
HAL Id: hal-02063780
https://inria.hal.science/hal-02063780

Submitted on 11 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lγ -PageRank for Semi-Supervised Learning
Esteban Bautista, Patrice Abry, Paulo Gonçalves

To cite this version:
Esteban Bautista, Patrice Abry, Paulo Gonçalves. Lγ -PageRank for Semi-Supervised Learning. Ap-
plied Network Science, 2019, 4 (57), pp.1-20. �10.1007/s41109-019-0172-x�. �hal-02063780�

https://inria.hal.science/hal-02063780
https://hal.archives-ouvertes.fr


Bautista et al. Submitted to Applied Network Science

RESEARCH

Lγ-PageRank for Semi-Supervised Learning
Esteban Bautista1,2*, Patrice Abry2 and Paulo Gonçalves1
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Abstract

PageRank for Semi-Supervised Learning has shown to leverage data structures
and limited tagged examples to yield meaningful classification. Despite successes,
classification performance can still be improved, particularly in cases of fuzzy
graphs or unbalanced labeled data. To address such limitations, a novel approach
based on powers of the Laplacian matrix Lγ (γ > 0), referred to as Lγ-PageRank,
is proposed. Its theoretical study shows that it operates on signed graphs, where
nodes belonging to one same class are more likely to share positive edges while
nodes from different classes are more likely to be connected with negative edges.
It is shown that by selecting an optimal γ, classification performance can be
significantly enhanced. A procedure for the automated estimation of the optimal
γ, from a unique observation of data, is devised and assessed. Experiments on
several datasets demonstrate the effectiveness of both Lγ-PageRank classification
and the optimal γ estimation.

Keywords: Semi-Supervised Learning; PageRank; Laplacian powers; Diffusion on
graphs; Signed graphs; Optimal tuning; MNIST

1 Introduction
1.1 Context

Graph-based Semi-Supervised Learning (G-SSL) is a modern important tool for

classification. While Unsupervised Learning fully relies on the data structure and

Supervised Learning demands extensive labeled examples, G-SSL combines limited

tagged examples and the data structure to provide satisfactory results. This makes

the field of G-SSL of utmost importance as nowadays large and structured datasets

can be readily accessed in comparison to expert data which may be hard to ob-

tain. Examples where G-SSL provide state of the art results are vast, ranging from

classification of BitTorrent contents and users [1], text categorization [2], medical

diagnosis [3], or zombie hunting under BGP protocol [4]. Algorithmically, PageRank

constitutes the reference tool in G-SSL. It has spurred a deluge of theory [5, 6, 7, 8],

applications [9, 10, 1, 4] and implementations [11, 12]. Despite successes, the per-

formance of G-SSL can still be improved, particularly for fuzzy graphs or imbalance

of labeled datasets, two situations that we aim to address in this work.

1.2 Related works

In graphs, a ground truth class is represented by a subset of graph nodes, denoted

Sgt. Thus, in graphs, the classification challenge corresponds to finding the binary

partition of the graph vertices: V = Sgt∪Scgt. If the data is structured, then Sgt forms

a cluster, i.e., a densely and strongly connected graph region that is weakly con-

nected to the rest of the graph. This is exploited by G-SSL methods that essentially
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amount to diffuse information placed on the tagged nodes of Sgt, through the graph,

expecting a concentration of information in Sgt that reveals its members. Among

the family of G-SSL propositions obeying this rationale [13, 14, 15], PageRank is

considered the state of the art approach in terms of performance, algorithms and

theoretical understanding. The PageRank algorithm can be interpreted as random

walkers that start from the labeled points and, at each step, diffuse to an adjacent

node with probability α or restart to the starting point with probability (1 − α).
In the limit (of infinite steps), each node is endowed a score proportional to the

number of visits to it. Thus, vertices of Sgt are expected to get larger scores as

walkers get trapped for a long time by the connected structure of Sgt. The capac-

ity of PageRank to confine the random walks within Sgt depends on a topological

parameter of Sgt known as the Cheeger ratio, or conductance, counting the ratio

of external and internal connections of Sgt. More precisely, it is shown in [11] that

the probability of a PageRank random walker leaving Sgt is upper bounded by the

Cheeger ratio of Sgt. In other terms, a small Cheeger ratio designates a strongly dis-

connected cluster that PageRank can eventually easily detect. Based on the scores,

a binary partitioning via a sweep-cut procedure allows to retrieve an estimate Ŝgt.

This procedure is granted to obtain an estimate Ŝgt with a small Cheeger ratio if

a sharp drop in magnitude appears on the sorted scores, then Ŝgt is potentially

a good estimation of the ground truth Sgt [12]. In [16], an issue affecting G-SSL

methods, coined as the ‘curse of flatness’, was highlighted. Such work proposes to

extend PageRank by iterating the random walk Laplacian in the PageRank solu-

tion, as a mean to enforce Sobolev regularity to the vertex scores and amend the

aforementioned problem. However, with this approach, guarantees that a sweep-cut

still leads to a meaningful clustering remains unproven and it can be given neither

diffusion nor topological interpretations. Thus, preventing insights on the proper-

ties and qualities of partitions it retrieves. This makes it hard to build upon and to

address the issues listed above.

1.3 Goals, contributions and outline

In this work, we revisit Laplacian powers as a way to improve G-SSL and to ad-

dress the issues listed above. We propose a generalization of PageRank by using

(non necessarily integers) powers of the combinatorial Laplacian matrix Lγ (γ > 0).

In contradistinction to [16], our approach (i) enables us to have an explicit closed

form expression of the underlying optimization problem (see Eq. 7); (ii) permits a

diffusion and a topological interpretation. In our approach, we show that, for each

γ, a new graph is generated. These new graphs, which we refer to as Lγ-graphs,

reweight the links of the original structure and create edges, which can be positive

or negative, between initially far-distant nodes. This topological change has the po-

tential to improve classification as the signed edges introduce what can be seen as

agreements (positive edges) or disagreements (negative edges) between nodes, al-

lowing to revamp clusters as groups of nodes agreeing between them and disagreeing

with the rest of the graph. This paper investigates the potential of these Lγ-graphs

to better delineate a targeted Sgt, compared to PageRank. The theoretical analysis

of our proposition permits to extend the Cheeger ratio to Lγ-graphs and to prove

that if there is a Lγ−graph in which Sgt has a smaller Cheeger ratio, then we can
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more accurately identify it with our generalized Lγ-PageRank procedure using the

sweep-cut technique. Then, by means of numerical investigations, we point the ex-

istence of an optimal γ value that maximizes performance. Finally, we propose an

algorithm that allows to estimate the optimal γ directly from the graph and the

labeled points.

