13, issue.4, pp.600-612, 2004.

C. Winter, M. Steinebach, and Y. Yannikos, Fast indexing strategies for robust image hashes, Proceedings of the First Annual DFRWS Europe, vol.11, pp.27-35, 2014.

C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie et al., Adversarial examples for semantic segmentation and object detection, 2017.

X. Yuan, P. He, Q. Zhu, R. R. Bhat, and X. Li, Adversarial examples: Attacks and defenses for deep learning, 2017.