The paper is organized as follows: Section 2 sets definitions and recalls classical

results on G-SSL. Section 3 presents the main contributions of the paper: Section 3.1

introduces Lγ-graphs; Section 3.2 defines Lγ-PageRank and its theoretical analysis;

Section 3.3 discusses the existence of an optimal γ and its estimation. Section 4

shows the improvements in classification performance permitted by Lγ-PageRank on

several real world datasets commonly used in classification, as well as the relevance

of the estimation procedure for the optimal tuning.

2 State of the art
2.1 Preliminaries

Let G(V,E ,w) denote a weighted undirected graph with no self-loops in which:

V refers to the set of vertices of cardinality ∣V ∣ = N ; E denotes the set of edges,

where a connected pair u, v ∈ V, denoted u ∼ v, implies (u, v), (v, u) ∈ E ; and

w ∶ E → R+ is a weight function. The graph adjacency matrix is denoted by W

in which Wuv = w(u, v) if u ∼ v and Wuv = 0 otherwise. For a vertex u ∈ V we

let du = ∑vWuv denote the degree of u and D = diag(d1, . . . , dN) be the diagonal

matrix of degrees. Let ∆uv denote the geodesic distance between u and v. Given

a set of nodes S ⊆ V, we denote by 1S the indicator function of such set, meaning

that (1S)u = 1 if u ∈ S and (1S)u = 0 otherwise. The volume of S is defined to

be vol(S) = ∑u∈S du. We refer to the volume of the entire graph by vol(G). Let

f ∶ V → R be a signal lying on the graph vertices. Graph signals are represented as

column vectors, where fu refers to the signal value at node u. The sum of signal

values in the set S is denoted by f(S) = ∑u∈S fu. We denote by L = D −W the

combinatorial graph Laplacian which, by construction, is a real symmetric matrix

with eigendecomposition of the form L = QΛQT . The positivity of the Dirichlet form

fTLf = ∑u∼vWuv(fi − fj)2 ≥ 0 implies that L has real non-negative eigenvalues.

A random walk on a graph is a Markov chain where the nodes form the state

space. Thus, when a walker is located at a node u at a specific time t, at time step

t + 1 the walker moves to a neighbor v with probability Puv, where P = D−1W . If

the graph signal χ represents the distribution for the random walk starting point,

then the signal xT = χTP t denotes the distribution of the walker position at time

t. Independently of the starting distribution, if the graph is connected and not

bipartite, the random walk converges to a stationary distribution πT = πTP , where

πu = du/vol(G).
Clustering is the search of groups of nodes that are strongly connected between

them and weakly connected to the rest of the graph. The Cheeger ratio is a metric

that counts the ratio of external and internal connections of a group of nodes, thus

assessing its pertinence as a cluster, while penalizing uninteresting solutions that

may fit the cluster criteria, like isolated nodes linked by a few edges. It is defined

as follows.
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Definition 1 For a set of nodes S ⊆ V, the Cheeger ratio, or conductance, of S is

defined as:

hS ∶=
∑u∈S∑v∈ScWuv

min{vol(S), vol(Sc)} . (1)

Thus, we define clustering as finding the binary partition of the graph vertices:

V = S ∪ Sc such that S has low hS .

2.2 PageRank-based Semi-Supervised Learning

Let VSgt ⊆ Sgt denote the set of nodes tagged to belong to the ground truth Sgt and

y be indicator function of VSgt , i.e. yu = 1 if node u ∈ VSgt and yu = 0 otherwise.

The PageRank G-SSL is defined as the solution to the optimization problem [15]:

arg min
f

{fTD−1LD−1f + µ (f − y)T D−1 (f − y)} . (2)

Optimization problem (2) can be seen as the search of a smooth graph signal in

the sense that strongly connected nodes should have similar values (left term), while

the labeled data is respected (right term), and a regularization parameter µ tunes

the trade off between both terms. Notably, problem (2) is convex with closed form

solution given by [15]:

f = µ (LD−1 + µI)−1 y. (3)

We present the PageRank solution in this form as it will simplify derivations in

the reminder of the paper, but it is not hard to rewrite (3) to its more popular

version: fT = (1 − α)∑∞k=0 αkyTP k where α = 1/(1 + µ). This latter helps to expose

the connection between PageRank and diffusion processes. Namely, it corresponds

to the equilibrium state of a random walk that decides either to continue with

probability α, or to restart to the starting distribution y with probability (1 − α).
As y = ∑u∈VSgt δu is the combination of different starting distributions, it is clear

that the PageRank score at a particular node is proportional to the probability

of finding a walker, at equilibrium, at this node. PageRank diffusion satisfies the

following properties [17]: (i) mass preservation: ∑u∈V fu = ∑u∈V yu; (ii) stationarity:

f = π if y = π; and (iii) limit behavior: f → π as µ→ 0 and f → y as µ→∞.

In [11], it is shown that the behavior of this type of random walks is tightly

related to the cluster structure of graphs. This connection between PageRank and

clustering is quantified in the following result.

Lemma 1 [11] Let S ⊂ V be an arbitrary set with vol(S) ≤ vol(G)/2. For a labeled

point placed at a node u ∈ S selected with probability proportional to its degree in S,

i.e. du/vol(S), the PageRank satisfies

E[f(Sc)] ≤ hS
µ
. (4)
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This lemma implies that if we apply PageRank diffusion to the labels of Sgt and

it has a small hSgt , then the probability of finding a walker outside Sgt is small

and the nodes with largest PageRank value should index Sgt. This is formalized

in [11] and [12]. The former shows that a proxy Ŝgt that has small hŜgt can be

found by looking for regions of high concentration of PageRank mass. The latter

improves that result, showing that Ŝgt can be found more easily by looking for a

sharp drop in the PageRank scores. To state their result, we first introduce the

sweep-cut technique.

Definition 2 A sweep-cut is a procedure to retrieve a partition V = Ŝgt ∪ Ŝcgt from

the PageRank vector. The procedure is as follows:

• Let v1, . . . , vN be a rearrangement of the vertices in descending order, so that

the permutation vector q satisfies qvi = fvi/dvi ≥ qvi+1 = fvi+1/dvi+1
• Let Sj = {v1, . . . , vj} be the set of vertices indexed by the first j elements of q.

• Let τ(f) = minj hSj
• Retrieve Ŝgt = Sj for the set Sj achieving τ(f)

Now, we state the result of [12], showing that if there is a sharp drop in rank at

Sj , then the set Sj has small Cheeger ratio.

Lemma 2 [12] Let h ∈ (0,1), j be any index in [1,N] and α ∈ (0,1] denote the

PageRank restarting probability. Let C(Sj , Scj ) = ∑u∈Sj ∑v∈Scj Wuv be the numera-

tor of the Cheeger ratio. Then, Sj satisfies one of the following: (a) C(Sj , Scj ) <
2hvol(Sj); or (b) there is some index k > j such that vol(Sk) ≥ vol(Sj)(1 + h) and

qk ≥ qj − α/hvol(Sj)

In other words, this lemma implies that either Sj has a small Cheeger ratio, or

there is no sharp drop at qj .

2.3 Generalization to multiple classes

PageRank G-SSL can be readily generalized to a multi-class setting in which labeled

points of K classes are used to find a partition V = S1∪S2∪⋅ ⋅ ⋅∪SK . Let VSk denote

the labeled points of class k and the indicator function of VSk be placed as the

k-th column of a matrix Y . Then, the multi-class PageRank is computed in matrix

form as [18]: minF {FTD−1LD−1F + µ (F − Y )T D−1 (F − Y )}, with classification

matrix given in closed form by F = µ (LD−1 + µI)−1 Y . This leads a node u to have

K associated scores and it is assigned to the cluster k satisfying arg maxk Fuk. In

[18], the following rule explaining the classification is provided: let pruv denote the

probability that a random walk reaches node v before restarting to node u, then v

is assigned to the class k that satisfies the inequality

∑
u∈Vk

pruv ≥ ∑
w∈Vk′

prwv, ∀k′ ≠ k. (5)

This inequality highlights an important issue of the multi-class approach as the sums

depend on the cardinality of the sets of labeled points. Thus, cases of unbalanced

number of labeled points can potentially bias the classification.
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(a) Positive edges (b) Negative edges

Figure 1 Exemplification of the topology emerging from L2 on a realization of the Planted
Partition with 100 nodes and parameters pin = 0.5 and pout = 0.05. The positive edges coincide
with the original structure but are reweighted. The negative ones appear between nodes that are
initially at a 2-hop distance. It can be seen that a considerable amount of negative edges appear
between clusters, bringing the potential to boost their detection.

3 Lγ-PageRank for Semi-Supervised Learning

3.1 The Lγ-graphs

In this work, we propose to change the graph topology in which the problem is

solved as a means to improve classification. We evoke such change by considering

powers of the Laplacian matrix, noting that the Lγ operator, for γ > 0, generates a

new graph for every fixed γ value. More precisely, the Laplacian definition indicates

that Lγ = V ΛγV T = Dγ −Wγ codes for a new graph, where [Dγ]uu = [Lγ]uu refers

to a generalized degree matrix and [Wγ]uv = − [Lγ]uv, with u ≠ v, to a generalized

adjacency matrix that satisfies the Laplacian property [Dγ]uu = ∑v [Wγ]uv since

Lγ1 = 0. We refer to such graphs as Lγ-graphs.

The Lγ-graphs reweight the edges of the original structure and creates links be-

tween originally far-distant nodes. Indeed, for γ ∈ Z the new edges can be related

to paths of different lengths. To have a grasp on this, let us take the topology

from γ = 2 as an example: for L2 = (D −W )2 = D2 +W 2 − (DW +WD), the ele-

ments of the emanating graph are given as [D2]uu = [L2]uu = D2
uu +∑vW 2

uv and

[W2]uv = −[L2]uv = (Duu +Dvv)Wuv −W 2
uv −∑l≠u,vWulWlv, showing that, in W2,

nodes originally connected get their link reweighted (still, remaining positive) while

those at a 2-hop distance become linked by a negatively weighted edge.

This change in the topology has the potential to impact clustering, as the emer-

gence of positive and negative edges opens the door for an interpretation in terms

of an agreement (positive edge) or a disagreement (negative edge) between data-

points. Hence, clustering can be revamped to assume that nodes agreeing should

belong to the same cluster and nodes disagreeing should belong to different ones.

From this perspective, a revisit to the case of γ = 2 shows that this is indeed a

potentially good topology since, for several graphs, it is more likely that vertices

having a 2-hop distance lie in different clusters than in the same one, thus creat-

ing a considerable amount of disagreements between clusters, that may enhance

their separability. This idea is illustrated in Figure 1, where for a realization of the

planted partition model we show that with γ = 2 a big amount of negative edges

appear between clusters.

Thus, in the reminder of the paper we investigate if for a target set of nodes Sgt,

the detection of Sgt can be enhanced by solving the clustering problem in some of

these new graphs.
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Remark 1 The graphs emerging in the regime 0 < γ < 1 have already been

studied in [19, 20, 21], where it is shown that such graphs remain within the class of

graphs with only positive edges, hence preserving the random walk framework. In

these works, the graphs were shown to embed the so-called Lévy flight, permitting

random walkers to perform long-distant jumps in a single step.

3.2 The Lγ-PageRank method

The signed graphs emerging from Lγ preclude the employment of the random walk-

based approaches to find clusters, as ‘negative transitions’ appear. Thus, the Lγ-

graphs call for a technique to find clusters in such graphs. In this subsection, we

introduce Lγ-PageRank, a generalization of PageRank to finds clusters on the Lγ-

graphs. Further, we analyze the Lγ-PageRank theoretical properties and clustering

capabilities.

For our analysis, it is useful to first extend some of the graph topological definitions

to the Lγ-graphs. Let volγ(S) = ∑u∈S [Dγ]uu denote the generalized volume of S.

Let πγ denote a generalized stationary distribution with entries given by (πγ)u =
[Dγ]uu /volγ(G). It is important to stress that [Dγ]uu = ∑k λγkQ2

uk ≥ 0. Thus, for

all γ > 0, the generalized volume and the generalized stationary distribution are

non-negative quantities.

The Cheeger ratio metric, lacking the ability to account for the sign of edges,

cannot be employed to assess the presence of clusters in the Lγ-graphs. Thus, we

generalize the Cheeger ratio definition to the new graphs as follows.

Definition 3 For a set of nodes S ⊆ V , the generalized Cheeger ratio, or general-

ized conductance, of S is defined as

h
(γ)
S = ∑u∈S∑v∈Sc [Wγ]uv

min (volγ(S), volγ(Sc))
(6)

This generalization of the Cheeger ratio is mathematically sound. First, it

is a non-negative quantity since ∑u∈S∑v∈Sc [Wγ]uv = 1
T
SL

γ
1S ≥ 0. Second,

the set S attaining the minimum value coincides with a sensible clustering.

To show the latter, let the edges in Wγ be split according to their sign as

Wγ = Wγ
+ + Wγ

−. Let Ain(S) = ∑u∈S∑w∈S ∣ [W +
γ ]uw ∣ be the sum of agree-

ments within S, Aout(S) = ∑u∈S∑v∈Sc ∣ [W +
γ ]uv ∣ the agreements between S and

Sc, Din(S) = ∑u∈S∑w∈S ∣ [W −
γ ]uw ∣ the disagreements within S, and Dout(S) =

∑u∈S∑v∈Sc ∣ [W −
γ ]uv ∣ the disagreements between S and Sc. Then we state the fol-

lowing lemma.

Lemma 3 Let S∗ = arg minS h
(γ)
S . Then, S∗ also maximizes Dout(S∗) and

Ain(S∗).

The proof is provided in Appendix A.1.

Lemma 3 shows that, for clustering in the Lγ-graphs, it is good to search for

sets with small generalized Cheeger ratio as those sets have strong between-cluster

disagreements and strong within-cluster agreements.

Now, we introduce the Lγ-PageRank formulation. Departing from the optimiza-

tion problem in (2), we revamp PageRank to operate on the Lγ-topology as follows.
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Definition 4 The Lγ-PageRank G-SSL is defined as the solution to the optimiza-

tion problem:

arg min
f

{fTD−1
γ L

γD−1
γ f + µ(f − y)TD−1

γ (f − y)} (7)

The two following Lemmas show that, for any γ > 0, the Lγ-PageRank solution

exists in closed form and such solution preserves the PageRank properties.

Lemma 4 Let γ > 0. Then, problem (7) is convex with closed form solution given

by

f = µ (LγD−1
γ + µI)−1 y (8)

The proof is provided in Appendix A.2.

Remark 2 Eq. (8) emphasizes the difference between our approach and the

one in [16]: they propose to iterate the operator in the G-SSL solution as f =
µ ([LD−1]m + µI)

−1
y, for m ∈ Z>0, for which the formulation of the optimization

problem having this expression as solution remains unknown.

Remark 3 The solution of Lγ-PageRank in Eq. (8) can be easily cast as a low-

pass graph filter, allowing a fast and distributed approximation via Chebyshev

polynomials [22].

Lemma 5 Let γ > 0. The Lγ-PageRank solution in (8) satisfies the following

properties: (i) mass preservation: ∑u∈V fu = ∑u∈V yu; (ii) stationarity: f = πγ if

y = πγ ; and (iii) limit behavior: f → πγ as µ→ 0 and f → y as µ→∞.

The proof is provided in Appendix A.3.

The previous Lemmas are important because they show that our generalization,

for any γ > 0, is a well-posed problem. Indeed, the properties of Lemma 5 imply

that, while not necessarily modeled by random walkers, Lγ-PageRank remains a

diffusion process having πγ as stationary state and diffusion rate controlled by the

µ parameter.

Our next results shows that it is hard for such diffusion process to escape clusters

in the Lγ-graphs.

Lemma 6 Let γ > 0 and let S ⊂ V be an arbitrary set with volγ(S) ≤ volγ(G)/2.

For a labeled point placed at node u ∈ S with probability proportional to its generalized

degree in S, i.e.
[Dγ]uu
volγ(S)

, Lγ-PageRank satisfies

E [f(Sc)] ≤
h
(γ)
S

µ
(9)

The proof is provided in Appendix A.4.
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Lemma 6 admits a similar interpretation as Lemma 1. Namely, if Lγ-PageRank

is applied to the labeled points of some set S with small h
(γ)
S , then diffusion is

confined to S and the score values outside of S are expected to be small. Thus, by

looking at the nodes with largest score values we should be able to retrieve a good

estimation of S. If such score concentration phenomenon takes place, then a sharp

drop must appear after sorting the Lγ-PageRank scores in descending order. We

will use the following lemma to show that if a sharp drop is present, then the sweep

cut procedure applied on the Lγ-PageRank vector retrieves a partition Ŝ that has

small h
(γ)

Ŝ
.

Lemma 7 Let q denote the permutation vector and Sj denote the set associated to

qj obtained by applying the sweep-cut procedure on the Lγ-PageRank vector. Then,

the partition V = Sj ∪ Scj satisfies the inequality:

Aout(Sj)(2 − (qj − qj+1)
(q1 − qN) ) −Dout(Sj)(2

(qj − qj+1)
(q1 − qN) − 1) ≥ µ (y(Sj) − f(Sj))

(q1 − qn)

≥ Aout(Sj)(2
(qj − qj+1)
(q1 − qN) − 1) −Dout(Sj)(2 − (qj − qj+1)

(q1 − qN) ) (10)

The proof is provided in Appendix A.5.

We have that ∑u∈Sj ∑v∈Scj [Wγ]uv = Aout(Sj)−Dout(Sj) ≥ 0. Thus, the generalized

Cheeger ratio of Sj is small if Aout(Sj) is not much larger than Dout(Sj). In the

inequality above, we have two cases in which (qj − qj+1)/(q1 − qN) ≈ 1: (a) q is

approximately constant; and (b) q has a drop that satisfies qj ≈ q1 and qj+1 ≈ qN .

The former can only occur if f → πγ and clearly no cluster can be retrieved from that

vector, as confirmed by the inequality growing unbounded. The latter case is what

we coin as having a sharp drop between qj and qj+1. In such case, the inequality

is controlled by the difference y(Sj) − f(Sj) which, due to the mass preserving

property and the assumption that qj+1 ≈ qN , should be small. Thus, granting that

Aout(Sj) is not much larger than Dout(Sj) and Sj has a small h
(γ)
Sj

.

Discussion. The previous results show that Lγ-PageRank is a sensible tool to

find clusters in the Lγ-graphs, i.e. groups of nodes with small generalized Cheeger

ratio. Thus, revisiting the classification case in which we target group of nodes Sgt,

we have that the smaller the value of h
(γ)
Sgt

, the better the Lγ-PageRank method can

recover it. This observation, in addition to noting that standard PageRank emerges

as the particular case of γ = 1, indicate that we should be able to enhance the

performance of G-SSL in the detection of Sgt by finding the graph, i.e. the γ value,

in which h
(γ)
Sgt

< h(1)
Sgt

.

3.3 The selection of γ

3.3.1 Case of γ = 2: analytic study

In Section 3.1, it was argued that the topology emerging from L2 places a nega-

tively weighted link between nodes at a 2-hop distance, thus carrying the potential

to place a big amount of disagreements between clusters that may enhance their

separability. Our next result formalizes this claim, demonstrating that on graphs

from the Planted Partition model it is expected that the L2-graph improves the

generalized Cheeger ratio.



Bautista et al. Submitted to Applied Network Science Page 10 of 20

Theorem 1 Consider a Planted Partition model of parameters (pin, pout) and

cluster sizes ∣Sgt∣ = ∣Scgt∣ = n. Then, as n→∞ we have that

E [h(2)
Sgt

] = 2E [h(1)
Sgt

]
2
, (11)

where E [h(1)
Sgt

] = pout/(pin + pout).

The proof is provided in Appendix A.6.

Corollary 1 If pin ≥ pout, then E [h(2)
Sgt

] ≤ E [h(1)
Sgt

], with equality occurring in the

case pin = pout.

The proof is provided in Appendix A.7.

Theorem 1 and Corollary 1 open the door to investigate, on arbitrary graphs, in

which cases the L2-graph improves the generalized Cheeger ratio of a set. In the

next Proposition, we provide a sufficient condition in which the L2-graph improves

the generalized Cheeger ratio a set.

Proposition 1 Let ⟨DSgt⟩ denote the mean degree of Sgt. A sufficient condition

on Sgt so that h
(2)
Sgt

≤ h(1)
Sgt

is

⟨DSgt⟩ ≥ max
u∈Sgt

∑
v∈Scgt

Wuv + max
w∈Scgt

∑
`∈Sgt

Ww`, (12)

The proof is provided in Appendix A.8.

This proposition points in the same direction as Theorem 1, saying that graphs

having a cluster structure are bound to benefit from L2. Concretely, the first term

on the right hand side of the inequality searches, among all the nodes of Sgt, the

one that has the maximum number of connections towards Scgt. The second term

does the reverse for the nodes of Scgt. Hence, asking for the nodes of Sgt to have, on

average, more connections than the maximum possible boundary implies that Sgt

should have a cluster structure.

3.3.2 An algorithm for the estimation of the optimal γ

Numerical experiments show that increasing γ can further decrease the generalized

Cheeger ratio up to a point where it starts increasing. We show an example of this

phenomenon in Figure 2a, displaying the evolution of h
(γ)
Sgt

as a function of γ when

Sgt corresponds to a digit of the MNIST dataset. From the figure, it is evident that

an optimal value appears, denoted γ∗ = arg minγ h
(γ)
Sgt

, raising the question of how to

find such value. Since the behavior of h
(γ)
Sgt

depends on Sgt, in practice, the derivative

or a greedy search to find γ∗ cannot be employed since Sgt is unknown. A second

question that arises is whether the optimal value changes drastically or smoothly

with changes in Sgt. We perform the following test: for a given Sgt (same MNIST

digit), we remove some percentage of the nodes in Sgt and record the optimal value

on subsets of Sgt. More precisely, recall that h
(γ)
Sgt

= 1TSgtL
γ
1Sgt/1TSgtDγ1Sgt , hence

we randomly select some percentage of the entries indexing Sgt in 1Sgt , set them to
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(a) γ∗ = argminγ h
(γ)
Sgt

(b) γ∗ on subsets of Sgt (c) γ̂ by algorithm

Figure 2 Generalized Cheeger ratio of Sgt as a function of γ. For the plot, Sgt is a digit of the
MNIST dataset.

Algorithm 1 Estimation of γ∗

Input: G,VSgt and a grid of γ values.
Output: γ̂
Compute ∆uv ∀ u, v ∈ VSgt .

Set k = maxu,v {∆uv}
Set χ = y/∥y∥1
Run a k-step walk with seed χ: xT = χTPk
Reorder the vertices as v1,⋯, vN , so that xvi ≥ xvi+1
for i = 1 ∶ N do

if ∑ij=1 xvj < 0.7 then

Set (1Ŝ)vi = 1
else

Set (1Ŝ)vi = 0
end if

end for

Compute h
(γ)

Ŝ
=
1
T
Ŝ
Lγ1

Ŝ

1
T
Ŝ
Dγ1Ŝ

∀ γ

Return γ̂ = arg minγ h
(γ)

Ŝ
.

zero and obtain a new indicator function indexing a subset of Sgt. Mean results are

evaluated in the original curve and displayed in Figure 2b. The figure suggest that

it is not necessary to know Sgt to find a proxy γ̂ of γ∗, it suffices to know a subset of

Sgt. Based on the last observation, we propose Algorithm 1 for the estimation of γ∗.

The rationale of the algorithm is to exploit the labeled points and the graph to find

a proxy Ŝ of Sgt on which we can compute the estimate. The procedure consists

in letting walkers started from the label points, run for a number of steps that

is determined by the maximum geodesic distance between the labels. This allows

walkers to explore Sgt without escaping too far from it. After running the walk, we

list the nodes in descending order according to the probability of finding a walk at a

node. We take the first element on the list (the one where it is more likely to find a

walker), add it to Ŝ and remove it from the list, so that the former second element

becomes the first in the listing. We repeat the procedure until the probability of

finding a walker in the nodes conforming Ŝ is 0.7.

In Table 1, we evaluate the performance of Algorithm 1 on the estimation of γ∗

for all the digits of the MNIST. The first row displays, as γ∗, the value of γ (from

the input range) attaining the minimum generalized Cheeger ratio. The second row

displays the performance of the algorithm when estimating such value. The last

three rows show the value of the generalized Cheeger ratio evaluated at γ∗, γ̂ and
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Digit 1 2 3 4 5 6 7 8 9

γ∗ 7.0 3.0 7.0 3.2 3.2 7.0 7.0 3.2 4.2

γ̂
5.45

(0.15)
3.10

(0.14)
6.41

(0.11)
4.92

(0.16)
3.20

(0.14)
6.04

(0.15)
4.98

(0.17)
4.40

(0.18)
5.08

(0.15)

h
(γ∗)
Sgt

0.065 0.166 0.035 0.141 0.131 0.011 0.052 0.116 0.135

h
(γ̂)
Sgt

0.073
(9e-4)

0.174
(8e-4)

0.041
(1e-3)

0.185
(4e-3)

0.148
(2e-3)

0.017
(1e-3)

0.074
(2e-3)

0.142
(2e-3)

0.149
(9e-4)

h
(1)
Sgt

0.175 0.248 0.216 0.258 0.233 0.107 0.203 0.215 0.285

Table 1 Evaluation of Algorithm 1 on the MNIST Dataset. Mean values (95% confidence interval)
are shown. The graph construction guidelines are provided in Section 4.2. For the experiment, 500
realizations of labeled points and a grid of γ ranging from 1 to 7 with a resolution of 0.2 were used.

γ = 1, respectively. The estimator finds values of γ̂ whose Cheeger ratios are: (a)

significantly smaller than those of γ = 1; (b) close to the optimal.

4 Lγ-PageRank in practice
4.1 Planted Partition

Experimental setup and goals. In the following experiment, we show that Lγ-

PageRank can increase the performance of G-SSL as the graph approaches the

Planted Partition detectability transition. More precisely, it is shown in [23] that

the Planted Partition possesses a detectability threshold above which unsupervised

methods are unable to retrieve a meaningful clustering. Indeed, if the clusters sizes

are denoted as ∣Sgt∣ = ∣Scgt∣ = n, the mean degree of a node is given as Cavg = Cin +
Cout, where Cout = (pout)(n) and Cin = (pin)(n − 1). It is then possible to recover

a cluster that is positively correlated with the true partition, in an unsupervised

manner, if (Cin −Cout)2 > 2(Cin +Cout), and impossible otherwise. As for G-SSL,

the work in [24] showed that such threshold can be overcome when a fraction of

labeled points is introduced to the task. Nonetheless, the performance of G-SSL

drastically degrades when approaching the detectability transition.

The experimental setup is the following: for a given Cout/Cin, a realization of

the Planted Partition is drawn with n = 500 and Cavg = 3. Then, 1% of labeled

points are sampled at random and the Lγ-PageRank method is applied for different

values of µ lying on a discrete grid. The clusters are determined via a sweep-cut

procedure, and the best performance is retained. The whole procedure is repeated

for 10 different realizations of the labeled points. Finally, all the preceding steps

are repeated for 100 graph realizations. Performance is assessed in terms of the

Matthews Correlation Coefficient (MCC) [25], so that a value of 1 implies perfect

agreement with the true partition and 0 a random decision.

Results and discussion. Figure 3 displays the performance of Lγ-PageRank at re-

covering the Planted Partition as a function of the ratio Cout/Cin. Standard PageR-

ank (γ = 1) performs poorly as the configuration approaches the phase transition

(referred by the vertical line) since h
(1)
S becomes large. Clearly, the introduction of

γ allows to decrease h
(γ)
Sgt

, which, accordingly, enhances the clustering performance.

Furthermore, the figure verifies that the smaller the value of h
(γ)
Sgt

(right plot), the

better the Lγ-PageRank recovers the true partition (left plot). It is important to

remark that, for this experiment, while γ = 2 shows good improvements, larger val-
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Figure 3 Improved detection of the Planted Partition.

ues of γ keep improving h
(γ)
S , until it reaches a saturation plateau, designating a

region of optimal γ values (γ ≥ 6).

4.2 Real world datasets

Experimental setup and goals. In our following experiment, we assesses the

performance of Lγ-PageRank and Algorithm 1 on real world datasets.

The experimental setup is as follows: graphs are build connecting the K-Nearest

Neighbors (KNN) with distances computed via the Gaussian kernel, so that the

weight between points xu and xv is given by Wuv = exp{−∣∣xu −xv ∣∣22/σ2}. For each

class, 2% of labeled points are randomly selected, Lγ-PageRank is applied for a grid

of µ values, partitions are retrieved via the sweep-cut, and the best performance,

assessed in terms of MCC, is retained. Such procedure is repeated for 100 realization

of labeled points, except for the MNIST on which 30 realizations only are employed.

In all cases, classes are balanced in size and the graph construction parameters are

selected to provide a good distribution of weights as follows: (a) MNIST [26]: Images

of handwritten digits (1 to 9). From the entire dataset, 200 images of each digit are

selected and used to build the graph with KNN = 10 and σ = 104; (b) Gender

Images [27]: Images of male and female subjects for gender recognition. From the

entire dataset, 200 images of each gender are selected and used to build the graph

with KNN = 60 and σ = 104. The large value of KNN is to avoid disconnected

components; (c) BBC articles [28]: Word frequency attributes from news media

articles. From the entire dataset, 200 business and 200 entertainment articles are

used to build the graph with KNN = 5 and σ = 50; and (d) Phoneme [29]: Five

attributes to discern nasal sounds from oral sounds. From the entire dataset, 200

oral and 200 nasal sounds are used to build the graph with KNN = 10 and σ = 2.

Results and discussion. Table 2 shows the performance of Lγ-PageRank on

the classification of these real world datasets. Clearly, the introduction of γ can

significantly improve performance and, in general, the estimation γ̂ performs close

to the optimal value γ∗. It can be seen that some datasets are more sensitive to γ

than others. For instance, in the BBC articles we observe that a small change in γ,

going from γ = 1 to γ∗ = 1.1, increases performance, and going further to γ̂ = 1.3

and γ = 2 significantly worsens the classification. On the other hand, the MNIST

dataset is less sensitive to γ, obtaining similar performances with larger variations

in γ.
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Sgt γ = 1 γ = 2 γ = γ̂ γ = γ∗

Digit 1 0.67 (0.075) 0.78 (0.032) 0.78 (0.034) [5.4] 0.80 (0.027) [7.0]

Digit 2 0.38 (0.042) 0.60 (0.064) 0.64 (0.059) [3.3] 0.64 (0.059) [3.0]

Digit 3 0.47 (0.040) 0.61 (0.032) 0.61 (0.028) [6.0] 0.61 (0.028) [7.0]

Digit 4 0.39 (0.022) 0.48 (0.036) 0.53 (0.044) [4.7] 0.53 (0.037) [3.2]

MNIST Digit 5 0.44 (0.036) 0.56 (0.046) 0.61 (0.036) [3.3] 0.64 (0.035) [3.2]

Digit 6 0.90 (0.039) 0.94 (0.003) 0.94 (0.002) [6.0] 0.94 (0.002) [7.0]

Digit 7 0.43 (0.027) 0.66 (0.043) 0.71 (0.042) [4.8] 0.75 (0.032) [7.0]

Digit 8 0.47 (0.062) 0.65 (0.057) 0.74 (0.038) [4.8] 0.72 (0.050) [3.2]

Digit 9 0.43 (0.020) 0.52 (0.026) 0.53 (0.023) [4.9] 0.56 (0.026) [4.2]

Gender
images

Female 0.51 (0.039) 0.57 (0.028) 0.57 (0.020) [3.0] 0.57 (0.028) [2.0]

Male 0.55 (0.028) 0.61 (0.021) 0.60 (0.022) [3.3] 0.61 (0.021) [2.4]

BBC
articles

Business 0.80 (0.020) 0.53 (0.038) 0.72 (0.040) [1.3] 0.81 (0.021) [1.1]

Entmt. 0.84 (0.027) 0.57 (0.040) 0.76 (0.047) [1.5] 0.86 (0.025) [1.3]

Phoneme
Nasal 0.37 (0.030) 0.41 (0.028) 0.43 (0.025) [2.9] 0.43 (0.025) [3.0]

Oral 0.41 (0.025) 0.44 (0.022) 0.46 (0.019) [2.8] 0.46 (0.019) [3.0]

Table 2 Performance on real world datasets: each cell reports MCC, 95% confidence interval
(parenthesis) and the value of γ [squared brackets].

It is important to stress that, thus far, we have assumed possession of the proper

tuning of the diffusion rate (µ) that attains the best results. However, when working

with real data, clusters may have intricate local structures, e.g. sub-clusters, that

play an important role in the way information diffuses, and that can make more

difficult the finding of the optimal diffusion rate µ. As a result, two clusters may

have equal Cheeger ratios but one of them being harder to find if its local structure

is complex. Digit 8 poses an example of this phenomenon, where the mean perfor-

mance for γ̂ is slightly better than that of γ∗. This anomaly can be explained as

an aftereffect of using a finite grid on µ: for some realization of labeled points, the

best performance for γ∗ falls in a region not covered by the grid.

4.3 Unbalanced labeled data

Experimental setup and goals. In our last experiment, we show that Lγ-

PageRank, adapted to the multi-class setting described in Section 2.3, can improve

the performance of G-SSL in the presence of unbalanced labeled data.

The experimental setup is as follows: graphs with two balanced classes (in size)

are built using the datasets from the preceding experiments. The parameters of the

graphs’ construction follow the guidelines provided in Section 4.2. For the Planted

Partition, the configuration is n = 200, Cavg = 3, Cout = 0.1. Then, unbalanced

labeled points are drawn at random: 2% from one class and 6% from the other.

Lastly, Lγ-PageRank, in the multi-class setting, is applied for a grid of µ values and

the best performance, assessed by MCC, is recorded. For the planted partition, the

procedure is repeated over 15 realizations of the labeled points and for 100 graph

realizations. For the other datasets, 100 realizations of labeled points are employed.

Results and discussion. Table 3 displays the performance Lγ-PageRank in the

presence of unbalanced labeled data. It is important to stress that, in this frame-

work, a unique value of γ∗ is used to retrieve all the clusters at the same time,
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Planted
Partition

MNIST
4vs9

MNIST
3vs8

BBC
articles

Gender
images

Phoneme

γ = 1
0.81

(1.1e-2)
0.51

(1.5e-2)
0.70

(1.4e-2)
0.66

(1.8e-2)
0.63

(2.1e-2)
0.44

(2.3e-2)

γ = 2
0.87

(8.7e-3)
0.56

(1.5e-2)
0.76

(1.2e-2)
0.92

(5.0e-3)
0.73

(1.6e-2)
0.48

(1.4e-2)

γ = Best
0.90

(7.0e-3)
[6]

0.57
(1.5e-2)

[3]

0.78
(1.2e-2)

[4]

0.93
(1.5e-3)

[3]

0.75
(1.7e-2)

[3]

0.48
(1.4e-2)

[1.9]

Table 3 Performance on unbalanced labaled data: each cell reports MCC, 95% confidence interval
(parenthesis) and the value of γ [squared brackets].

precluding the notion of an optimal γ as defined in Section 3.3. However, one value

of γ seems to perform better, we denote it as γ = Best. The results confirm that

the introduction of γ helps to improve the classification in the presence of the un-

balanced labeled data.

5 Conclusion
This work proposed Lγ-PageRank, an extension of PageRank based on (non neces-

sary integer) powers of the (combinatorial) Laplacian matrix. Our analysis shows

that the added degree of freedom offers more versatility than standard PageRank,

providing the potential to address some of the limitations of G-SSL. Precisely, we

showed that when clusters are obtained via the sweep-cut procedure, Lγ-PageRank

can significantly outperform standard PageRank. Further, we showed that the multi-

class approach also benefits from our proposition, as performance was enhanced in

the presence of unbalanced labeled data. These improvements were possible due

to the Lγ (γ > 0) operator coding for graphs whose topology can reinforce the

separability of clusters. The richness of such graphs comes from the sign of edges,

allowing to code for similarities but also to emphasize dissemblance between indi-

viduals. Thus, while 2 nodes can only be disconnected on the initial graph, they

can ‘repulse’ themselves in these topologies. Notably, we have shown that there is

an optimal graph (related to an optimal γ) on which the classification will lead to

a maximal performance. We proposed a simple yet efficient algorithm to estimate

the optimal γ and hence determine the best topology for analyzing a given dataset.

The procedures proposed in this work open the door for more in-depth study of

the Lγ-graphs and what determines their optimal topology. They also pave the

way towards the extension of other standard clustering tools, such as Unsupervised

Learning via Spectral Clustering, to exploit these richer topologies.

Appendix A: Proofs
A.1 Proof of Lemma 3

Proof Let r = (Aout(S) − Dout(S))/(Ain(S) − Din(S)). It is easy to show that

h
(γ)
S = r/(r + 1), which is monotonocally increasing with r. Thus, the task is the

partition that minimizes r and consequently h
(γ)
S .

A.2 Proof of Lemma 4

Proof It suffices to show the positive semi-definiteness of the functional and to apply

the first order optimality condition. Let f̃ = QTD−1
γ f . Then, the left term satisfies
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∑j λγj f̃2j ≥ 0. It can be shown that [Dγ]uu = ∑j Q2
ujλ

γ
j ≥ 0 granting the right term

satisfies ∑u(fu − yu)2/[Dγ]uu ≥ 0. Now, computing the derivative of the functional

with respect to f and equaling to 0 leads to: LγD−1
γ f + µ(f − y) = 0. The lemma is

proved after isolating f .

A.3 Proof of Lemma 5

Proof From the demonstration of Lemma (4) we have that LγD−1
γ f + µ(f − y) = 0.

Then, 1
TLγD−1

γ + µ1T f = µ1T y. Since 1
TLγ = 0 we have that 1

T f = 1
T y,

proving (i). We prove property (iii) using the same expression. We only de-

velop the case µ → 0 since the case µ → ∞ follows the same steps: taking

limµ→0 {LγD−1
γ f + µ(f − y) = 0} leads to LγD−1

γ f = 0, whose solution is propor-

tional to πγ = Dγ1/volγ(G). Lastly, we prove (ii) by noting that the operator

LγD−1
γ has a positive real spectrum as it is similar to D

−1/2
γ LγD

−1/2
γ which is posi-

tive semi-definite. Thus, we can use the inverse Laplace transform of the resolvent

(LγD−1
γ + µI)−1 = ∫

∞

0 e−te−tL
γD−1

γ /µdt, which, after using its Taylor expansion, al-

lows to rewrite the PageRank solution as f = ∑∞k=0
(−1)k

µk
(LγD−1

γ )k y. If y = πγ , the

previous equation is only non-zero for k = 0, proving (ii).

A.4 Proof of Lemma 6

Proof Let y =Dγ1S/volγ(S). Using (8) we can see that

1
T
Scf = ∑

u∈S

[Dγ]uu
volγ(S)

1
T
Sc [µ (LγD−1

γ + µI)−1 δu] , (13)

showing that 1TScf can be interpreted as E [f(Sc)] when labels are selected with

probability proportional to their generalized degree in S. Using the fact that

(LγD−1
γ + µI)−1 (LγD−1

γ + µI) = I, (14)

we express

f = (I − 1

µ
LγD−1

γ + 1

µ
LγD−1

γ (LγD−1
γ + µI)−1LγD−1

γ ) y. (15)

The upper bound is thus obtained by substituting y and summing over S.

1
T
Sf = 1

T
SDγ1S

volγ(S)
− 1

T
SL

γ
1S

µ volγ(S)
+ 1

T
SL

γ (Lγ + µDγ)−1Lγ1S
µ volγ(S)

,

≥ 1
T
SDγ1S

volγ(S)
− 1

T
SL

γ
1S

µ volγ(S)
,

= 1 −
h
(γ)
S

µ
. (16)

Employing property (i) from Lemma 5 finishes the proof.
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A.5 Proof of Lemma 7

Proof We only show the proof of the lower bound as the upper bound follows a

similar derivation. We recast (4) as LγD−1
γ f = µ (y − f). Thus, the set Sj satisfies:

µ ((y(Sj) − f(Sj)) = 1TSjL
γD−1

γ f

= 1TSjL
γq

= ∑
u∈Sj ,v∈Scj

[Wγ]uv (qu − qv)

= ∑
u∈Sj ,v∈Scj

∣ [W +
γ ]uv ∣(qu − qv) − ∑

u∈Sj ,v∈Scj

∣ [W −
γ ]uv ∣(qu − qv)

+ ∑
u∈Sj ,v∈Scj

∣ [W +
γ ]uv ∣(qj − qj+1) − ∑

u∈Sj ,v∈Scj

∣ [W +
γ ]uv ∣(qj − qj+1)

+ ∑
u∈Sj ,v∈Scj

∣ [W −
γ ]uv ∣(qj − qj+1) − ∑

u∈Sj ,v∈Scj

∣ [W −
γ ]uv ∣(qj − qj+1)

≥ (qj − qj+1) (2Aout(Sj) +Dout(Sj))
− (q1 − qN) (2Dout(Sj) +Aout(Sj)) (17)

Re-ordering terms finishes the proof.

A.6 Proof of Theorem 1

Proof Let n = ∣S∣. For u, v ∈ S and w ∈ Sc the Planted Partition satisfies ∑vWuv ∼
B(n − 1, pin) and ∑wWuw ∼ B(n, pout). The key step in the proof is to show that,

in the limit n → ∞, E [h(1)
S ] = E [1

T
SL1S
vol(S)

] = E[1TSL1S]
E[vol(S)] , and the same for h

(2)
S . By

application of the Chebyshev inequality we have that

Pr (du −E [du] ≥ E [du]) ≤
var(du)

var(du) +E [du]2
= O(n−1). (18)

Thus, in the limit of n→∞ we can establish the inequality du < 2E [du] and further

that vol(S) < 2E [vol(S)]. This latter allows to express E [h(1)
S ] as follows [30]:

E [h(1)
S ] = E [1

T
SL1S

vol(S) ]

=
E [1TSL1S]
E [vol(S)] +

∞

∑
i=1

(−1)iE[1TSL1S]⟪ivol(S)⟫ + ⟪1TSL1S ,i vol(S)⟫
E [vol(S)]i+1

=
E [1TSL1S]
E [vol(S)] +

∞

∑
i=1

(−1)i
E [1TSL1S(vol(S) −E[vol(S)])i]

E[vol(S)]i+1

=
E [1TSL1S]
E [vol(S)] +

∞

∑
i=1

(−1)iE
⎡⎢⎢⎢⎢⎣

1
T
SL1S

E[vol(S)] ( vol(S)
E[vol(S)] − 1)

i⎤⎥⎥⎥⎥⎦

=
E [1TSL1S]
E [vol(S)] +

∞

∑
i=1

(−1)ici (19)

where ⟪a,i b⟫ = E [(a −E[a])(b −E[b])i]. The fact that vol(S) < 2E [vol(S)] and

the monotonicity of the expected value imply that the sequence ∑i ∣ci∣ decreases
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monotonically. Also, it can be shown that its dominant term: c1 = O(n−2). Replacing

the expectations and evaluating the limit leads to

lim
n→∞

E [h(1)
S ] = pout

pin + pout
. (20)

The case of E[h(2)
S ] follows a similar derivation. Since [D2]uu = d2u + du, the Jensen

inequality implies that [D2]uu < 2E [[D2]uu] and consequently that vol2(S) <
2E [vol2(S)]. Thus, we cast

E [h(2)
S ] = E [1

T
SL

2
1S

vol2(S)
]

=
E [1TSL2

1S]
E [vol2(S)]

+
∞

∑
i=1

(−1)iE
⎡⎢⎢⎢⎢⎣

1
T
SL

2
1S

E[vol2(S)]
( vol2(S)
E[vol2(S)]

− 1)
i⎤⎥⎥⎥⎥⎦

=
E [1TSL2

1S]
E [vol2(S)]

+
∞

∑
i=1

(−1)ic(2)i (21)

Let the random variable Ou = ∑w∈ScWuw. Then we have that 1
T
SL

2
1S =

2∑u∈S (Ou)2. This fact, in addition to vol2(S) = ∑u∈S d2u + du, allow to show that

the sequence ∑i ∣c
(2)
i ∣ is monotonically decreasing with c

(2)
1 = O(n−1). Replacing the

expectations and evaluating the limit leads to

lim
n→∞

E [h(2)
S ] = 2( pout

pin + pout
)
2

(22)

A.7 Proof of Corollary 1

Proof Let pin = pout + ε and assume that h
(1)
S ≥ h

(2)
S . Thus pout/(pin + pout) ≥

2(pout/(pin + pout))2, which can be further simplified to 1 ≥ 2pout/(2pout + ε). We

observe that such expression holds for ε ≥ 0 and equality occurs when ε = 0.

A.8 Proof of Proposition 1

Proof We search a condition on S that permits
1
T
SL1S

1
T
S
D1S

≥ 1
T
SL

2
1S

1
T
S
D21S

, or equivalently,

that satisfies the inequality
1
T
SD21S

1
T
S
D1S

− 1
T
SL

2
1S

1
T
S
L1S

≥ 0. We have

1
T
SD21S

1
T
SD1S

− 1
T
SL

2
1S

1
T
SL1S

≥ 1
T
SD

2
1S

1
T
SD1S

− 1
T
SL

2
1S

1
T
SL1S

≥ 1
T
SD

2
1S

1
T
SD1S

− (max
u∈S

∑
w∈Sc

Wuw +max
`∈Sc
∑
v∈S

W`v)

≥ 1
T
SD1S

1
T
S1S

− (max
u∈S

∑
w∈Sc

Wuw +max
`∈Sc
∑
v∈S

W`v)

= vol(S)∣S∣ − (max
u∈S

∑
w∈Sc

Wuw +max
`∈Sc
∑
v∈S

W`v) , (23)
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where we have used Lehmer’s and Holder’s inequalities and that 1
T
SL

2
1S =

∑u∈S (∑w∈ScWuw)2 +∑`∈Sc (∑v∈SW`v)2. Thus, it is sufficient that S satisfies

vol(S)
∣S∣ − (max

u∈S
∑
w∈Sc

Wuw +max
`∈Sc
∑
v∈S

W`v) ≥ 0 (24)
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19. Pérez Riascos, A., Mateos, J.: Fractional dynamics on networks: Emergence of anomalous diffusion and lévy
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